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ments, and the second one models the spontaneous propagation 
of pathogen particles in the air. Unfortunately, the three-dimen-
sional time-dependent advection-diffusion equations are com-
plicated to simulate. This is related to the high computational 
cost of the three-dimensional problem as well as the instabilities 
of the numerical methods. As the remedy to the first problem, 
we propose the alternating directions implicit solver. We also 
focus on the mathematical analysis of the simulation that pres-
ents the necessary conditions for its stability.

The alternating directions implicit solver (ADI) was orig-
inally proposed for performing finite-difference simulations 
of time-dependent problems on regular grids. The first papers 
concerning the ADI method were published in 1960 [2‒5]. The 
ADI with finite difference method is still popular for fast solu-
tions of different classes of problems with f inite difference 
method [6, 7]. The method introduces intermediate time steps 
in its basic version, and the differential operator is split into 
sub-operators, containing only the x, y, z derivatives. The time 
integration scheme involves sub-steps with only one sub-op-
erator on the left-hand side and the other sub-operators on 
the right-hand side, acting on the previous sub-step solutions. 
As a result of this direction splitting, after the discretization 
of the linear equations system, we deal only with derivatives 
in one direction while the rest of the operator is on the right-
hand side. If derived on the regular three-dimensional grid, the 

1.	 INTRODUCTION
According to the World Health Organization [1], COVID-19 
is mainly spread through particles containing virus material 
exhaled by infected people through speech breathing or spread 
by sneezing or coughing.

How these particles spread, how their concentration changes 
with the distance from the speaking or sneezing person changes, 
and how the air movement influences these concentrations is in 
general unknown and can be measured experimentally, which 
is very difficult to estimate by using computer simulations.

Thus, in the days of COVID-19, computer simulations can 
help in making decisions such as the required distance in pub-
lic places, the need to wear masks covering the mouth and 
nose, made of specific materials, the permissible time of stay 
with a person infected in one room, etc. This paper focuses on 
advection-diffusion equations, which can model the propaga-
tion of pathogens in the air. We can represent the concentration 
of pathogens in the air by “contamination” propagating from 
the source by advection and diffusion mechanisms. The first 
term describes the spread of particles forced by the air move-
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resulting system of linear equations has a Kronecker product 
structure, and it can be factorized in a linear 
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1. Introduction
According to the World Health Organization [1], COVID-19 is
mainly spread through particles containing virus material ex-
haled by infected people through speech breathing or spread
by sneezing or coughing.

How these particles spread, how their concentration changes
with the distance from the speaking or sneezing person
changes, and how the air movement influences these concen-
trations is in general unknown and can be measured experi-
mentally, which is very difficult estimated by using computer
simulations.

Thus, in the days of COVID-19, computer simulations can
help in making decisions such as the required distance in pub-
lic places, the need to wear masks covering the mouth and
nose, made of specific materials, the permissible time of stay
with a person infected in one room, etc. This paper focuses on
advection-diffusion equations, which can model the propaga-
tion of pathogens in the air. We can represent the concentration
of pathogens in the air by "contamination" propagating from
the source by advection and diffusion mechanisms. The first
term describes the spread of particles forced by the air move-
ments, and the second one models the spontaneous propaga-
tion of pathogen particles in the air. Unfortunately, the three-
dimensional time-dependent advection-diffusion equations are
complicated to simulate. This is related to the high compu-
tational cost of the three-dimensional problem as well as by
the instabilities of the numerical methods. As the remedy to
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the first problem, we propose the alternating directions implicit
solver. We also focus on the mathematical analysis of the sim-
ulation that presents the necessary conditions for its stability.

The alternating directions implicit solver (ADI) was origi-
nally proposed for performing finite-difference simulations of
time-dependent problems on regular grids. The first papers
concerning the ADI method were published in 1960 [2, 3, 4,
5]. The ADI with finite difference method is still popular for
fast solutions of different classes of problems with finite differ-
ence method [6, 7]. The method introduces intermediate time
steps in its basic version, and the differential operator is split
into sub-operators, containing only the x, y, z derivatives. The
time integration scheme involves sub-steps with only one sub-
operator on the left-hand side and the other sub-operators on
the right-hand side, acting on the previous sub-step solutions.
As a result of this direction splitting, after the discretization of
the linear equations system, we deal only with derivatives in
one direction while the rest of the operator is on the right-hand
side. The resulting system of linear equations, if derived on the
regular three-dimensional grid, has a Kronecker product struc-
ture, and it can be factorization in a linear O(N) computational
cost.

The isogeometric analysis (IGA) [8] is a modern method
for performing finite element method (FEM) simulations with
B-splines and NURBS. The IGA-FEM has multiple appli-
cations for simulations of time-dependent problems, includ-
ing wind turbine aerodynamics [9], turbulent flow simulations
[10], phase field phase-separation simulations [11, 12, 13,
14], incompressible hyper-elasticity [15], blood flow simula-
tions [16, 17, 18, 19] and tumor growth simulations [20, 21].

1

(N ) compu-
tational cost.

The isogeometric analysis (IGA) [8] is a modern method 
for performing finite element method (FEM) simulations with 
B-splines and NURBS. The IGA-FEM has multiple applica-
tions for simulations of time-dependent problems, including 
wind turbine aerodynamics [9], turbulent flow simulations [10], 
phase field phase-separation simulations [11‒14], incompress-
ible hyper-elasticity [16‒19] and tumor growth simulations 
[20, 21]. The computational cost of the factorization of a sys-
tem of linear equations resulting from IGA discretization with 
standard multi-frontal solvers is 
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1 AGH University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, al. Mickiewicza 30,
30-059 Krakow, Poland

2 Instituto de Matemáticas, Pontificia Universidad Católica de Valparaíso, Chile

Abstract. In times of the COVID-19, reliable tools to simulate the airborne pathogens causing the infection are extremely important to enable
the testing of various preventive methods. Advection-diffusion simulations can model the propagation of pathogens in the air. We can represent
the concentration of pathogens in the air by "contamination" propagating from the source, by the mechanisms of advection (representing air
movement) and diffusion (representing the spontaneous propagation of pathogen particles in the air). The three-dimensional time-dependent
advection-diffusion equation is difficult to simulate due to the high computational cost and instabilities of the numerical methods. In this
paper, we present alternating directions implicit isogeometric analysis simulations of the three-dimensional advection-diffusion equations. We
introduce three intermediate time steps, where in the differential operator, we separate the derivatives concerning particular spatial directions.
We provide a mathematical analysis of the numerical stability of the method. We show well-posedness of each time step formulation, under the
assumption of a particular time step size. We utilize the tensor products of one-dimensional B-spline basis functions over the three-dimensional
cube shape domain for the spatial discretization. The alternating direction solver is implemented in C++ and parallelized using the GALOIS
framework for multi-core processors. We run the simulations within 120 minutes on a laptop equipped with i7 6700Q processor 2.6GHz (8
cores with HT) and 16 GB of RAM.

Key words: COVID-19, pathogen spread, isogeometric analysis, implicit dynamics, advection-diffusion, parallel alternating directions solver

1. Introduction
According to the World Health Organization [1], COVID-19 is
mainly spread through particles containing virus material ex-
haled by infected people through speech breathing or spread
by sneezing or coughing.

How these particles spread, how their concentration changes
with the distance from the speaking or sneezing person
changes, and how the air movement influences these concen-
trations is in general unknown and can be measured experi-
mentally, which is very difficult estimated by using computer
simulations.

Thus, in the days of COVID-19, computer simulations can
help in making decisions such as the required distance in pub-
lic places, the need to wear masks covering the mouth and
nose, made of specific materials, the permissible time of stay
with a person infected in one room, etc. This paper focuses on
advection-diffusion equations, which can model the propaga-
tion of pathogens in the air. We can represent the concentration
of pathogens in the air by "contamination" propagating from
the source by advection and diffusion mechanisms. The first
term describes the spread of particles forced by the air move-
ments, and the second one models the spontaneous propaga-
tion of pathogen particles in the air. Unfortunately, the three-
dimensional time-dependent advection-diffusion equations are
complicated to simulate. This is related to the high compu-
tational cost of the three-dimensional problem as well as by
the instabilities of the numerical methods. As the remedy to
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the first problem, we propose the alternating directions implicit
solver. We also focus on the mathematical analysis of the sim-
ulation that presents the necessary conditions for its stability.

The alternating directions implicit solver (ADI) was origi-
nally proposed for performing finite-difference simulations of
time-dependent problems on regular grids. The first papers
concerning the ADI method were published in 1960 [2, 3, 4,
5]. The ADI with finite difference method is still popular for
fast solutions of different classes of problems with finite differ-
ence method [6, 7]. The method introduces intermediate time
steps in its basic version, and the differential operator is split
into sub-operators, containing only the x, y, z derivatives. The
time integration scheme involves sub-steps with only one sub-
operator on the left-hand side and the other sub-operators on
the right-hand side, acting on the previous sub-step solutions.
As a result of this direction splitting, after the discretization of
the linear equations system, we deal only with derivatives in
one direction while the rest of the operator is on the right-hand
side. The resulting system of linear equations, if derived on the
regular three-dimensional grid, has a Kronecker product struc-
ture, and it can be factorization in a linear O(N) computational
cost.

The isogeometric analysis (IGA) [8] is a modern method
for performing finite element method (FEM) simulations with
B-splines and NURBS. The IGA-FEM has multiple appli-
cations for simulations of time-dependent problems, includ-
ing wind turbine aerodynamics [9], turbulent flow simulations
[10], phase field phase-separation simulations [11, 12, 13,
14], incompressible hyper-elasticity [15], blood flow simula-
tions [16, 17, 18, 19] and tumor growth simulations [20, 21].

1

(N 2p3), and the constant in 
front of the computational complexity can be reduced using 
some special techniques [22].

The direction splitting method has been used to solve the 
isogeometric L2 projection problem over regular grids with 
tensor product B-spline basis functions [23‒25] in a linear 
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the first problem, we propose the alternating directions implicit
solver. We also focus on the mathematical analysis of the sim-
ulation that presents the necessary conditions for its stability.

The alternating directions implicit solver (ADI) was origi-
nally proposed for performing finite-difference simulations of
time-dependent problems on regular grids. The first papers
concerning the ADI method were published in 1960 [2, 3, 4,
5]. The ADI with finite difference method is still popular for
fast solutions of different classes of problems with finite differ-
ence method [6, 7]. The method introduces intermediate time
steps in its basic version, and the differential operator is split
into sub-operators, containing only the x, y, z derivatives. The
time integration scheme involves sub-steps with only one sub-
operator on the left-hand side and the other sub-operators on
the right-hand side, acting on the previous sub-step solutions.
As a result of this direction splitting, after the discretization of
the linear equations system, we deal only with derivatives in
one direction while the rest of the operator is on the right-hand
side. The resulting system of linear equations, if derived on the
regular three-dimensional grid, has a Kronecker product struc-
ture, and it can be factorization in a linear O(N) computational
cost.

The isogeometric analysis (IGA) [8] is a modern method
for performing finite element method (FEM) simulations with
B-splines and NURBS. The IGA-FEM has multiple appli-
cations for simulations of time-dependent problems, includ-
ing wind turbine aerodynamics [9], turbulent flow simulations
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 (N) computational cost. The direction splitting, in this case, 
is possible by exploiting the Kronecker product structure of 
the Gram matrix resulting from a discretization over the patch 
of finite elements with tensor product structure of the B-spline 
basis functions. This direction splitting for isogeometric L2 
projections were applied for performing simulations of explicit 
dynamics [20, 26‒29], where each time step is computed as the 
solution of isogeometric L2 projection of the previous time step 
solution, plus the changes enforced by the physics of the com-
putational problem, computed from the differential operator 
application to the previous time-step solution, plus the right-
hand side.

Recently, in the conference proceedings [30], we extended 
the explicit dynamics method [20, 26‒29] into the implicit 
dynamics solver. The solver was applied for the advection-dif-
fusion problem. It employed the isogeometric analysis approach, 
stabilized with the residual minimization method. The residual 
minimization method stabilizes the finite element simulations 
by considering a Petrov-Galerkin formulation with different 
trial and test spaces. The stabilization is obtained by increas-
ing the dimension of the test space. The residual minimization 
stabilization is required when there is a large contrast between 
the advection and diffusion terms, which is not the case in the 
airborne pathogen simulations.

The novelties of this paper with regard to our previous work, 
are the following. In this paper, we provide the mathematical 
analysis on the well-posedness of the weak formulation for the 
advection-diffusion problem, for each substep of the split oper-
ator, under the zero Neumann boundary assumption condition. 
We are not aware of any other paper proving the well-posedness 
in this case. The general Dirichlet boundary condition case was 
analyzed in [31]. We also find the relation between the time-
step size and the coercivity constant, thus the necessary condi-
tion for the non-stationary simulations’ stability.

The structure of this paper is the following. We start in 
Section 2 with the derivation of the isogeometric alternating 
direction implicit method for the advection-diffusion prob-
lem. We show the strong form in Section 2.1, weak form in 
Section 2.2, we prove the well-posedness in Section 2.3, and 

we introduce the direction splitting in Section 2.4. Next, in 
Section 3, we present numerical results and the MATLAB 
code f inding the relation between the time-step size and the 
coercivity constant.

Next, in Section 3, we present the linear computational cost 
numerical results. We summarize the paper with conclusions in 
Section 4. We also present in Section 5 an Appendix explaining 
how to perform linear computational cost factorization with 
Kronecker product matrices.

2.	 ISOGEOMETRIC ALTERNATING DIRECTIONS IMPLICIT 
METHOD FOR ADVECTION-DIFFUSION PROBLEM

In this section, partial derivatives with respect to a given variable 
s will be denoted by s. Additionally, a time-dependent function 
w captured at a given time-step τ, will be denoted by wτ .

2.1. Strong formulation
Let Ω ½ R3 be a cube with Γ := Ω and let T > 0 be some 
f inal lapse of time. As usual, the standard L2(Ω) inner prod-
uct will be denoted by (¢, ¢). Let f  = f (x, y, z, t) be a source 
function, let ~β = (β x(x, y, z, t), β y(x, y, z, t), β z(x, y, z, t)) be 
an advection field, and let the (positive) diffusion coefficients 
be denoted by
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The computational cost of the factorization of a system of lin-
ear equations resulting from IGA discretization with standard
multi-frontal solvers is O(N2 p3), and the constant in front of
the computational complexity can be reduced using some spe-
cial techniques [22].

The direction splitting method has been used to solve the
isogeometric L2 projection problem over regular grids with
tensor product B-spline basis functions [23, 24, 25] in a lin-
ear O(N) computational cost. The direction splitting, in this
case, is possible by exploiting the Kronecker product struc-
ture of the Gram matrix resulting from a discretization over
the patch of finite elements with tensor product structure of the
B-spline basis functions. This direction splitting for isogeo-
metric L2 projections were applied for performing simulations
of explicit dynamics [26, 27, 20, 28, 29], where each time step
is computed as the solution of isogeometric L2 projection of
the previous time step solution, plus the changes enforced by
the physics of the computational problem, computed from the
differential operator’s application to the previous time-step so-
lution, plus the right-hand-side.

Recently, in the conference proceedings [30], we extended
the explicit dynamics method [26, 27, 20, 28, 29] into the
implicit dynamics solver. The solver was applied for the
advection-diffusion problem. It employed the isogeometric
analysis approach, stabilized with the residual minimization
method. The residual minimization method stabilizes the finite
element simulations by considering a Petrov-Galerkin formu-
lation with different trial and test spaces. The stabilization is
obtained by increasing the dimension of the test space. The
residual minimization stabilization is required when there is
a large contrast between the advection and diffusion terms,
which is not the case in the airborne pathogen simulations.

The novelties of this paper with regard to our previous work,
are the following. In this paper, we provide the mathemat-
ical analysis on the well-posedness of the weak formulation
for the advection-diffusion problem, for each substep of the
split operator, under the zero Neumann boundary assumption
condition. We are not aware of any other paper proving the
well-posedness in this case. The general Dirichlet boundary
condition case was analyzed in [31]. We also find the relation
between the time-step size and the coercivity constant, thus the
necessary condition for the non-stationary simulations’ stabil-
ity.

The structure of this paper is the following. We start in Sec-
tion 2 with the derivation of the isogeometric alternating direc-
tion implicit method for the advection-diffusion problem. We
show the strong form in Section 2.1, weak form in Section 2.2,
we prove the well-posedness in Section 2.3, and we introduce
the direction splitting in Section 2.4. Next, in Section 3, we
present numerical results and the MATLAB code finding the
relation between the time-step size and the coercivity constant.

Next, in Section 3, we present the linear computational cost
numerical results. We summarize the paper with conclusions
in Section 4. We also present in Section 5 an Appendix ex-
plaining how to perform linear computational cost factoriza-
tion with Kronecker product matrices.

2. Isogeometric alternating directions implicit
method for advection-diffusion problem

In this section, partial derivatives with respect to a given vari-
able s will be denoted by ∂s. Additionally, a time-dependent
function w captured at a given time-step τ , will be denoted by
wτ .

2.1. Strong formulation Let Ω ⊂ R3 be a cube with Γ :=
∂Ω and let T > 0 be some final lapse of time. As
usual, the standard L2(Ω) inner product will be denoted by
(·, ·). Let f = f (x,y,z, t) be a source function, let �β =
(β x(x,y,z, t),β y(x,y,z, t),β z(x,y,z, t)) be an advection field,
and let the (positive) diffusion coefficients be denoted by

K =




Kx(x,y,z, t) 0 0
0 Ky(x,y,z, t) 0
0 0 Kz(x,y,z, t)


 ,

∀(x,y,z) ∈ Ω ∀t ∈ (0,T ]. Additionally, for any t ∈ (0,T ], we
require that f (·, t) ∈ L2(Ω), �β (·, t) ∈ [L∞(Ω)]3, and K(·, t) ∈
[L∞(Ω)]9.

Our model problem will be the advection-diffusion equa-
tion. We seek for the pollutant concentration field u ∈
C1(0,T ;C2(Ω)) such that

∂tu−∇ · (K∇u)+�β ·∇u = f , in (0,T )×Ω, (1)

with homogeneous Neumann boundary condition and zero ini-
tial state, i.e.,

{
(K∇u) ·n = 0 ∀(x,y,z, t) ∈ Γ× (0,T ),

u(x,y,z,0) = 0 ∀(x,y,z) ∈ Ω.
(2)

This three-dimensional time-dependent problem can be treated
like a four-dimensional problem with Dirichlet boundary con-
dition on one face of the hypercube, free boundary condition
on the opposite face, and Neumann boundary condition on
other faces. For this reason, it has a unique solution. The math-
ematical proof of the solution’s uniqueness for a similar setup
for the heat transfer problem is presented in [26].

2.2. Weak formulation In order to derive the weak formu-
lation of (1-2), we multiply by test functions and integrate by
parts to get:

(∂tu,v)+(K∇u,∇v)+
(
�β ·∇u,v

)
= ( f ,v) , ∀v ∈ H1(Ω),

(3)
where we have used the zero Neumann boundary condition
in (2).

Now, we apply the alternating direction method concerning
time. We split the advection and diffusion operators into three
sub-operators, the first one with the derivatives in the x direc-
tion, the second one with the derivatives in the y direction, and
the third one with the derivatives in the z direction. We intro-
duce three intermediate time steps of size τ > 0 each. In the
first sub-step, we keep on the left-hand-side the sub-operator
with z derivatives, and we put the x and y derivatives on the
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Our model problem will be the advection-diffusion equa-
tion. We seek for the pollutant concentration field u 2 C1(0, T; 
C2(Ω)) such that
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The computational cost of the factorization of a system of lin-
ear equations resulting from IGA discretization with standard
multi-frontal solvers is O(N2 p3), and the constant in front of
the computational complexity can be reduced using some spe-
cial techniques [22].

The direction splitting method has been used to solve the
isogeometric L2 projection problem over regular grids with
tensor product B-spline basis functions [23, 24, 25] in a lin-
ear O(N) computational cost. The direction splitting, in this
case, is possible by exploiting the Kronecker product struc-
ture of the Gram matrix resulting from a discretization over
the patch of finite elements with tensor product structure of the
B-spline basis functions. This direction splitting for isogeo-
metric L2 projections were applied for performing simulations
of explicit dynamics [26, 27, 20, 28, 29], where each time step
is computed as the solution of isogeometric L2 projection of
the previous time step solution, plus the changes enforced by
the physics of the computational problem, computed from the
differential operator’s application to the previous time-step so-
lution, plus the right-hand-side.

Recently, in the conference proceedings [30], we extended
the explicit dynamics method [26, 27, 20, 28, 29] into the
implicit dynamics solver. The solver was applied for the
advection-diffusion problem. It employed the isogeometric
analysis approach, stabilized with the residual minimization
method. The residual minimization method stabilizes the finite
element simulations by considering a Petrov-Galerkin formu-
lation with different trial and test spaces. The stabilization is
obtained by increasing the dimension of the test space. The
residual minimization stabilization is required when there is
a large contrast between the advection and diffusion terms,
which is not the case in the airborne pathogen simulations.

The novelties of this paper with regard to our previous work,
are the following. In this paper, we provide the mathemat-
ical analysis on the well-posedness of the weak formulation
for the advection-diffusion problem, for each substep of the
split operator, under the zero Neumann boundary assumption
condition. We are not aware of any other paper proving the
well-posedness in this case. The general Dirichlet boundary
condition case was analyzed in [31]. We also find the relation
between the time-step size and the coercivity constant, thus the
necessary condition for the non-stationary simulations’ stabil-
ity.

The structure of this paper is the following. We start in Sec-
tion 2 with the derivation of the isogeometric alternating direc-
tion implicit method for the advection-diffusion problem. We
show the strong form in Section 2.1, weak form in Section 2.2,
we prove the well-posedness in Section 2.3, and we introduce
the direction splitting in Section 2.4. Next, in Section 3, we
present numerical results and the MATLAB code finding the
relation between the time-step size and the coercivity constant.

Next, in Section 3, we present the linear computational cost
numerical results. We summarize the paper with conclusions
in Section 4. We also present in Section 5 an Appendix ex-
plaining how to perform linear computational cost factoriza-
tion with Kronecker product matrices.

2. Isogeometric alternating directions implicit
method for advection-diffusion problem

In this section, partial derivatives with respect to a given vari-
able s will be denoted by ∂s. Additionally, a time-dependent
function w captured at a given time-step τ , will be denoted by
wτ .

2.1. Strong formulation Let Ω ⊂ R3 be a cube with Γ :=
∂Ω and let T > 0 be some final lapse of time. As
usual, the standard L2(Ω) inner product will be denoted by
(·, ·). Let f = f (x,y,z, t) be a source function, let �β =
(β x(x,y,z, t),β y(x,y,z, t),β z(x,y,z, t)) be an advection field,
and let the (positive) diffusion coefficients be denoted by

K =




Kx(x,y,z, t) 0 0
0 Ky(x,y,z, t) 0
0 0 Kz(x,y,z, t)


 ,

∀(x,y,z) ∈ Ω ∀t ∈ (0,T ]. Additionally, for any t ∈ (0,T ], we
require that f (·, t) ∈ L2(Ω), �β (·, t) ∈ [L∞(Ω)]3, and K(·, t) ∈
[L∞(Ω)]9.

Our model problem will be the advection-diffusion equa-
tion. We seek for the pollutant concentration field u ∈
C1(0,T ;C2(Ω)) such that

∂tu−∇ · (K∇u)+�β ·∇u = f , in (0,T )×Ω, (1)

with homogeneous Neumann boundary condition and zero ini-
tial state, i.e.,

{
(K∇u) ·n = 0 ∀(x,y,z, t) ∈ Γ× (0,T ),

u(x,y,z,0) = 0 ∀(x,y,z) ∈ Ω.
(2)

This three-dimensional time-dependent problem can be treated
like a four-dimensional problem with Dirichlet boundary con-
dition on one face of the hypercube, free boundary condition
on the opposite face, and Neumann boundary condition on
other faces. For this reason, it has a unique solution. The math-
ematical proof of the solution’s uniqueness for a similar setup
for the heat transfer problem is presented in [26].

2.2. Weak formulation In order to derive the weak formu-
lation of (1-2), we multiply by test functions and integrate by
parts to get:

(∂tu,v)+(K∇u,∇v)+
(
�β ·∇u,v

)
= ( f ,v) , ∀v ∈ H1(Ω),

(3)
where we have used the zero Neumann boundary condition
in (2).

Now, we apply the alternating direction method concerning
time. We split the advection and diffusion operators into three
sub-operators, the first one with the derivatives in the x direc-
tion, the second one with the derivatives in the y direction, and
the third one with the derivatives in the z direction. We intro-
duce three intermediate time steps of size τ > 0 each. In the
first sub-step, we keep on the left-hand-side the sub-operator
with z derivatives, and we put the x and y derivatives on the
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with homogeneous Neumann boundary condition and zero ini-
tial state, i.e.,

	
	 (K∇u) ¢ n = 0	 ∀(x, y, z, t) 2 Γ£(0, T ),
	 u(x, y, z, 0) = 0	 ∀(x, y, z) 2 Ω.

� (2)

This three-dimensional time-dependent problem can be treated 
like a four-dimensional problem with Dirichlet boundary condi-
tion on one face of the hypercube, free boundary condition on 
the opposite face, and Neumann boundary condition on other 
faces. For this reason, it has a unique solution. The mathemat-
ical proof of the solution uniqueness for a similar setup for the 
heat transfer problem is presented in [26].

2.2. Weak formulation
In order to derive the weak formulation of (1, 2), we multiply 
by test functions and integrate by parts to get:
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(t u, v) + (K∇u, ∇v) + 
³
~β  ¢ ∇u, v

´
 = ( f, v),

∀v 2 K1Ω. � (3)

where we have used the zero Neumann boundary condition in (2).
Now, we apply the alternating direction method concerning 

time. We split the advection and diffusion operators into three 
sub-operators, the first one with the derivatives in the x direc-
tion, the second one with the derivatives in the y direction, and 
the third one with the derivatives in the z direction. We intro-
duce three intermediate time steps of size τ > 0 each. In the 
first sub-step, we keep on the left-hand side the sub-operator 
with z derivatives, and we put the x and y derivatives on the 
right-hand side, i.e.,
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right-hand-side, i.e.,
(

ut+ 1
3
,v
)
+ τ

(
∂zut+ 1

3
,Kz

t+ 1
3
∂zv+β z

t+ 1
3
v
)

(4)

= (ut + τ ft ,v)

− τ (∂xut ,Kx
t ∂xv+β x

t v)

− τ
(
∂yut ,K

y
t ∂yv+β y

t v
)
.

In the second sub-step we keep on the left-hand-side the sub-
operator with y derivatives, and we put the x and z derivatives
on the right-hand-side, i.e.,

(
ut+ 2

3
,v
)
+ τ

(
∂yut+ 2

3
,Ky

t+ 2
3
∂yv+β y

t+ 2
3
v
)

(5)

=
(

ut+ 1
3
+ τ ft+ 1

3
,v
)

− τ
(

∂xut+ 1
3
,Kx

t+ 1
3
∂xv+β x

t+ 1
3
v
)

− τ
(

∂zut+ 1
3
,Kz

t+ 1
3
∂zv+β z

t+ 1
3
v
)
.

In the third sub-step we keep on the left-hand-side the sub-
operator with x derivatives, and we put the y and z derivatives
on the right-hand-side, i.e.,

(ut+1,v)+ τ
(
∂xut+1,Kx

t+1∂xv+β x
t+1v

)
(6)

=
(

ut+ 2
3
+ τ ft+ 2

3
,v
)

− τ
(

∂yut+ 2
3
,Ky

t+ 2
3
∂yv+β y

t+ 2
3
v
)

− τ
(

∂zut+ 2
3
,Kz

t+ 2
3
∂zv+β z

t+ 2
3
v
)
.

Thus, in the three sub-steps, we have sub-problems with iden-
tical structure. The fact that we keep on the left-hand-side
only derivatives in one direction results in a Kronecker product
structure of the linear system of equations after discretization
with isogeometric analysis over a cube shape domain. This
will result later in a linear O(N) computational cost of the
solver.

2.3. Well-posedness Let us focus now on the well-posedness
of the weak sub-problems (4), (5) and (6). Within this sub-
section 2.3, the Cartesian system of coordinates in R3 will be
denoted by (x1,x2,x3) instead of (x,y,z).

For i= 1,2,3, let Vi be the space of functions v∈ L2(Ω) such
that the distributional derivative ∂xiv is also in L2(Ω). This
space will be endowed with the scalar product:

(u,v)Vi = (u,v)+(∂xi u,∂xiv) , ∀u,v ∈Vi. (7)

It is easy to verify that Vi is a Hilbert space. The induced norm
on Vi will be denoted by ‖ · ‖Vi .

Given w ∈ H2(Ω) (representing the solution from the previ-
ous time-step t) we can rewrite our sub-problems (4)-(6) in the
following general form:

Find u ∈Vi such that b(u,v) = lw(v), ∀v ∈Vi, (8)

with

b(u,v) := (u,v)+ τ
(
∂xiu,K

i
t+τ ∂xiv+β i

t+τ v
)

lw(v) := (w+ τ ft ,v)+ τ
(

K j
t ∂ 2

x j
w−β j

t ∂x j w,v
)

+ τ
(
Kk

t ∂ 2
xk

w−β k
t ∂xk w,v

)
, (9)

where we have assumed that K is constant in the integration
by parts, and i �= j �= k, and where we have integrated by parts
back in the right-hand-side lw(v), to ensure the well-posedness
of the problem. Namely, both the bilinear form b and the linear
form l are continuous with respect to the norm induced by the
inner product (7) in Vi.

THEOREM 1. For any t ∈ (0,T −τ], assume that there exists
a constant η i

t > 0 such that Ki
t+τ ≥ η i

t >
τ
4‖β i(·, t + τ)‖2

L∞ for
almost every x ∈ Ω. Then the bilinear form

b(u,v) = (u,v)+ τ
(
∂xiu,K

i
t+τ ∂xi v+β i

t+τ v
)

(10)

is coercive on Vi, and thus problem (8) is well-posed for any
w ∈ H2(Ω).

Proof. For any u ∈ Vi, first observe that (Ki
t+τ ∂xiu,∂xiu) ≥

η i
t ‖∂xiu‖2

L2 . Next, notice that:

(β i
t+τ ∂xiu,u)≥−|(β i

t+τ u,∂xiu)|
≥ −‖β i

t+τ‖L∞‖u‖L2‖∂xiu‖L2

≥−‖β i
t+τ‖L∞

(
‖u‖2

L2

2ε
+

ε
2
‖∂xiu‖

2
L2

)
,

where we have used Hölder inequality and Young’s inequality
with ε > 0. Thus, we have

b(u,u) = ‖u‖2
L2 + τ(Ki

t+τ ∂xiu,∂xiu)+ τ(β i
t+τ ∂xiu,u)

≥ ‖u‖2
L2 + τη i

t ‖∂xiu‖
2
L2

− τ‖β i
t+τ‖L∞

(
‖u‖2

L2

2ε
+

ε
2
‖∂xiu‖

2
L2

)

=

(
1−

τ‖β i
t+τ‖L∞

2ε

)
‖u‖2

L2

+ τ
(

η i
t −

ε
2
‖β i

t+τ‖L∞

)
‖∂xiu‖

2
L2 .

(11)

To get coercivity, we need to show the positivity of the last two
expressions on the right-hand-side of (11). If ‖β i

t+τ‖L∞ = 0,
then the result is trivial. Otherwise, take any δ > 0 such that
τ
4‖β i

t+τ‖2
L∞ < δ < η i

t and let ε = 2δ‖β i
t+τ‖−1

L∞ . Then,

1−
τ‖β i

t+τ‖L∞

2ε
= 1−

τ‖β i
t+τ‖2

L∞

4δ
> 0

and
η i

t −
ε
2
‖β i

t+τ‖L∞ = η i
t −δ > 0.

Finally, the well-posedness of problem (8) is a consequence of
the Lax-Milgram Theorem for coercive and continuous bilin-
ear forms.

REMARK 1. The message from Theorem 1 is that, to ensure
solvability, we need to pick a small enough time-step τ > 0
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In the second sub-step we keep on the left-hand side the sub-op-
erator with y derivatives, and we put the x and z derivatives on 
the right-hand side, i.e.,
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right-hand-side, i.e.,
(

ut+ 1
3
,v
)
+ τ

(
∂zut+ 1

3
,Kz

t+ 1
3
∂zv+β z

t+ 1
3
v
)

(4)

= (ut + τ ft ,v)

− τ (∂xut ,Kx
t ∂xv+β x

t v)

− τ
(
∂yut ,K

y
t ∂yv+β y

t v
)
.

In the second sub-step we keep on the left-hand-side the sub-
operator with y derivatives, and we put the x and z derivatives
on the right-hand-side, i.e.,

(
ut+ 2

3
,v
)
+ τ

(
∂yut+ 2

3
,Ky

t+ 2
3
∂yv+β y

t+ 2
3
v
)

(5)

=
(

ut+ 1
3
+ τ ft+ 1

3
,v
)

− τ
(

∂xut+ 1
3
,Kx

t+ 1
3
∂xv+β x

t+ 1
3
v
)

− τ
(

∂zut+ 1
3
,Kz

t+ 1
3
∂zv+β z

t+ 1
3
v
)
.

In the third sub-step we keep on the left-hand-side the sub-
operator with x derivatives, and we put the y and z derivatives
on the right-hand-side, i.e.,

(ut+1,v)+ τ
(
∂xut+1,Kx

t+1∂xv+β x
t+1v

)
(6)

=
(

ut+ 2
3
+ τ ft+ 2

3
,v
)

− τ
(

∂yut+ 2
3
,Ky

t+ 2
3
∂yv+β y

t+ 2
3
v
)

− τ
(

∂zut+ 2
3
,Kz

t+ 2
3
∂zv+β z

t+ 2
3
v
)
.

Thus, in the three sub-steps, we have sub-problems with iden-
tical structure. The fact that we keep on the left-hand-side
only derivatives in one direction results in a Kronecker product
structure of the linear system of equations after discretization
with isogeometric analysis over a cube shape domain. This
will result later in a linear O(N) computational cost of the
solver.

2.3. Well-posedness Let us focus now on the well-posedness
of the weak sub-problems (4), (5) and (6). Within this sub-
section 2.3, the Cartesian system of coordinates in R3 will be
denoted by (x1,x2,x3) instead of (x,y,z).

For i= 1,2,3, let Vi be the space of functions v∈ L2(Ω) such
that the distributional derivative ∂xi v is also in L2(Ω). This
space will be endowed with the scalar product:

(u,v)Vi = (u,v)+(∂xiu,∂xi v) , ∀u,v ∈Vi. (7)

It is easy to verify that Vi is a Hilbert space. The induced norm
on Vi will be denoted by ‖ · ‖Vi .

Given w ∈ H2(Ω) (representing the solution from the previ-
ous time-step t) we can rewrite our sub-problems (4)-(6) in the
following general form:

Find u ∈Vi such that b(u,v) = lw(v), ∀v ∈Vi, (8)

with

b(u,v) := (u,v)+ τ
(
∂xi u,K

i
t+τ ∂xiv+β i

t+τ v
)

lw(v) := (w+ τ ft ,v)+ τ
(

K j
t ∂ 2

x j
w−β j

t ∂x j w,v
)

+ τ
(
Kk

t ∂ 2
xk

w−β k
t ∂xk w,v

)
, (9)

where we have assumed that K is constant in the integration
by parts, and i �= j �= k, and where we have integrated by parts
back in the right-hand-side lw(v), to ensure the well-posedness
of the problem. Namely, both the bilinear form b and the linear
form l are continuous with respect to the norm induced by the
inner product (7) in Vi.

THEOREM 1. For any t ∈ (0,T −τ], assume that there exists
a constant η i

t > 0 such that Ki
t+τ ≥ η i

t >
τ
4‖β i(·, t + τ)‖2

L∞ for
almost every x ∈ Ω. Then the bilinear form

b(u,v) = (u,v)+ τ
(
∂xiu,K

i
t+τ ∂xiv+β i

t+τ v
)

(10)

is coercive on Vi, and thus problem (8) is well-posed for any
w ∈ H2(Ω).

Proof. For any u ∈ Vi, first observe that (Ki
t+τ ∂xiu,∂xiu) ≥

η i
t ‖∂xiu‖2

L2 . Next, notice that:

(β i
t+τ ∂xiu,u)≥−|(β i

t+τ u,∂xiu)|
≥ −‖β i

t+τ‖L∞‖u‖L2‖∂xiu‖L2

≥−‖β i
t+τ‖L∞

(
‖u‖2

L2

2ε
+

ε
2
‖∂xiu‖

2
L2

)
,

where we have used Hölder inequality and Young’s inequality
with ε > 0. Thus, we have

b(u,u) = ‖u‖2
L2 + τ(Ki

t+τ ∂xiu,∂xiu)+ τ(β i
t+τ ∂xiu,u)

≥ ‖u‖2
L2 + τη i

t ‖∂xiu‖
2
L2

− τ‖β i
t+τ‖L∞

(
‖u‖2

L2

2ε
+

ε
2
‖∂xiu‖

2
L2

)

=

(
1−

τ‖β i
t+τ‖L∞

2ε

)
‖u‖2

L2

+ τ
(

η i
t −

ε
2
‖β i

t+τ‖L∞

)
‖∂xiu‖

2
L2 .

(11)

To get coercivity, we need to show the positivity of the last two
expressions on the right-hand-side of (11). If ‖β i

t+τ‖L∞ = 0,
then the result is trivial. Otherwise, take any δ > 0 such that
τ
4‖β i

t+τ‖2
L∞ < δ < η i

t and let ε = 2δ‖β i
t+τ‖−1

L∞ . Then,

1−
τ‖β i

t+τ‖L∞

2ε
= 1−

τ‖β i
t+τ‖2

L∞

4δ
> 0

and
η i

t −
ε
2
‖β i

t+τ‖L∞ = η i
t −δ > 0.

Finally, the well-posedness of problem (8) is a consequence of
the Lax-Milgram Theorem for coercive and continuous bilin-
ear forms.

REMARK 1. The message from Theorem 1 is that, to ensure
solvability, we need to pick a small enough time-step τ > 0
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In the third sub-step we keep on the left-hand side the sub-op-
erator with x derivatives, and we put the y and z derivatives on 
the right-hand side, i.e.,
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right-hand-side, i.e.,
(

ut+ 1
3
,v
)
+ τ

(
∂zut+ 1

3
,Kz

t+ 1
3
∂zv+β z

t+ 1
3
v
)

(4)

= (ut + τ ft ,v)

− τ (∂xut ,Kx
t ∂xv+β x

t v)

− τ
(
∂yut ,K

y
t ∂yv+β y

t v
)
.

In the second sub-step we keep on the left-hand-side the sub-
operator with y derivatives, and we put the x and z derivatives
on the right-hand-side, i.e.,

(
ut+ 2

3
,v
)
+ τ

(
∂yut+ 2

3
,Ky

t+ 2
3
∂yv+β y

t+ 2
3
v
)

(5)

=
(

ut+ 1
3
+ τ ft+ 1

3
,v
)

− τ
(

∂xut+ 1
3
,Kx

t+ 1
3
∂xv+β x

t+ 1
3
v
)

− τ
(

∂zut+ 1
3
,Kz

t+ 1
3
∂zv+β z

t+ 1
3
v
)
.

In the third sub-step we keep on the left-hand-side the sub-
operator with x derivatives, and we put the y and z derivatives
on the right-hand-side, i.e.,

(ut+1,v)+ τ
(
∂xut+1,Kx

t+1∂xv+β x
t+1v

)
(6)

=
(

ut+ 2
3
+ τ ft+ 2

3
,v
)

− τ
(

∂yut+ 2
3
,Ky

t+ 2
3
∂yv+β y

t+ 2
3
v
)

− τ
(

∂zut+ 2
3
,Kz

t+ 2
3
∂zv+β z

t+ 2
3
v
)
.

Thus, in the three sub-steps, we have sub-problems with iden-
tical structure. The fact that we keep on the left-hand-side
only derivatives in one direction results in a Kronecker product
structure of the linear system of equations after discretization
with isogeometric analysis over a cube shape domain. This
will result later in a linear O(N) computational cost of the
solver.

2.3. Well-posedness Let us focus now on the well-posedness
of the weak sub-problems (4), (5) and (6). Within this sub-
section 2.3, the Cartesian system of coordinates in R3 will be
denoted by (x1,x2,x3) instead of (x,y,z).

For i= 1,2,3, let Vi be the space of functions v∈ L2(Ω) such
that the distributional derivative ∂xi v is also in L2(Ω). This
space will be endowed with the scalar product:

(u,v)Vi = (u,v)+(∂xiu,∂xiv) , ∀u,v ∈Vi. (7)

It is easy to verify that Vi is a Hilbert space. The induced norm
on Vi will be denoted by ‖ · ‖Vi .

Given w ∈ H2(Ω) (representing the solution from the previ-
ous time-step t) we can rewrite our sub-problems (4)-(6) in the
following general form:

Find u ∈Vi such that b(u,v) = lw(v), ∀v ∈Vi, (8)

with

b(u,v) := (u,v)+ τ
(
∂xiu,K

i
t+τ ∂xiv+β i

t+τ v
)

lw(v) := (w+ τ ft ,v)+ τ
(
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x j
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t ∂x j w,v
)

+ τ
(
Kk

t ∂ 2
xk

w−β k
t ∂xk w,v

)
, (9)

where we have assumed that K is constant in the integration
by parts, and i �= j �= k, and where we have integrated by parts
back in the right-hand-side lw(v), to ensure the well-posedness
of the problem. Namely, both the bilinear form b and the linear
form l are continuous with respect to the norm induced by the
inner product (7) in Vi.

THEOREM 1. For any t ∈ (0,T −τ], assume that there exists
a constant η i

t > 0 such that Ki
t+τ ≥ η i

t >
τ
4‖β i(·, t + τ)‖2

L∞ for
almost every x ∈ Ω. Then the bilinear form

b(u,v) = (u,v)+ τ
(
∂xiu,K

i
t+τ ∂xiv+β i

t+τ v
)

(10)

is coercive on Vi, and thus problem (8) is well-posed for any
w ∈ H2(Ω).

Proof. For any u ∈ Vi, first observe that (Ki
t+τ ∂xiu,∂xi u) ≥

η i
t ‖∂xiu‖2

L2 . Next, notice that:

(β i
t+τ ∂xiu,u)≥−|(β i
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ε
2
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2
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)
,

where we have used Hölder inequality and Young’s inequality
with ε > 0. Thus, we have

b(u,u) = ‖u‖2
L2 + τ(Ki
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To get coercivity, we need to show the positivity of the last two
expressions on the right-hand-side of (11). If ‖β i

t+τ‖L∞ = 0,
then the result is trivial. Otherwise, take any δ > 0 such that
τ
4‖β i

t+τ‖2
L∞ < δ < η i

t and let ε = 2δ‖β i
t+τ‖−1

L∞ . Then,

1−
τ‖β i
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τ‖β i
t+τ‖2
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4δ
> 0

and
η i

t −
ε
2
‖β i

t+τ‖L∞ = η i
t −δ > 0.

Finally, the well-posedness of problem (8) is a consequence of
the Lax-Milgram Theorem for coercive and continuous bilin-
ear forms.

REMARK 1. The message from Theorem 1 is that, to ensure
solvability, we need to pick a small enough time-step τ > 0

Bull. Pol. Ac.: Tech. XX(Y) 2020 3

.� (6)

Thus, in the three sub-steps, we have sub-problems with iden-
tical structures. The fact that we keep on the left-hand side 
only derivatives in one direction results in a Kronecker product 
structure of the linear system of equations after discretization 
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1. Introduction
According to the World Health Organization [1], COVID-19 is
mainly spread through particles containing virus material ex-
haled by infected people through speech breathing or spread
by sneezing or coughing.

How these particles spread, how their concentration changes
with the distance from the speaking or sneezing person
changes, and how the air movement influences these concen-
trations is in general unknown and can be measured experi-
mentally, which is very difficult estimated by using computer
simulations.

Thus, in the days of COVID-19, computer simulations can
help in making decisions such as the required distance in pub-
lic places, the need to wear masks covering the mouth and
nose, made of specific materials, the permissible time of stay
with a person infected in one room, etc. This paper focuses on
advection-diffusion equations, which can model the propaga-
tion of pathogens in the air. We can represent the concentration
of pathogens in the air by "contamination" propagating from
the source by advection and diffusion mechanisms. The first
term describes the spread of particles forced by the air move-
ments, and the second one models the spontaneous propaga-
tion of pathogen particles in the air. Unfortunately, the three-
dimensional time-dependent advection-diffusion equations are
complicated to simulate. This is related to the high compu-
tational cost of the three-dimensional problem as well as by
the instabilities of the numerical methods. As the remedy to

∗e-mail: paszynsk@agh.edu.pl

the first problem, we propose the alternating directions implicit
solver. We also focus on the mathematical analysis of the sim-
ulation that presents the necessary conditions for its stability.

The alternating directions implicit solver (ADI) was origi-
nally proposed for performing finite-difference simulations of
time-dependent problems on regular grids. The first papers
concerning the ADI method were published in 1960 [2, 3, 4,
5]. The ADI with finite difference method is still popular for
fast solutions of different classes of problems with finite differ-
ence method [6, 7]. The method introduces intermediate time
steps in its basic version, and the differential operator is split
into sub-operators, containing only the x, y, z derivatives. The
time integration scheme involves sub-steps with only one sub-
operator on the left-hand side and the other sub-operators on
the right-hand side, acting on the previous sub-step solutions.
As a result of this direction splitting, after the discretization of
the linear equations system, we deal only with derivatives in
one direction while the rest of the operator is on the right-hand
side. The resulting system of linear equations, if derived on the
regular three-dimensional grid, has a Kronecker product struc-
ture, and it can be factorization in a linear O(N) computational
cost.

The isogeometric analysis (IGA) [8] is a modern method
for performing finite element method (FEM) simulations with
B-splines and NURBS. The IGA-FEM has multiple appli-
cations for simulations of time-dependent problems, includ-
ing wind turbine aerodynamics [9], turbulent flow simulations
[10], phase field phase-separation simulations [11, 12, 13,
14], incompressible hyper-elasticity [15], blood flow simula-
tions [16, 17, 18, 19] and tumor growth simulations [20, 21].
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2.3. Well-posedness
Let us focus now on the well-posedness of the weak sub-prob-
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.

In the third sub-step we keep on the left-hand-side the sub-
operator with x derivatives, and we put the y and z derivatives
on the right-hand-side, i.e.,
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3
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.

Thus, in the three sub-steps, we have sub-problems with iden-
tical structure. The fact that we keep on the left-hand-side
only derivatives in one direction results in a Kronecker product
structure of the linear system of equations after discretization
with isogeometric analysis over a cube shape domain. This
will result later in a linear O(N) computational cost of the
solver.

2.3. Well-posedness Let us focus now on the well-posedness
of the weak sub-problems (4), (5) and (6). Within this sub-
section 2.3, the Cartesian system of coordinates in R3 will be
denoted by (x1,x2,x3) instead of (x,y,z).

For i= 1,2,3, let Vi be the space of functions v∈ L2(Ω) such
that the distributional derivative ∂xiv is also in L2(Ω). This
space will be endowed with the scalar product:

(u,v)Vi = (u,v)+(∂xiu,∂xiv) , ∀u,v ∈Vi. (7)

It is easy to verify that Vi is a Hilbert space. The induced norm
on Vi will be denoted by ‖ · ‖Vi .

Given w ∈ H2(Ω) (representing the solution from the previ-
ous time-step t) we can rewrite our sub-problems (4)-(6) in the
following general form:

Find u ∈Vi such that b(u,v) = lw(v), ∀v ∈Vi, (8)

with

b(u,v) := (u,v)+ τ
(
∂xiu,K

i
t+τ ∂xiv+β i

t+τ v
)

lw(v) := (w+ τ ft ,v)+ τ
(

K j
t ∂ 2

x j
w−β j

t ∂x j w,v
)

+ τ
(
Kk

t ∂ 2
xk

w−β k
t ∂xk w,v

)
, (9)

where we have assumed that K is constant in the integration
by parts, and i �= j �= k, and where we have integrated by parts
back in the right-hand-side lw(v), to ensure the well-posedness
of the problem. Namely, both the bilinear form b and the linear
form l are continuous with respect to the norm induced by the
inner product (7) in Vi.

THEOREM 1. For any t ∈ (0,T −τ], assume that there exists
a constant η i

t > 0 such that Ki
t+τ ≥ η i

t >
τ
4‖β i(·, t + τ)‖2

L∞ for
almost every x ∈ Ω. Then the bilinear form

b(u,v) = (u,v)+ τ
(
∂xiu,K

i
t+τ ∂xi v+β i

t+τ v
)

(10)

is coercive on Vi, and thus problem (8) is well-posed for any
w ∈ H2(Ω).

Proof. For any u ∈ Vi, first observe that (Ki
t+τ ∂xiu,∂xiu) ≥

η i
t ‖∂xiu‖2

L2 . Next, notice that:
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2
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2
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)
,

where we have used Hölder inequality and Young’s inequality
with ε > 0. Thus, we have

b(u,u) = ‖u‖2
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To get coercivity, we need to show the positivity of the last two
expressions on the right-hand-side of (11). If ‖β i

t+τ‖L∞ = 0,
then the result is trivial. Otherwise, take any δ > 0 such that
τ
4‖β i

t+τ‖2
L∞ < δ < η i

t and let ε = 2δ‖β i
t+τ‖−1

L∞ . Then,
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4δ
> 0

and
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t −
ε
2
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t+τ‖L∞ = η i
t −δ > 0.

Finally, the well-posedness of problem (8) is a consequence of
the Lax-Milgram Theorem for coercive and continuous bilin-
ear forms.

REMARK 1. The message from Theorem 1 is that, to ensure
solvability, we need to pick a small enough time-step τ > 0
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In the third sub-step we keep on the left-hand-side the sub-
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Thus, in the three sub-steps, we have sub-problems with iden-
tical structure. The fact that we keep on the left-hand-side
only derivatives in one direction results in a Kronecker product
structure of the linear system of equations after discretization
with isogeometric analysis over a cube shape domain. This
will result later in a linear O(N) computational cost of the
solver.

2.3. Well-posedness Let us focus now on the well-posedness
of the weak sub-problems (4), (5) and (6). Within this sub-
section 2.3, the Cartesian system of coordinates in R3 will be
denoted by (x1,x2,x3) instead of (x,y,z).

For i= 1,2,3, let Vi be the space of functions v∈ L2(Ω) such
that the distributional derivative ∂xiv is also in L2(Ω). This
space will be endowed with the scalar product:

(u,v)Vi = (u,v)+(∂xi u,∂xiv) , ∀u,v ∈Vi. (7)

It is easy to verify that Vi is a Hilbert space. The induced norm
on Vi will be denoted by ‖ · ‖Vi .

Given w ∈ H2(Ω) (representing the solution from the previ-
ous time-step t) we can rewrite our sub-problems (4)-(6) in the
following general form:

Find u ∈Vi such that b(u,v) = lw(v), ∀v ∈Vi, (8)

with
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where we have assumed that K is constant in the integration
by parts, and i �= j �= k, and where we have integrated by parts
back in the right-hand-side lw(v), to ensure the well-posedness
of the problem. Namely, both the bilinear form b and the linear
form l are continuous with respect to the norm induced by the
inner product (7) in Vi.

THEOREM 1. For any t ∈ (0,T −τ], assume that there exists
a constant η i

t > 0 such that Ki
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is coercive on Vi, and thus problem (8) is well-posed for any
w ∈ H2(Ω).

Proof. For any u ∈ Vi, first observe that (Ki
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L2 . Next, notice that:
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To get coercivity, we need to show the positivity of the last two
expressions on the right-hand-side of (11). If ‖β i
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then the result is trivial. Otherwise, take any δ > 0 such that
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Finally, the well-posedness of problem (8) is a consequence of
the Lax-Milgram Theorem for coercive and continuous bilin-
ear forms.

REMARK 1. The message from Theorem 1 is that, to ensure
solvability, we need to pick a small enough time-step τ > 0
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Thus, in the three sub-steps, we have sub-problems with iden-
tical structure. The fact that we keep on the left-hand-side
only derivatives in one direction results in a Kronecker product
structure of the linear system of equations after discretization
with isogeometric analysis over a cube shape domain. This
will result later in a linear O(N) computational cost of the
solver.

2.3. Well-posedness Let us focus now on the well-posedness
of the weak sub-problems (4), (5) and (6). Within this sub-
section 2.3, the Cartesian system of coordinates in R3 will be
denoted by (x1,x2,x3) instead of (x,y,z).

For i= 1,2,3, let Vi be the space of functions v∈ L2(Ω) such
that the distributional derivative ∂xiv is also in L2(Ω). This
space will be endowed with the scalar product:

(u,v)Vi = (u,v)+(∂xiu,∂xiv) , ∀u,v ∈Vi. (7)

It is easy to verify that Vi is a Hilbert space. The induced norm
on Vi will be denoted by ‖ · ‖Vi .

Given w ∈ H2(Ω) (representing the solution from the previ-
ous time-step t) we can rewrite our sub-problems (4)-(6) in the
following general form:

Find u ∈Vi such that b(u,v) = lw(v), ∀v ∈Vi, (8)

with

b(u,v) := (u,v)+ τ
(
∂xiu,K

i
t+τ ∂xiv+β i

t+τ v
)
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x j
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t ∂x j w,v
)

+ τ
(
Kk

t ∂ 2
xk

w−β k
t ∂xk w,v

)
, (9)

where we have assumed that K is constant in the integration
by parts, and i �= j �= k, and where we have integrated by parts
back in the right-hand-side lw(v), to ensure the well-posedness
of the problem. Namely, both the bilinear form b and the linear
form l are continuous with respect to the norm induced by the
inner product (7) in Vi.

THEOREM 1. For any t ∈ (0,T −τ], assume that there exists
a constant η i

t > 0 such that Ki
t+τ ≥ η i

t >
τ
4‖β i(·, t + τ)‖2

L∞ for
almost every x ∈ Ω. Then the bilinear form

b(u,v) = (u,v)+ τ
(
∂xiu,K

i
t+τ ∂xiv+β i

t+τ v
)

(10)

is coercive on Vi, and thus problem (8) is well-posed for any
w ∈ H2(Ω).

Proof. For any u ∈ Vi, first observe that (Ki
t+τ ∂xiu,∂xiu) ≥

η i
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L2 . Next, notice that:
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with ε > 0. Thus, we have
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To get coercivity, we need to show the positivity of the last two
expressions on the right-hand-side of (11). If ‖β i
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Finally, the well-posedness of problem (8) is a consequence of
the Lax-Milgram Theorem for coercive and continuous bilin-
ear forms.

REMARK 1. The message from Theorem 1 is that, to ensure
solvability, we need to pick a small enough time-step τ > 0
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Thus, in the three sub-steps, we have sub-problems with iden-
tical structure. The fact that we keep on the left-hand-side
only derivatives in one direction results in a Kronecker product
structure of the linear system of equations after discretization
with isogeometric analysis over a cube shape domain. This
will result later in a linear O(N) computational cost of the
solver.

2.3. Well-posedness Let us focus now on the well-posedness
of the weak sub-problems (4), (5) and (6). Within this sub-
section 2.3, the Cartesian system of coordinates in R3 will be
denoted by (x1,x2,x3) instead of (x,y,z).

For i= 1,2,3, let Vi be the space of functions v∈ L2(Ω) such
that the distributional derivative ∂xiv is also in L2(Ω). This
space will be endowed with the scalar product:

(u,v)Vi = (u,v)+(∂xiu,∂xiv) , ∀u,v ∈Vi. (7)

It is easy to verify that Vi is a Hilbert space. The induced norm
on Vi will be denoted by ‖ · ‖Vi .

Given w ∈ H2(Ω) (representing the solution from the previ-
ous time-step t) we can rewrite our sub-problems (4)-(6) in the
following general form:

Find u ∈Vi such that b(u,v) = lw(v), ∀v ∈Vi, (8)

with

b(u,v) := (u,v)+ τ
(
∂xiu,K

i
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)
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where we have assumed that K is constant in the integration
by parts, and i �= j �= k, and where we have integrated by parts
back in the right-hand-side lw(v), to ensure the well-posedness
of the problem. Namely, both the bilinear form b and the linear
form l are continuous with respect to the norm induced by the
inner product (7) in Vi.

THEOREM 1. For any t ∈ (0,T −τ], assume that there exists
a constant η i

t > 0 such that Ki
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t >
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is coercive on Vi, and thus problem (8) is well-posed for any
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L2 . Next, notice that:
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where we have used Hölder inequality and Young’s inequality
with ε > 0. Thus, we have
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To get coercivity, we need to show the positivity of the last two
expressions on the right-hand-side of (11). If ‖β i
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then the result is trivial. Otherwise, take any δ > 0 such that
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and
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t −δ > 0.

Finally, the well-posedness of problem (8) is a consequence of
the Lax-Milgram Theorem for coercive and continuous bilin-
ear forms.

REMARK 1. The message from Theorem 1 is that, to ensure
solvability, we need to pick a small enough time-step τ > 0

Bull. Pol. Ac.: Tech. XX(Y) 2020 3

� (10)

is coercive on Vi, and thus problem (8) is well-posed for any 
w 2 H 2(Ω).

Proof. For any u 2 Vi, first observe that (K i
t + τxi

u, xi
u) ¸ 

ηt
ikxi

uk2
L2. Next, notice that:

3D simulations of the airborne COVID-19 pathogens with advection-diffusion-reaction and ADS solver

right-hand-side, i.e.,
(

ut+ 1
3
,v
)
+ τ

(
∂zut+ 1

3
,Kz

t+ 1
3
∂zv+β z

t+ 1
3
v
)

(4)

= (ut + τ ft ,v)

− τ (∂xut ,Kx
t ∂xv+β x

t v)

− τ
(
∂yut ,K

y
t ∂yv+β y

t v
)
.

In the second sub-step we keep on the left-hand-side the sub-
operator with y derivatives, and we put the x and z derivatives
on the right-hand-side, i.e.,

(
ut+ 2

3
,v
)
+ τ

(
∂yut+ 2

3
,Ky

t+ 2
3
∂yv+β y

t+ 2
3
v
)

(5)

=
(

ut+ 1
3
+ τ ft+ 1

3
,v
)

− τ
(

∂xut+ 1
3
,Kx

t+ 1
3
∂xv+β x

t+ 1
3
v
)

− τ
(

∂zut+ 1
3
,Kz

t+ 1
3
∂zv+β z

t+ 1
3
v
)
.

In the third sub-step we keep on the left-hand-side the sub-
operator with x derivatives, and we put the y and z derivatives
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Thus, in the three sub-steps, we have sub-problems with iden-
tical structure. The fact that we keep on the left-hand-side
only derivatives in one direction results in a Kronecker product
structure of the linear system of equations after discretization
with isogeometric analysis over a cube shape domain. This
will result later in a linear O(N) computational cost of the
solver.

2.3. Well-posedness Let us focus now on the well-posedness
of the weak sub-problems (4), (5) and (6). Within this sub-
section 2.3, the Cartesian system of coordinates in R3 will be
denoted by (x1,x2,x3) instead of (x,y,z).

For i= 1,2,3, let Vi be the space of functions v∈ L2(Ω) such
that the distributional derivative ∂xiv is also in L2(Ω). This
space will be endowed with the scalar product:

(u,v)Vi = (u,v)+(∂xiu,∂xiv) , ∀u,v ∈Vi. (7)

It is easy to verify that Vi is a Hilbert space. The induced norm
on Vi will be denoted by ‖ · ‖Vi .

Given w ∈ H2(Ω) (representing the solution from the previ-
ous time-step t) we can rewrite our sub-problems (4)-(6) in the
following general form:

Find u ∈Vi such that b(u,v) = lw(v), ∀v ∈Vi, (8)

with
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(
∂xiu,K
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, (9)

where we have assumed that K is constant in the integration
by parts, and i �= j �= k, and where we have integrated by parts
back in the right-hand-side lw(v), to ensure the well-posedness
of the problem. Namely, both the bilinear form b and the linear
form l are continuous with respect to the norm induced by the
inner product (7) in Vi.

THEOREM 1. For any t ∈ (0,T −τ], assume that there exists
a constant η i

t > 0 such that Ki
t+τ ≥ η i

t >
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is coercive on Vi, and thus problem (8) is well-posed for any
w ∈ H2(Ω).

Proof. For any u ∈ Vi, first observe that (Ki
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To get coercivity, we need to show the positivity of the last two
expressions on the right-hand-side of (11). If ‖β i
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the Lax-Milgram Theorem for coercive and continuous bilin-
ear forms.

REMARK 1. The message from Theorem 1 is that, to ensure
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Thus, in the three sub-steps, we have sub-problems with iden-
tical structure. The fact that we keep on the left-hand-side
only derivatives in one direction results in a Kronecker product
structure of the linear system of equations after discretization
with isogeometric analysis over a cube shape domain. This
will result later in a linear O(N) computational cost of the
solver.

2.3. Well-posedness Let us focus now on the well-posedness
of the weak sub-problems (4), (5) and (6). Within this sub-
section 2.3, the Cartesian system of coordinates in R3 will be
denoted by (x1,x2,x3) instead of (x,y,z).

For i= 1,2,3, let Vi be the space of functions v∈ L2(Ω) such
that the distributional derivative ∂xiv is also in L2(Ω). This
space will be endowed with the scalar product:

(u,v)Vi = (u,v)+(∂xiu,∂xi v) , ∀u,v ∈Vi. (7)

It is easy to verify that Vi is a Hilbert space. The induced norm
on Vi will be denoted by ‖ · ‖Vi .

Given w ∈ H2(Ω) (representing the solution from the previ-
ous time-step t) we can rewrite our sub-problems (4)-(6) in the
following general form:

Find u ∈Vi such that b(u,v) = lw(v), ∀v ∈Vi, (8)

with
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where we have assumed that K is constant in the integration
by parts, and i �= j �= k, and where we have integrated by parts
back in the right-hand-side lw(v), to ensure the well-posedness
of the problem. Namely, both the bilinear form b and the linear
form l are continuous with respect to the norm induced by the
inner product (7) in Vi.
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a constant η i
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2
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To get coercivity, we need to show the positivity of the last two
expressions on the right-hand-side of (11). If ‖β i

t+τ‖L∞ = 0,
then the result is trivial. Otherwise, take any δ > 0 such that
τ
4‖β i

t+τ‖2
L∞ < δ < η i

t and let ε = 2δ‖β i
t+τ‖−1

L∞ . Then,

1−
τ‖β i

t+τ‖L∞

2ε
= 1−

τ‖β i
t+τ‖2

L∞

4δ
> 0

and
η i

t −
ε
2
‖β i

t+τ‖L∞ = η i
t −δ > 0.

Finally, the well-posedness of problem (8) is a consequence of
the Lax-Milgram Theorem for coercive and continuous bilin-
ear forms.

REMARK 1. The message from Theorem 1 is that, to ensure
solvability, we need to pick a small enough time-step τ > 0
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then the result is trivial. Otherwise, take any δ  > 0 such that 
τ/4kβ i
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L < δ  < ηt

i and let ε = 2δkβ i
t + τk–1

L. Then,
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.

In the second sub-step we keep on the left-hand-side the sub-
operator with y derivatives, and we put the x and z derivatives
on the right-hand-side, i.e.,
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∂yv+β y

t+ 2
3
v
)

(5)

=
(

ut+ 1
3
+ τ ft+ 1

3
,v
)

− τ
(

∂xut+ 1
3
,Kx

t+ 1
3
∂xv+β x

t+ 1
3
v
)

− τ
(

∂zut+ 1
3
,Kz

t+ 1
3
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In the third sub-step we keep on the left-hand-side the sub-
operator with x derivatives, and we put the y and z derivatives
on the right-hand-side, i.e.,
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Thus, in the three sub-steps, we have sub-problems with iden-
tical structure. The fact that we keep on the left-hand-side
only derivatives in one direction results in a Kronecker product
structure of the linear system of equations after discretization
with isogeometric analysis over a cube shape domain. This
will result later in a linear O(N) computational cost of the
solver.

2.3. Well-posedness Let us focus now on the well-posedness
of the weak sub-problems (4), (5) and (6). Within this sub-
section 2.3, the Cartesian system of coordinates in R3 will be
denoted by (x1,x2,x3) instead of (x,y,z).

For i= 1,2,3, let Vi be the space of functions v∈ L2(Ω) such
that the distributional derivative ∂xiv is also in L2(Ω). This
space will be endowed with the scalar product:

(u,v)Vi = (u,v)+(∂xiu,∂xiv) , ∀u,v ∈Vi. (7)

It is easy to verify that Vi is a Hilbert space. The induced norm
on Vi will be denoted by ‖ · ‖Vi .

Given w ∈ H2(Ω) (representing the solution from the previ-
ous time-step t) we can rewrite our sub-problems (4)-(6) in the
following general form:

Find u ∈Vi such that b(u,v) = lw(v), ∀v ∈Vi, (8)

with
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, (9)

where we have assumed that K is constant in the integration
by parts, and i �= j �= k, and where we have integrated by parts
back in the right-hand-side lw(v), to ensure the well-posedness
of the problem. Namely, both the bilinear form b and the linear
form l are continuous with respect to the norm induced by the
inner product (7) in Vi.

THEOREM 1. For any t ∈ (0,T −τ], assume that there exists
a constant η i

t > 0 such that Ki
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t >
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is coercive on Vi, and thus problem (8) is well-posed for any
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,

where we have used Hölder inequality and Young’s inequality
with ε > 0. Thus, we have
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To get coercivity, we need to show the positivity of the last two
expressions on the right-hand-side of (11). If ‖β i

t+τ‖L∞ = 0,
then the result is trivial. Otherwise, take any δ > 0 such that
τ
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L∞ < δ < η i

t and let ε = 2δ‖β i
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L∞ . Then,
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> 0

and
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t −
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t+τ‖L∞ = η i
t −δ > 0.

Finally, the well-posedness of problem (8) is a consequence of
the Lax-Milgram Theorem for coercive and continuous bilin-
ear forms.

REMARK 1. The message from Theorem 1 is that, to ensure
solvability, we need to pick a small enough time-step τ > 0
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In the third sub-step we keep on the left-hand-side the sub-
operator with x derivatives, and we put the y and z derivatives
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Thus, in the three sub-steps, we have sub-problems with iden-
tical structure. The fact that we keep on the left-hand-side
only derivatives in one direction results in a Kronecker product
structure of the linear system of equations after discretization
with isogeometric analysis over a cube shape domain. This
will result later in a linear O(N) computational cost of the
solver.

2.3. Well-posedness Let us focus now on the well-posedness
of the weak sub-problems (4), (5) and (6). Within this sub-
section 2.3, the Cartesian system of coordinates in R3 will be
denoted by (x1,x2,x3) instead of (x,y,z).

For i= 1,2,3, let Vi be the space of functions v∈ L2(Ω) such
that the distributional derivative ∂xiv is also in L2(Ω). This
space will be endowed with the scalar product:

(u,v)Vi = (u,v)+(∂xiu,∂xiv) , ∀u,v ∈Vi. (7)

It is easy to verify that Vi is a Hilbert space. The induced norm
on Vi will be denoted by ‖ · ‖Vi .

Given w ∈ H2(Ω) (representing the solution from the previ-
ous time-step t) we can rewrite our sub-problems (4)-(6) in the
following general form:

Find u ∈Vi such that b(u,v) = lw(v), ∀v ∈Vi, (8)

with

b(u,v) := (u,v)+ τ
(
∂xiu,K

i
t+τ ∂xiv+β i

t+τ v
)

lw(v) := (w+ τ ft ,v)+ τ
(
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x j
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t ∂x j w,v
)

+ τ
(
Kk

t ∂ 2
xk

w−β k
t ∂xk w,v

)
, (9)

where we have assumed that K is constant in the integration
by parts, and i �= j �= k, and where we have integrated by parts
back in the right-hand-side lw(v), to ensure the well-posedness
of the problem. Namely, both the bilinear form b and the linear
form l are continuous with respect to the norm induced by the
inner product (7) in Vi.

THEOREM 1. For any t ∈ (0,T −τ], assume that there exists
a constant η i

t > 0 such that Ki
t+τ ≥ η i

t >
τ
4‖β i(·, t + τ)‖2

L∞ for
almost every x ∈ Ω. Then the bilinear form

b(u,v) = (u,v)+ τ
(
∂xiu,K

i
t+τ ∂xiv+β i

t+τ v
)

(10)

is coercive on Vi, and thus problem (8) is well-posed for any
w ∈ H2(Ω).

Proof. For any u ∈ Vi, first observe that (Ki
t+τ ∂xiu,∂xi u) ≥

η i
t ‖∂xiu‖2

L2 . Next, notice that:
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(
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L2

2ε
+
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2
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)
,

where we have used Hölder inequality and Young’s inequality
with ε > 0. Thus, we have
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L2 + τ(Ki

t+τ ∂xiu,∂xiu)+ τ(β i
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(
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+ τ
(

η i
t −
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To get coercivity, we need to show the positivity of the last two
expressions on the right-hand-side of (11). If ‖β i

t+τ‖L∞ = 0,
then the result is trivial. Otherwise, take any δ > 0 such that
τ
4‖β i

t+τ‖2
L∞ < δ < η i

t and let ε = 2δ‖β i
t+τ‖−1

L∞ . Then,

1−
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2ε
= 1−
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t+τ‖2

L∞

4δ
> 0

and
η i

t −
ε
2
‖β i

t+τ‖L∞ = η i
t −δ > 0.

Finally, the well-posedness of problem (8) is a consequence of
the Lax-Milgram Theorem for coercive and continuous bilin-
ear forms.

REMARK 1. The message from Theorem 1 is that, to ensure
solvability, we need to pick a small enough time-step τ > 0
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Finally, the well-posedness of problem (8) is a consequence of 
the Lax-Milgram Theorem for coercive and continuous bilinear 
forms.� □

Remark 1. The message from Theorem 1 is that, to ensure 
solvability, we need to pick a small enough time-step τ > 0 
fulfilling the requirement:

K i
t + τ ¸ ηt

i > τ
4
kβ i(¢, t + τ)k2

L,   for some ηt
i > 0.

However, too small values of τ > 0 will compromise the sta-
bility of the problem (same as in reaction-dominated diffusion 
problems).

Remark 2. On the discrete level, the integration back by parts 
requires using higher order B-spline basis functions. 

2.4. �Direction splitting with isogeometric  
analysis discretization

Let us perform now the discretization of the weak sub-problem 
using B-spline basis functions from the isogeometric analysis [8].

Let Nx, Ny and Nz be positive integers. On each axis we 
consider a basis of one-dimensional B-splines of order p 2 N. 
Thus, on the x-axis we consider the basis {B x

i; p}i = 1, …, Nx
; on 

the y-axis we consider the basis {B y
j; p}j = 1, …, Ny

; and on the 
z-axis we consider the basis {Bz

k; p}k = 1, …, Nz
. Our general dis-

crete space Vh will consist in the tensor product of the previous 
B-splines. This is,

Vh =: span{B x
i; p(x)B y

j; p(y)Bz
k; p(z)}.

Let us proceed with the discrete counterpart of the weak 
sub-problems (4), (5) and (6). To exemplify, we take the x-sub-

problem. The discrete counterpart of the weak sub-problem (6) 
reads as follows:
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fulfilling the requirement:

Ki
t+τ ≥ η i

t >
τ
4
‖β i(·, t + τ)‖2

L∞ , for some η i
t > 0.

However, too small values of τ > 0 will compromise the sta-
bility of the problem (same as in reaction-dominated diffusion
problems).

REMARK 2. On the discrete level, the integration back by
parts requires us to use higher order B-spline basis functions.

2.4. Direction splitting with isogeometric analysis dis-
cretization Let us perform now the discretization of the weak
sub-problem using B-spline basis functions from the isogeo-
metric analysis [8].

Let Nx, Ny and Nz be positive integers. On each axis we
consider a basis of one-dimensional B-splines of order p ∈ N.
Thus, on the x-axis we consider the basis {Bx

i;p}i=1,...,Nx ; on
the y-axis we consider the basis {By

j;p} j=1,...,Ny ; and on the z-
axis we consider the basis {Bz

k;p}k=1,...,Nz . Our general discrete
space Vh will consist in the tensor product of the previous B-
splines. This is,

Vh =: span{Bx
i;p(x)B

y
j;p(y)B

z
k;p(z)}.

Let us proceed with the discrete counterpart of the weak
sub-problems (4), (5) and (6). To exemplify, we take the
x-subproblem. The discrete counterpart of the weak sub-
problem (6) reads as follows:

{
Given wh ∈Vh, find uh ∈Vh such that:
bx(uh,vh) = lx

wh
(vh), ∀vh ∈Vh,

(12)

where

bx(uh,vh) := (uh,vh)+ τ
(
∂xuh,Kx

t+τ ∂xvh +β x
t+τ vh

)

and

lx
wh
(vh) := (wh + τ ft ,vh)+ τ

(
Ky

t ∂ 2
y wh −β y

t ∂ywh,vh
)

+τ
(
Kz

t ∂ 2
z wh −β z

t ∂zwh,vh
)
.

REMARK 3. Let Vx := {v ∈ L2(Ω) : ∂xv ∈ L2(Ω)} endowed
with the topology induced by the norm ‖ · ‖2

Vx
:= ‖ · ‖2

L2 +‖∂x ·
‖2

L2 . Clearly Vh ⊂ Vx. By Theorem 1 the (continuous) bilin-
ear form bx(·, ·) is coercive in Vx provided that t,τ,β x and Kx

satisfy the requirements of the aforementioned Theorem. If
the case, the discrete problem (12) is also coercive (thus, well-
posed) whenever Vh is endowed with the norm ‖ · ‖Vx .

On the other hand, notice that wh ∈ Vh represents the dis-
crete solution of a previous time-step. That solution requires
to support second order weak-derivatives to make lwh a contin-
uous functional on Vx. For that reason we need the order of the
B-splines to be p ≥ 2.

Since the solution uh ∈Vh of problem (12) is of the form

uh = ∑
i, j,k

ui jkBx
i;p(x)B

y
j;p(y)B

z
k;p(z), (13)

the problem (12) translates into a NxNyNz ×NxNyNz linear sys-
tem whose unknowns are the scalars {ui jk} and the coefficients
of the associated matrix are:



Bx
lmni jk = bx

(
Bx

i;p(x)B
y
j;p(y)B

z
k;p(z) , Bx

l;p(x)B
y
m;p(y)Bz

n;p(z)
)
,

∀i, l = 1, . . . ,Nx ∀ j,m = 1, . . . ,Ny ∀k,n = 1, . . . ,Nz.
(14)

On the other hand, the coefficients of the right hand-side vector
are given by:




lx
wh

(
Bx

l;p(x)B
y
m;p(y)Bz

n;p(z)),

∀l = 1, . . . ,Nx ∀m = 1, . . . ,Ny ∀n = 1, . . . ,Nz.

Let us focus on the particular entries of the left-hand-side
matrix (14) discretized with tensor product of one dimensional
B-spline basis functions:

Bx
lmni jk =(
Bx

i;p(x)B
y
j;p(y)B

z
k;p(z) , Bx

l;p(x)B
y
m;p(y)Bz

n;p(z)
)

+τ
(

∂xBx
i;p(x)B

y
j;p(y)B

z
k;p(z),K

x
t+τ ∂xBx

l;p(x)B
y
m;p(y)Bz

n;p(z)
)

+τ
(

∂xBx
i;p(x)B

y
j;p(y)B

z
k;p(z),β

x
t+τ Bx

l;p(x)B
y
m;p(y)Bz

n;p(z)
)
.

(15)
We perform the direction splitting for each sub-problem.
Namely, we express the matrix entries as the multiplication
of three one-dimensional integrals, the first one with B-spline
basis functions along the x direction, the second one with B-
splines along the y direction, and the third one with B-splines
along the z direction. For the sub-problem corresponding to
i = 1 we get

Bx
lmni jk =

(
Bx

i;p(x),B
x
l;p(x)

)(
By

j;p(y),B
y
m;p(y)

)

×
(

Bz
k;p(z),B

z
n;p(z)

)

+τ
(

∂xBx
i;p(x),K

x
t+τ ∂xBx

l;p(x)
)(

By
j;p(y),B

y
m;p(y)

)

×
(

Bz
k;p(z),B

z
n;p(z)

)

+τ
(

∂xBx
i;p(x),β x

t+τ Bx
l;p(x)

)(
By

j;p(y),B
y
m;p(y)

)

×
(

Bz
k;p(z),B

z
n;p(z)

)

=
[(

Bx
i;p(x) , Bx

l;p(x)
)

+ τ
(

∂xBx
i;p(x),K

x
t+τ ∂xBx

l;p(x)+β x
t+τ Bx

l;p(x)
)]

×
(

By
j;p(y) , By

m;p(y)
)(

Bz
k;p(z) , Bz

n;p(z)
)

Bx =C⊗D⊗E (16)

In our model we assume that Ki
t+τ and β i

t+τ are constant in a
given time moment. Hence, our matrices at every time step are
decomposed into three Kronecker product sub-matrices Bx =
C⊗D⊗E. Namely, each sub-problem is equivalent to the three
one-dimensional problems with multiple right-hand-sides and
can be factorized with a linear O(N) computational cost. We
refer to the Appendix for more details.
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where

bx(uh, vh) := (uh, vh) + τ(xuh, K
x
t + τxvh + β x

t + τ vh)

and

l x
wh

(vh) := (wh + τ ft, vh) + τ(Kt
yy

2wh ¡ β t
yywh, vh) +

l x
wh

(vh)  + τ(Kt
zz

2wh ¡ β t
zzwh, vh).

Remark 3. Let Vx := {v 2 L2(Ω) : xv 2 L2(Ω)} endowed with 
the topology induced by the norm k¢k2

Vx
 := k¢k2

L2 + kx ¢k2
L2. 

Clearly Vh ½ Vx. By Theorem 1 the (continuous) bilinear form 
bx(¢, ¢) is coercive in Vx provided that t, τ, β x and K x satisfy 
the requirements of the aforementioned Theorem. If the case, 
the discrete problem (12) is also coercive (thus, well-posed) 
whenever Vh is endowed with the norm k¢kVx

.
On the other hand, notice that wh 2 Vh represents the dis-

crete solution of a previous time-step. That solution requires 
supporting second order weak-derivatives to make lwh

 a con-
tinuous functional on Vx. For that reason we need the order of 
the B-splines to be p ¸ 2.

Since the solution uh 2 Vh of problem (12) is of the form
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fulfilling the requirement:

Ki
t+τ ≥ η i

t >
τ
4
‖β i(·, t + τ)‖2

L∞ , for some η i
t > 0.

However, too small values of τ > 0 will compromise the sta-
bility of the problem (same as in reaction-dominated diffusion
problems).

REMARK 2. On the discrete level, the integration back by
parts requires us to use higher order B-spline basis functions.

2.4. Direction splitting with isogeometric analysis dis-
cretization Let us perform now the discretization of the weak
sub-problem using B-spline basis functions from the isogeo-
metric analysis [8].

Let Nx, Ny and Nz be positive integers. On each axis we
consider a basis of one-dimensional B-splines of order p ∈ N.
Thus, on the x-axis we consider the basis {Bx

i;p}i=1,...,Nx ; on
the y-axis we consider the basis {By

j;p} j=1,...,Ny ; and on the z-
axis we consider the basis {Bz

k;p}k=1,...,Nz . Our general discrete
space Vh will consist in the tensor product of the previous B-
splines. This is,

Vh =: span{Bx
i;p(x)B

y
j;p(y)B

z
k;p(z)}.

Let us proceed with the discrete counterpart of the weak
sub-problems (4), (5) and (6). To exemplify, we take the
x-subproblem. The discrete counterpart of the weak sub-
problem (6) reads as follows:

{
Given wh ∈Vh, find uh ∈Vh such that:
bx(uh,vh) = lx

wh
(vh), ∀vh ∈Vh,

(12)

where

bx(uh,vh) := (uh,vh)+ τ
(
∂xuh,Kx

t+τ ∂xvh +β x
t+τ vh

)

and

lx
wh
(vh) := (wh + τ ft ,vh)+ τ

(
Ky

t ∂ 2
y wh −β y

t ∂ywh,vh
)

+τ
(
Kz

t ∂ 2
z wh −β z

t ∂zwh,vh
)
.

REMARK 3. Let Vx := {v ∈ L2(Ω) : ∂xv ∈ L2(Ω)} endowed
with the topology induced by the norm ‖ · ‖2

Vx
:= ‖ · ‖2

L2 +‖∂x ·
‖2

L2 . Clearly Vh ⊂ Vx. By Theorem 1 the (continuous) bilin-
ear form bx(·, ·) is coercive in Vx provided that t,τ,β x and Kx

satisfy the requirements of the aforementioned Theorem. If
the case, the discrete problem (12) is also coercive (thus, well-
posed) whenever Vh is endowed with the norm ‖ · ‖Vx .

On the other hand, notice that wh ∈ Vh represents the dis-
crete solution of a previous time-step. That solution requires
to support second order weak-derivatives to make lwh a contin-
uous functional on Vx. For that reason we need the order of the
B-splines to be p ≥ 2.

Since the solution uh ∈Vh of problem (12) is of the form

uh = ∑
i, j,k

ui jkBx
i;p(x)B

y
j;p(y)B

z
k;p(z), (13)

the problem (12) translates into a NxNyNz ×NxNyNz linear sys-
tem whose unknowns are the scalars {ui jk} and the coefficients
of the associated matrix are:



Bx
lmni jk = bx

(
Bx

i;p(x)B
y
j;p(y)B

z
k;p(z) , Bx

l;p(x)B
y
m;p(y)Bz

n;p(z)
)
,

∀i, l = 1, . . . ,Nx ∀ j,m = 1, . . . ,Ny ∀k,n = 1, . . . ,Nz.
(14)

On the other hand, the coefficients of the right hand-side vector
are given by:



lx
wh

(
Bx

l;p(x)B
y
m;p(y)Bz

n;p(z)),

∀l = 1, . . . ,Nx ∀m = 1, . . . ,Ny ∀n = 1, . . . ,Nz.

Let us focus on the particular entries of the left-hand-side
matrix (14) discretized with tensor product of one dimensional
B-spline basis functions:

Bx
lmni jk =(
Bx

i;p(x)B
y
j;p(y)B

z
k;p(z) , Bx
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y
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t+τ ∂xBx
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y
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n;p(z)
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∂xBx
i;p(x)B

y
j;p(y)B

z
k;p(z),β

x
t+τ Bx

l;p(x)B
y
m;p(y)Bz

n;p(z)
)
.

(15)
We perform the direction splitting for each sub-problem.
Namely, we express the matrix entries as the multiplication
of three one-dimensional integrals, the first one with B-spline
basis functions along the x direction, the second one with B-
splines along the y direction, and the third one with B-splines
along the z direction. For the sub-problem corresponding to
i = 1 we get

Bx
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Bx
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x
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By
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×
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By
j;p(y) , By
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Bz
k;p(z) , Bz

n;p(z)
)

Bx =C⊗D⊗E (16)

In our model we assume that Ki
t+τ and β i

t+τ are constant in a
given time moment. Hence, our matrices at every time step are
decomposed into three Kronecker product sub-matrices Bx =
C⊗D⊗E. Namely, each sub-problem is equivalent to the three
one-dimensional problems with multiple right-hand-sides and
can be factorized with a linear O(N) computational cost. We
refer to the Appendix for more details.
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fulfilling the requirement:

Ki
t+τ ≥ η i

t >
τ
4
‖β i(·, t + τ)‖2

L∞ , for some η i
t > 0.

However, too small values of τ > 0 will compromise the sta-
bility of the problem (same as in reaction-dominated diffusion
problems).

REMARK 2. On the discrete level, the integration back by
parts requires us to use higher order B-spline basis functions.

2.4. Direction splitting with isogeometric analysis dis-
cretization Let us perform now the discretization of the weak
sub-problem using B-spline basis functions from the isogeo-
metric analysis [8].

Let Nx, Ny and Nz be positive integers. On each axis we
consider a basis of one-dimensional B-splines of order p ∈ N.
Thus, on the x-axis we consider the basis {Bx

i;p}i=1,...,Nx ; on
the y-axis we consider the basis {By

j;p} j=1,...,Ny ; and on the z-
axis we consider the basis {Bz

k;p}k=1,...,Nz . Our general discrete
space Vh will consist in the tensor product of the previous B-
splines. This is,

Vh =: span{Bx
i;p(x)B

y
j;p(y)B

z
k;p(z)}.

Let us proceed with the discrete counterpart of the weak
sub-problems (4), (5) and (6). To exemplify, we take the
x-subproblem. The discrete counterpart of the weak sub-
problem (6) reads as follows:

{
Given wh ∈Vh, find uh ∈Vh such that:
bx(uh,vh) = lx

wh
(vh), ∀vh ∈Vh,

(12)

where
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(
∂xuh,Kx
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t+τ vh

)

and
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(
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with the topology induced by the norm ‖ · ‖2
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:= ‖ · ‖2
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L2 . Clearly Vh ⊂ Vx. By Theorem 1 the (continuous) bilin-
ear form bx(·, ·) is coercive in Vx provided that t,τ,β x and Kx

satisfy the requirements of the aforementioned Theorem. If
the case, the discrete problem (12) is also coercive (thus, well-
posed) whenever Vh is endowed with the norm ‖ · ‖Vx .

On the other hand, notice that wh ∈ Vh represents the dis-
crete solution of a previous time-step. That solution requires
to support second order weak-derivatives to make lwh a contin-
uous functional on Vx. For that reason we need the order of the
B-splines to be p ≥ 2.

Since the solution uh ∈Vh of problem (12) is of the form

uh = ∑
i, j,k

ui jkBx
i;p(x)B

y
j;p(y)B

z
k;p(z), (13)

the problem (12) translates into a NxNyNz ×NxNyNz linear sys-
tem whose unknowns are the scalars {ui jk} and the coefficients
of the associated matrix are:
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)
,
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On the other hand, the coefficients of the right hand-side vector
are given by:
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∀l = 1, . . . ,Nx ∀m = 1, . . . ,Ny ∀n = 1, . . . ,Nz.

Let us focus on the particular entries of the left-hand-side
matrix (14) discretized with tensor product of one dimensional
B-spline basis functions:
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(15)
We perform the direction splitting for each sub-problem.
Namely, we express the matrix entries as the multiplication
of three one-dimensional integrals, the first one with B-spline
basis functions along the x direction, the second one with B-
splines along the y direction, and the third one with B-splines
along the z direction. For the sub-problem corresponding to
i = 1 we get

Bx
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(
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×
(

By
j;p(y) , By

m;p(y)
)(

Bz
k;p(z) , Bz

n;p(z)
)

Bx =C⊗D⊗E (16)

In our model we assume that Ki
t+τ and β i

t+τ are constant in a
given time moment. Hence, our matrices at every time step are
decomposed into three Kronecker product sub-matrices Bx =
C⊗D⊗E. Namely, each sub-problem is equivalent to the three
one-dimensional problems with multiple right-hand-sides and
can be factorized with a linear O(N) computational cost. We
refer to the Appendix for more details.
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fulfilling the requirement:

Ki
t+τ ≥ η i

t >
τ
4
‖β i(·, t + τ)‖2

L∞ , for some η i
t > 0.

However, too small values of τ > 0 will compromise the sta-
bility of the problem (same as in reaction-dominated diffusion
problems).

REMARK 2. On the discrete level, the integration back by
parts requires us to use higher order B-spline basis functions.

2.4. Direction splitting with isogeometric analysis dis-
cretization Let us perform now the discretization of the weak
sub-problem using B-spline basis functions from the isogeo-
metric analysis [8].

Let Nx, Ny and Nz be positive integers. On each axis we
consider a basis of one-dimensional B-splines of order p ∈ N.
Thus, on the x-axis we consider the basis {Bx

i;p}i=1,...,Nx ; on
the y-axis we consider the basis {By

j;p} j=1,...,Ny ; and on the z-
axis we consider the basis {Bz

k;p}k=1,...,Nz . Our general discrete
space Vh will consist in the tensor product of the previous B-
splines. This is,

Vh =: span{Bx
i;p(x)B

y
j;p(y)B

z
k;p(z)}.

Let us proceed with the discrete counterpart of the weak
sub-problems (4), (5) and (6). To exemplify, we take the
x-subproblem. The discrete counterpart of the weak sub-
problem (6) reads as follows:

{
Given wh ∈Vh, find uh ∈Vh such that:
bx(uh,vh) = lx

wh
(vh), ∀vh ∈Vh,

(12)

where

bx(uh,vh) := (uh,vh)+ τ
(
∂xuh,Kx

t+τ ∂xvh +β x
t+τ vh

)

and
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(vh) := (wh + τ ft ,vh)+ τ

(
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(
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t ∂ 2
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.

REMARK 3. Let Vx := {v ∈ L2(Ω) : ∂xv ∈ L2(Ω)} endowed
with the topology induced by the norm ‖ · ‖2

Vx
:= ‖ · ‖2
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L2 . Clearly Vh ⊂ Vx. By Theorem 1 the (continuous) bilin-
ear form bx(·, ·) is coercive in Vx provided that t,τ,β x and Kx

satisfy the requirements of the aforementioned Theorem. If
the case, the discrete problem (12) is also coercive (thus, well-
posed) whenever Vh is endowed with the norm ‖ · ‖Vx .

On the other hand, notice that wh ∈ Vh represents the dis-
crete solution of a previous time-step. That solution requires
to support second order weak-derivatives to make lwh a contin-
uous functional on Vx. For that reason we need the order of the
B-splines to be p ≥ 2.

Since the solution uh ∈Vh of problem (12) is of the form

uh = ∑
i, j,k

ui jkBx
i;p(x)B

y
j;p(y)B

z
k;p(z), (13)

the problem (12) translates into a NxNyNz ×NxNyNz linear sys-
tem whose unknowns are the scalars {ui jk} and the coefficients
of the associated matrix are:
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k;p(z) , Bx

l;p(x)B
y
m;p(y)Bz
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)
,

∀i, l = 1, . . . ,Nx ∀ j,m = 1, . . . ,Ny ∀k,n = 1, . . . ,Nz.
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On the other hand, the coefficients of the right hand-side vector
are given by:
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y
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Let us focus on the particular entries of the left-hand-side
matrix (14) discretized with tensor product of one dimensional
B-spline basis functions:

Bx
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(15)
We perform the direction splitting for each sub-problem.
Namely, we express the matrix entries as the multiplication
of three one-dimensional integrals, the first one with B-spline
basis functions along the x direction, the second one with B-
splines along the y direction, and the third one with B-splines
along the z direction. For the sub-problem corresponding to
i = 1 we get
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In our model we assume that Ki
t+τ and β i

t+τ are constant in a
given time moment. Hence, our matrices at every time step are
decomposed into three Kronecker product sub-matrices Bx =
C⊗D⊗E. Namely, each sub-problem is equivalent to the three
one-dimensional problems with multiple right-hand-sides and
can be factorized with a linear O(N) computational cost. We
refer to the Appendix for more details.
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fulfilling the requirement:
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t >
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‖β i(·, t + τ)‖2

L∞ , for some η i
t > 0.

However, too small values of τ > 0 will compromise the sta-
bility of the problem (same as in reaction-dominated diffusion
problems).

REMARK 2. On the discrete level, the integration back by
parts requires us to use higher order B-spline basis functions.

2.4. Direction splitting with isogeometric analysis dis-
cretization Let us perform now the discretization of the weak
sub-problem using B-spline basis functions from the isogeo-
metric analysis [8].

Let Nx, Ny and Nz be positive integers. On each axis we
consider a basis of one-dimensional B-splines of order p ∈ N.
Thus, on the x-axis we consider the basis {Bx

i;p}i=1,...,Nx ; on
the y-axis we consider the basis {By

j;p} j=1,...,Ny ; and on the z-
axis we consider the basis {Bz

k;p}k=1,...,Nz . Our general discrete
space Vh will consist in the tensor product of the previous B-
splines. This is,
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i;p(x)B

y
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z
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Let us proceed with the discrete counterpart of the weak
sub-problems (4), (5) and (6). To exemplify, we take the
x-subproblem. The discrete counterpart of the weak sub-
problem (6) reads as follows:

{
Given wh ∈Vh, find uh ∈Vh such that:
bx(uh,vh) = lx
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satisfy the requirements of the aforementioned Theorem. If
the case, the discrete problem (12) is also coercive (thus, well-
posed) whenever Vh is endowed with the norm ‖ · ‖Vx .

On the other hand, notice that wh ∈ Vh represents the dis-
crete solution of a previous time-step. That solution requires
to support second order weak-derivatives to make lwh a contin-
uous functional on Vx. For that reason we need the order of the
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Since the solution uh ∈Vh of problem (12) is of the form
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,
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On the other hand, the coefficients of the right hand-side vector
are given by:
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∀l = 1, . . . ,Nx ∀m = 1, . . . ,Ny ∀n = 1, . . . ,Nz.

Let us focus on the particular entries of the left-hand-side
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B-spline basis functions:
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We perform the direction splitting for each sub-problem.
Namely, we express the matrix entries as the multiplication
of three one-dimensional integrals, the first one with B-spline
basis functions along the x direction, the second one with B-
splines along the y direction, and the third one with B-splines
along the z direction. For the sub-problem corresponding to
i = 1 we get
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Bx =C⊗D⊗E (16)

In our model we assume that Ki
t+τ and β i

t+τ are constant in a
given time moment. Hence, our matrices at every time step are
decomposed into three Kronecker product sub-matrices Bx =
C⊗D⊗E. Namely, each sub-problem is equivalent to the three
one-dimensional problems with multiple right-hand-sides and
can be factorized with a linear O(N) computational cost. We
refer to the Appendix for more details.
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fulfilling the requirement:
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t+τ ≥ η i

t >
τ
4
‖β i(·, t + τ)‖2

L∞ , for some η i
t > 0.

However, too small values of τ > 0 will compromise the sta-
bility of the problem (same as in reaction-dominated diffusion
problems).

REMARK 2. On the discrete level, the integration back by
parts requires us to use higher order B-spline basis functions.

2.4. Direction splitting with isogeometric analysis dis-
cretization Let us perform now the discretization of the weak
sub-problem using B-spline basis functions from the isogeo-
metric analysis [8].
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splines. This is,
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x-subproblem. The discrete counterpart of the weak sub-
problem (6) reads as follows:
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On the other hand, notice that wh ∈ Vh represents the dis-
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uous functional on Vx. For that reason we need the order of the
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Since the solution uh ∈Vh of problem (12) is of the form
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We perform the direction splitting for each sub-problem.
Namely, we express the matrix entries as the multiplication
of three one-dimensional integrals, the first one with B-spline
basis functions along the x direction, the second one with B-
splines along the y direction, and the third one with B-splines
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In our model we assume that Ki
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t+τ are constant in a
given time moment. Hence, our matrices at every time step are
decomposed into three Kronecker product sub-matrices Bx =
C⊗D⊗E. Namely, each sub-problem is equivalent to the three
one-dimensional problems with multiple right-hand-sides and
can be factorized with a linear O(N) computational cost. We
refer to the Appendix for more details.
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t >
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4
‖β i(·, t + τ)‖2

L∞ , for some η i
t > 0.

However, too small values of τ > 0 will compromise the sta-
bility of the problem (same as in reaction-dominated diffusion
problems).

REMARK 2. On the discrete level, the integration back by
parts requires us to use higher order B-spline basis functions.

2.4. Direction splitting with isogeometric analysis dis-
cretization Let us perform now the discretization of the weak
sub-problem using B-spline basis functions from the isogeo-
metric analysis [8].

Let Nx, Ny and Nz be positive integers. On each axis we
consider a basis of one-dimensional B-splines of order p ∈ N.
Thus, on the x-axis we consider the basis {Bx

i;p}i=1,...,Nx ; on
the y-axis we consider the basis {By

j;p} j=1,...,Ny ; and on the z-
axis we consider the basis {Bz

k;p}k=1,...,Nz . Our general discrete
space Vh will consist in the tensor product of the previous B-
splines. This is,

Vh =: span{Bx
i;p(x)B

y
j;p(y)B

z
k;p(z)}.

Let us proceed with the discrete counterpart of the weak
sub-problems (4), (5) and (6). To exemplify, we take the
x-subproblem. The discrete counterpart of the weak sub-
problem (6) reads as follows:

{
Given wh ∈Vh, find uh ∈Vh such that:
bx(uh,vh) = lx

wh
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where
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satisfy the requirements of the aforementioned Theorem. If
the case, the discrete problem (12) is also coercive (thus, well-
posed) whenever Vh is endowed with the norm ‖ · ‖Vx .

On the other hand, notice that wh ∈ Vh represents the dis-
crete solution of a previous time-step. That solution requires
to support second order weak-derivatives to make lwh a contin-
uous functional on Vx. For that reason we need the order of the
B-splines to be p ≥ 2.
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(15)
We perform the direction splitting for each sub-problem.
Namely, we express the matrix entries as the multiplication
of three one-dimensional integrals, the first one with B-spline
basis functions along the x direction, the second one with B-
splines along the y direction, and the third one with B-splines
along the z direction. For the sub-problem corresponding to
i = 1 we get
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Bx =C⊗D⊗E (16)

In our model we assume that Ki
t+τ and β i

t+τ are constant in a
given time moment. Hence, our matrices at every time step are
decomposed into three Kronecker product sub-matrices Bx =
C⊗D⊗E. Namely, each sub-problem is equivalent to the three
one-dimensional problems with multiple right-hand-sides and
can be factorized with a linear O(N) computational cost. We
refer to the Appendix for more details.
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t >
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4
‖β i(·, t + τ)‖2

L∞ , for some η i
t > 0.

However, too small values of τ > 0 will compromise the sta-
bility of the problem (same as in reaction-dominated diffusion
problems).

REMARK 2. On the discrete level, the integration back by
parts requires us to use higher order B-spline basis functions.

2.4. Direction splitting with isogeometric analysis dis-
cretization Let us perform now the discretization of the weak
sub-problem using B-spline basis functions from the isogeo-
metric analysis [8].

Let Nx, Ny and Nz be positive integers. On each axis we
consider a basis of one-dimensional B-splines of order p ∈ N.
Thus, on the x-axis we consider the basis {Bx

i;p}i=1,...,Nx ; on
the y-axis we consider the basis {By

j;p} j=1,...,Ny ; and on the z-
axis we consider the basis {Bz
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space Vh will consist in the tensor product of the previous B-
splines. This is,
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Let us proceed with the discrete counterpart of the weak
sub-problems (4), (5) and (6). To exemplify, we take the
x-subproblem. The discrete counterpart of the weak sub-
problem (6) reads as follows:

{
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satisfy the requirements of the aforementioned Theorem. If
the case, the discrete problem (12) is also coercive (thus, well-
posed) whenever Vh is endowed with the norm ‖ · ‖Vx .

On the other hand, notice that wh ∈ Vh represents the dis-
crete solution of a previous time-step. That solution requires
to support second order weak-derivatives to make lwh a contin-
uous functional on Vx. For that reason we need the order of the
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t >
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‖β i(·, t + τ)‖2

L∞ , for some η i
t > 0.

However, too small values of τ > 0 will compromise the sta-
bility of the problem (same as in reaction-dominated diffusion
problems).

REMARK 2. On the discrete level, the integration back by
parts requires us to use higher order B-spline basis functions.

2.4. Direction splitting with isogeometric analysis dis-
cretization Let us perform now the discretization of the weak
sub-problem using B-spline basis functions from the isogeo-
metric analysis [8].

Let Nx, Ny and Nz be positive integers. On each axis we
consider a basis of one-dimensional B-splines of order p ∈ N.
Thus, on the x-axis we consider the basis {Bx

i;p}i=1,...,Nx ; on
the y-axis we consider the basis {By

j;p} j=1,...,Ny ; and on the z-
axis we consider the basis {Bz

k;p}k=1,...,Nz . Our general discrete
space Vh will consist in the tensor product of the previous B-
splines. This is,

Vh =: span{Bx
i;p(x)B

y
j;p(y)B

z
k;p(z)}.

Let us proceed with the discrete counterpart of the weak
sub-problems (4), (5) and (6). To exemplify, we take the
x-subproblem. The discrete counterpart of the weak sub-
problem (6) reads as follows:

{
Given wh ∈Vh, find uh ∈Vh such that:
bx(uh,vh) = lx

wh
(vh), ∀vh ∈Vh,

(12)

where

bx(uh,vh) := (uh,vh)+ τ
(
∂xuh,Kx

t+τ ∂xvh +β x
t+τ vh

)

and

lx
wh
(vh) := (wh + τ ft ,vh)+ τ

(
Ky

t ∂ 2
y wh −β y

t ∂ywh,vh
)

+τ
(
Kz

t ∂ 2
z wh −β z

t ∂zwh,vh
)
.

REMARK 3. Let Vx := {v ∈ L2(Ω) : ∂xv ∈ L2(Ω)} endowed
with the topology induced by the norm ‖ · ‖2

Vx
:= ‖ · ‖2

L2 +‖∂x ·
‖2

L2 . Clearly Vh ⊂ Vx. By Theorem 1 the (continuous) bilin-
ear form bx(·, ·) is coercive in Vx provided that t,τ,β x and Kx

satisfy the requirements of the aforementioned Theorem. If
the case, the discrete problem (12) is also coercive (thus, well-
posed) whenever Vh is endowed with the norm ‖ · ‖Vx .

On the other hand, notice that wh ∈ Vh represents the dis-
crete solution of a previous time-step. That solution requires
to support second order weak-derivatives to make lwh a contin-
uous functional on Vx. For that reason we need the order of the
B-splines to be p ≥ 2.

Since the solution uh ∈Vh of problem (12) is of the form

uh = ∑
i, j,k

ui jkBx
i;p(x)B

y
j;p(y)B

z
k;p(z), (13)

the problem (12) translates into a NxNyNz ×NxNyNz linear sys-
tem whose unknowns are the scalars {ui jk} and the coefficients
of the associated matrix are:



Bx
lmni jk = bx

(
Bx

i;p(x)B
y
j;p(y)B

z
k;p(z) , Bx

l;p(x)B
y
m;p(y)Bz

n;p(z)
)
,

∀i, l = 1, . . . ,Nx ∀ j,m = 1, . . . ,Ny ∀k,n = 1, . . . ,Nz.
(14)

On the other hand, the coefficients of the right hand-side vector
are given by:



lx
wh

(
Bx

l;p(x)B
y
m;p(y)Bz

n;p(z)),

∀l = 1, . . . ,Nx ∀m = 1, . . . ,Ny ∀n = 1, . . . ,Nz.

Let us focus on the particular entries of the left-hand-side
matrix (14) discretized with tensor product of one dimensional
B-spline basis functions:

Bx
lmni jk =(
Bx

i;p(x)B
y
j;p(y)B

z
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y
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∂xBx
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y
j;p(y)B

z
k;p(z),β

x
t+τ Bx

l;p(x)B
y
m;p(y)Bz

n;p(z)
)
.

(15)
We perform the direction splitting for each sub-problem.
Namely, we express the matrix entries as the multiplication
of three one-dimensional integrals, the first one with B-spline
basis functions along the x direction, the second one with B-
splines along the y direction, and the third one with B-splines
along the z direction. For the sub-problem corresponding to
i = 1 we get

Bx
lmni jk =

(
Bx
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x
l;p(x)

)(
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y
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×
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By
j;p(y) , By
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Bz
k;p(z) , Bz

n;p(z)
)

Bx =C⊗D⊗E (16)

In our model we assume that Ki
t+τ and β i

t+τ are constant in a
given time moment. Hence, our matrices at every time step are
decomposed into three Kronecker product sub-matrices Bx =
C⊗D⊗E. Namely, each sub-problem is equivalent to the three
one-dimensional problems with multiple right-hand-sides and
can be factorized with a linear O(N) computational cost. We
refer to the Appendix for more details.

4 Bull. Pol. Ac.: Tech. XX(Y) 2020

, ,
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fulfilling the requirement:

Ki
t+τ ≥ η i

t >
τ
4
‖β i(·, t + τ)‖2

L∞ , for some η i
t > 0.

However, too small values of τ > 0 will compromise the sta-
bility of the problem (same as in reaction-dominated diffusion
problems).

REMARK 2. On the discrete level, the integration back by
parts requires us to use higher order B-spline basis functions.

2.4. Direction splitting with isogeometric analysis dis-
cretization Let us perform now the discretization of the weak
sub-problem using B-spline basis functions from the isogeo-
metric analysis [8].

Let Nx, Ny and Nz be positive integers. On each axis we
consider a basis of one-dimensional B-splines of order p ∈ N.
Thus, on the x-axis we consider the basis {Bx

i;p}i=1,...,Nx ; on
the y-axis we consider the basis {By

j;p} j=1,...,Ny ; and on the z-
axis we consider the basis {Bz

k;p}k=1,...,Nz . Our general discrete
space Vh will consist in the tensor product of the previous B-
splines. This is,

Vh =: span{Bx
i;p(x)B

y
j;p(y)B

z
k;p(z)}.

Let us proceed with the discrete counterpart of the weak
sub-problems (4), (5) and (6). To exemplify, we take the
x-subproblem. The discrete counterpart of the weak sub-
problem (6) reads as follows:

{
Given wh ∈Vh, find uh ∈Vh such that:
bx(uh,vh) = lx

wh
(vh), ∀vh ∈Vh,

(12)

where

bx(uh,vh) := (uh,vh)+ τ
(
∂xuh,Kx
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REMARK 3. Let Vx := {v ∈ L2(Ω) : ∂xv ∈ L2(Ω)} endowed
with the topology induced by the norm ‖ · ‖2
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:= ‖ · ‖2

L2 +‖∂x ·
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L2 . Clearly Vh ⊂ Vx. By Theorem 1 the (continuous) bilin-
ear form bx(·, ·) is coercive in Vx provided that t,τ,β x and Kx

satisfy the requirements of the aforementioned Theorem. If
the case, the discrete problem (12) is also coercive (thus, well-
posed) whenever Vh is endowed with the norm ‖ · ‖Vx .

On the other hand, notice that wh ∈ Vh represents the dis-
crete solution of a previous time-step. That solution requires
to support second order weak-derivatives to make lwh a contin-
uous functional on Vx. For that reason we need the order of the
B-splines to be p ≥ 2.

Since the solution uh ∈Vh of problem (12) is of the form

uh = ∑
i, j,k

ui jkBx
i;p(x)B

y
j;p(y)B

z
k;p(z), (13)

the problem (12) translates into a NxNyNz ×NxNyNz linear sys-
tem whose unknowns are the scalars {ui jk} and the coefficients
of the associated matrix are:


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y
j;p(y)B

z
k;p(z) , Bx
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y
m;p(y)Bz

n;p(z)
)
,

∀i, l = 1, . . . ,Nx ∀ j,m = 1, . . . ,Ny ∀k,n = 1, . . . ,Nz.
(14)

On the other hand, the coefficients of the right hand-side vector
are given by:
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l;p(x)B
y
m;p(y)Bz

n;p(z)),

∀l = 1, . . . ,Nx ∀m = 1, . . . ,Ny ∀n = 1, . . . ,Nz.

Let us focus on the particular entries of the left-hand-side
matrix (14) discretized with tensor product of one dimensional
B-spline basis functions:

Bx
lmni jk =(
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y
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k;p(z),β

x
t+τ Bx
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y
m;p(y)Bz

n;p(z)
)
.

(15)
We perform the direction splitting for each sub-problem.
Namely, we express the matrix entries as the multiplication
of three one-dimensional integrals, the first one with B-spline
basis functions along the x direction, the second one with B-
splines along the y direction, and the third one with B-splines
along the z direction. For the sub-problem corresponding to
i = 1 we get

Bx
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i;p(x),B
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)(
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×
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=
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(
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×
(

By
j;p(y) , By

m;p(y)
)(

Bz
k;p(z) , Bz

n;p(z)
)

Bx =C⊗D⊗E (16)

In our model we assume that Ki
t+τ and β i

t+τ are constant in a
given time moment. Hence, our matrices at every time step are
decomposed into three Kronecker product sub-matrices Bx =
C⊗D⊗E. Namely, each sub-problem is equivalent to the three
one-dimensional problems with multiple right-hand-sides and
can be factorized with a linear O(N) computational cost. We
refer to the Appendix for more details.
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M. Łoś, M. Woźniak, I. Muga, and M. Paszyński

fulfilling the requirement:

Ki
t+τ ≥ η i

t >
τ
4
‖β i(·, t + τ)‖2

L∞ , for some η i
t > 0.

However, too small values of τ > 0 will compromise the sta-
bility of the problem (same as in reaction-dominated diffusion
problems).

REMARK 2. On the discrete level, the integration back by
parts requires us to use higher order B-spline basis functions.

2.4. Direction splitting with isogeometric analysis dis-
cretization Let us perform now the discretization of the weak
sub-problem using B-spline basis functions from the isogeo-
metric analysis [8].

Let Nx, Ny and Nz be positive integers. On each axis we
consider a basis of one-dimensional B-splines of order p ∈ N.
Thus, on the x-axis we consider the basis {Bx

i;p}i=1,...,Nx ; on
the y-axis we consider the basis {By

j;p} j=1,...,Ny ; and on the z-
axis we consider the basis {Bz

k;p}k=1,...,Nz . Our general discrete
space Vh will consist in the tensor product of the previous B-
splines. This is,

Vh =: span{Bx
i;p(x)B

y
j;p(y)B

z
k;p(z)}.

Let us proceed with the discrete counterpart of the weak
sub-problems (4), (5) and (6). To exemplify, we take the
x-subproblem. The discrete counterpart of the weak sub-
problem (6) reads as follows:

{
Given wh ∈Vh, find uh ∈Vh such that:
bx(uh,vh) = lx

wh
(vh), ∀vh ∈Vh,

(12)

where

bx(uh,vh) := (uh,vh)+ τ
(
∂xuh,Kx

t+τ ∂xvh +β x
t+τ vh

)

and

lx
wh
(vh) := (wh + τ ft ,vh)+ τ

(
Ky

t ∂ 2
y wh −β y
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)
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(
Kz

t ∂ 2
z wh −β z

t ∂zwh,vh
)
.

REMARK 3. Let Vx := {v ∈ L2(Ω) : ∂xv ∈ L2(Ω)} endowed
with the topology induced by the norm ‖ · ‖2

Vx
:= ‖ · ‖2

L2 +‖∂x ·
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L2 . Clearly Vh ⊂ Vx. By Theorem 1 the (continuous) bilin-
ear form bx(·, ·) is coercive in Vx provided that t,τ,β x and Kx

satisfy the requirements of the aforementioned Theorem. If
the case, the discrete problem (12) is also coercive (thus, well-
posed) whenever Vh is endowed with the norm ‖ · ‖Vx .

On the other hand, notice that wh ∈ Vh represents the dis-
crete solution of a previous time-step. That solution requires
to support second order weak-derivatives to make lwh a contin-
uous functional on Vx. For that reason we need the order of the
B-splines to be p ≥ 2.

Since the solution uh ∈Vh of problem (12) is of the form

uh = ∑
i, j,k

ui jkBx
i;p(x)B

y
j;p(y)B

z
k;p(z), (13)

the problem (12) translates into a NxNyNz ×NxNyNz linear sys-
tem whose unknowns are the scalars {ui jk} and the coefficients
of the associated matrix are:



Bx
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(
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i;p(x)B
y
j;p(y)B

z
k;p(z) , Bx

l;p(x)B
y
m;p(y)Bz

n;p(z)
)
,

∀i, l = 1, . . . ,Nx ∀ j,m = 1, . . . ,Ny ∀k,n = 1, . . . ,Nz.
(14)

On the other hand, the coefficients of the right hand-side vector
are given by:


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wh

(
Bx

l;p(x)B
y
m;p(y)Bz

n;p(z)),

∀l = 1, . . . ,Nx ∀m = 1, . . . ,Ny ∀n = 1, . . . ,Nz.

Let us focus on the particular entries of the left-hand-side
matrix (14) discretized with tensor product of one dimensional
B-spline basis functions:

Bx
lmni jk =(
Bx

i;p(x)B
y
j;p(y)B

z
k;p(z) , Bx

l;p(x)B
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t+τ Bx
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.

(15)
We perform the direction splitting for each sub-problem.
Namely, we express the matrix entries as the multiplication
of three one-dimensional integrals, the first one with B-spline
basis functions along the x direction, the second one with B-
splines along the y direction, and the third one with B-splines
along the z direction. For the sub-problem corresponding to
i = 1 we get

Bx
lmni jk =
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i;p(x),B
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)(
By

j;p(y),B
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Bx =C⊗D⊗E (16)

In our model we assume that Ki
t+τ and β i

t+τ are constant in a
given time moment. Hence, our matrices at every time step are
decomposed into three Kronecker product sub-matrices Bx =
C⊗D⊗E. Namely, each sub-problem is equivalent to the three
one-dimensional problems with multiple right-hand-sides and
can be factorized with a linear O(N) computational cost. We
refer to the Appendix for more details.
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fulfilling the requirement:

Ki
t+τ ≥ η i

t >
τ
4
‖β i(·, t + τ)‖2

L∞ , for some η i
t > 0.

However, too small values of τ > 0 will compromise the sta-
bility of the problem (same as in reaction-dominated diffusion
problems).

REMARK 2. On the discrete level, the integration back by
parts requires us to use higher order B-spline basis functions.

2.4. Direction splitting with isogeometric analysis dis-
cretization Let us perform now the discretization of the weak
sub-problem using B-spline basis functions from the isogeo-
metric analysis [8].

Let Nx, Ny and Nz be positive integers. On each axis we
consider a basis of one-dimensional B-splines of order p ∈ N.
Thus, on the x-axis we consider the basis {Bx

i;p}i=1,...,Nx ; on
the y-axis we consider the basis {By

j;p} j=1,...,Ny ; and on the z-
axis we consider the basis {Bz

k;p}k=1,...,Nz . Our general discrete
space Vh will consist in the tensor product of the previous B-
splines. This is,

Vh =: span{Bx
i;p(x)B

y
j;p(y)B

z
k;p(z)}.

Let us proceed with the discrete counterpart of the weak
sub-problems (4), (5) and (6). To exemplify, we take the
x-subproblem. The discrete counterpart of the weak sub-
problem (6) reads as follows:

{
Given wh ∈Vh, find uh ∈Vh such that:
bx(uh,vh) = lx

wh
(vh), ∀vh ∈Vh,

(12)

where

bx(uh,vh) := (uh,vh)+ τ
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and
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.

REMARK 3. Let Vx := {v ∈ L2(Ω) : ∂xv ∈ L2(Ω)} endowed
with the topology induced by the norm ‖ · ‖2
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:= ‖ · ‖2
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L2 . Clearly Vh ⊂ Vx. By Theorem 1 the (continuous) bilin-
ear form bx(·, ·) is coercive in Vx provided that t,τ,β x and Kx

satisfy the requirements of the aforementioned Theorem. If
the case, the discrete problem (12) is also coercive (thus, well-
posed) whenever Vh is endowed with the norm ‖ · ‖Vx .

On the other hand, notice that wh ∈ Vh represents the dis-
crete solution of a previous time-step. That solution requires
to support second order weak-derivatives to make lwh a contin-
uous functional on Vx. For that reason we need the order of the
B-splines to be p ≥ 2.

Since the solution uh ∈Vh of problem (12) is of the form

uh = ∑
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ui jkBx
i;p(x)B

y
j;p(y)B

z
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the problem (12) translates into a NxNyNz ×NxNyNz linear sys-
tem whose unknowns are the scalars {ui jk} and the coefficients
of the associated matrix are:
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,
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∀l = 1, . . . ,Nx ∀m = 1, . . . ,Ny ∀n = 1, . . . ,Nz.
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matrix (14) discretized with tensor product of one dimensional
B-spline basis functions:
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k;p(z) , Bx
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y
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y
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+τ
(
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z
k;p(z),β

x
t+τ Bx

l;p(x)B
y
m;p(y)Bz

n;p(z)
)
.

(15)
We perform the direction splitting for each sub-problem.
Namely, we express the matrix entries as the multiplication
of three one-dimensional integrals, the first one with B-spline
basis functions along the x direction, the second one with B-
splines along the y direction, and the third one with B-splines
along the z direction. For the sub-problem corresponding to
i = 1 we get

Bx
lmni jk =

(
Bx

i;p(x),B
x
l;p(x)

)(
By

j;p(y),B
y
m;p(y)

)

×
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)(
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=
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l;p(x)+β x
t+τ Bx

l;p(x)
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×
(

By
j;p(y) , By

m;p(y)
)(

Bz
k;p(z) , Bz

n;p(z)
)

Bx =C⊗D⊗E (16)

In our model we assume that Ki
t+τ and β i

t+τ are constant in a
given time moment. Hence, our matrices at every time step are
decomposed into three Kronecker product sub-matrices Bx =
C⊗D⊗E. Namely, each sub-problem is equivalent to the three
one-dimensional problems with multiple right-hand-sides and
can be factorized with a linear O(N) computational cost. We
refer to the Appendix for more details.
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fulfilling the requirement:

Ki
t+τ ≥ η i

t >
τ
4
‖β i(·, t + τ)‖2

L∞ , for some η i
t > 0.

However, too small values of τ > 0 will compromise the sta-
bility of the problem (same as in reaction-dominated diffusion
problems).

REMARK 2. On the discrete level, the integration back by
parts requires us to use higher order B-spline basis functions.

2.4. Direction splitting with isogeometric analysis dis-
cretization Let us perform now the discretization of the weak
sub-problem using B-spline basis functions from the isogeo-
metric analysis [8].

Let Nx, Ny and Nz be positive integers. On each axis we
consider a basis of one-dimensional B-splines of order p ∈ N.
Thus, on the x-axis we consider the basis {Bx

i;p}i=1,...,Nx ; on
the y-axis we consider the basis {By

j;p} j=1,...,Ny ; and on the z-
axis we consider the basis {Bz

k;p}k=1,...,Nz . Our general discrete
space Vh will consist in the tensor product of the previous B-
splines. This is,

Vh =: span{Bx
i;p(x)B

y
j;p(y)B

z
k;p(z)}.

Let us proceed with the discrete counterpart of the weak
sub-problems (4), (5) and (6). To exemplify, we take the
x-subproblem. The discrete counterpart of the weak sub-
problem (6) reads as follows:

{
Given wh ∈Vh, find uh ∈Vh such that:
bx(uh,vh) = lx

wh
(vh), ∀vh ∈Vh,

(12)

where

bx(uh,vh) := (uh,vh)+ τ
(
∂xuh,Kx

t+τ ∂xvh +β x
t+τ vh

)

and

lx
wh
(vh) := (wh + τ ft ,vh)+ τ

(
Ky

t ∂ 2
y wh −β y

t ∂ywh,vh
)

+τ
(
Kz

t ∂ 2
z wh −β z

t ∂zwh,vh
)
.

REMARK 3. Let Vx := {v ∈ L2(Ω) : ∂xv ∈ L2(Ω)} endowed
with the topology induced by the norm ‖ · ‖2

Vx
:= ‖ · ‖2

L2 +‖∂x ·
‖2

L2 . Clearly Vh ⊂ Vx. By Theorem 1 the (continuous) bilin-
ear form bx(·, ·) is coercive in Vx provided that t,τ,β x and Kx

satisfy the requirements of the aforementioned Theorem. If
the case, the discrete problem (12) is also coercive (thus, well-
posed) whenever Vh is endowed with the norm ‖ · ‖Vx .

On the other hand, notice that wh ∈ Vh represents the dis-
crete solution of a previous time-step. That solution requires
to support second order weak-derivatives to make lwh a contin-
uous functional on Vx. For that reason we need the order of the
B-splines to be p ≥ 2.

Since the solution uh ∈Vh of problem (12) is of the form

uh = ∑
i, j,k

ui jkBx
i;p(x)B

y
j;p(y)B

z
k;p(z), (13)

the problem (12) translates into a NxNyNz ×NxNyNz linear sys-
tem whose unknowns are the scalars {ui jk} and the coefficients
of the associated matrix are:



Bx
lmni jk = bx
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y
j;p(y)B

z
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m;p(y)Bz

n;p(z)
)
,

∀i, l = 1, . . . ,Nx ∀ j,m = 1, . . . ,Ny ∀k,n = 1, . . . ,Nz.
(14)

On the other hand, the coefficients of the right hand-side vector
are given by:


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Bx

l;p(x)B
y
m;p(y)Bz

n;p(z)),

∀l = 1, . . . ,Nx ∀m = 1, . . . ,Ny ∀n = 1, . . . ,Nz.

Let us focus on the particular entries of the left-hand-side
matrix (14) discretized with tensor product of one dimensional
B-spline basis functions:

Bx
lmni jk =(
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y
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z
k;p(z),β
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t+τ Bx
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)
.

(15)
We perform the direction splitting for each sub-problem.
Namely, we express the matrix entries as the multiplication
of three one-dimensional integrals, the first one with B-spline
basis functions along the x direction, the second one with B-
splines along the y direction, and the third one with B-splines
along the z direction. For the sub-problem corresponding to
i = 1 we get
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i;p(x),B
x
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)(
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y
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×
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)(
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)

Bx =C⊗D⊗E (16)

In our model we assume that Ki
t+τ and β i

t+τ are constant in a
given time moment. Hence, our matrices at every time step are
decomposed into three Kronecker product sub-matrices Bx =
C⊗D⊗E. Namely, each sub-problem is equivalent to the three
one-dimensional problems with multiple right-hand-sides and
can be factorized with a linear O(N) computational cost. We
refer to the Appendix for more details.
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fulfilling the requirement:

Ki
t+τ ≥ η i

t >
τ
4
‖β i(·, t + τ)‖2

L∞ , for some η i
t > 0.

However, too small values of τ > 0 will compromise the sta-
bility of the problem (same as in reaction-dominated diffusion
problems).

REMARK 2. On the discrete level, the integration back by
parts requires us to use higher order B-spline basis functions.

2.4. Direction splitting with isogeometric analysis dis-
cretization Let us perform now the discretization of the weak
sub-problem using B-spline basis functions from the isogeo-
metric analysis [8].

Let Nx, Ny and Nz be positive integers. On each axis we
consider a basis of one-dimensional B-splines of order p ∈ N.
Thus, on the x-axis we consider the basis {Bx

i;p}i=1,...,Nx ; on
the y-axis we consider the basis {By

j;p} j=1,...,Ny ; and on the z-
axis we consider the basis {Bz

k;p}k=1,...,Nz . Our general discrete
space Vh will consist in the tensor product of the previous B-
splines. This is,

Vh =: span{Bx
i;p(x)B

y
j;p(y)B

z
k;p(z)}.

Let us proceed with the discrete counterpart of the weak
sub-problems (4), (5) and (6). To exemplify, we take the
x-subproblem. The discrete counterpart of the weak sub-
problem (6) reads as follows:

{
Given wh ∈Vh, find uh ∈Vh such that:
bx(uh,vh) = lx

wh
(vh), ∀vh ∈Vh,

(12)

where

bx(uh,vh) := (uh,vh)+ τ
(
∂xuh,Kx

t+τ ∂xvh +β x
t+τ vh

)

and

lx
wh
(vh) := (wh + τ ft ,vh)+ τ

(
Ky

t ∂ 2
y wh −β y

t ∂ywh,vh
)

+τ
(
Kz

t ∂ 2
z wh −β z

t ∂zwh,vh
)
.

REMARK 3. Let Vx := {v ∈ L2(Ω) : ∂xv ∈ L2(Ω)} endowed
with the topology induced by the norm ‖ · ‖2

Vx
:= ‖ · ‖2

L2 +‖∂x ·
‖2

L2 . Clearly Vh ⊂ Vx. By Theorem 1 the (continuous) bilin-
ear form bx(·, ·) is coercive in Vx provided that t,τ,β x and Kx

satisfy the requirements of the aforementioned Theorem. If
the case, the discrete problem (12) is also coercive (thus, well-
posed) whenever Vh is endowed with the norm ‖ · ‖Vx .

On the other hand, notice that wh ∈ Vh represents the dis-
crete solution of a previous time-step. That solution requires
to support second order weak-derivatives to make lwh a contin-
uous functional on Vx. For that reason we need the order of the
B-splines to be p ≥ 2.

Since the solution uh ∈Vh of problem (12) is of the form

uh = ∑
i, j,k

ui jkBx
i;p(x)B

y
j;p(y)B

z
k;p(z), (13)

the problem (12) translates into a NxNyNz ×NxNyNz linear sys-
tem whose unknowns are the scalars {ui jk} and the coefficients
of the associated matrix are:



Bx
lmni jk = bx

(
Bx

i;p(x)B
y
j;p(y)B

z
k;p(z) , Bx

l;p(x)B
y
m;p(y)Bz

n;p(z)
)
,

∀i, l = 1, . . . ,Nx ∀ j,m = 1, . . . ,Ny ∀k,n = 1, . . . ,Nz.
(14)

On the other hand, the coefficients of the right hand-side vector
are given by:



lx
wh

(
Bx

l;p(x)B
y
m;p(y)Bz

n;p(z)),

∀l = 1, . . . ,Nx ∀m = 1, . . . ,Ny ∀n = 1, . . . ,Nz.

Let us focus on the particular entries of the left-hand-side
matrix (14) discretized with tensor product of one dimensional
B-spline basis functions:

Bx
lmni jk =(
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i;p(x)B
y
j;p(y)B
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(
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z
k;p(z),β
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t+τ Bx

l;p(x)B
y
m;p(y)Bz

n;p(z)
)
.

(15)
We perform the direction splitting for each sub-problem.
Namely, we express the matrix entries as the multiplication
of three one-dimensional integrals, the first one with B-spline
basis functions along the x direction, the second one with B-
splines along the y direction, and the third one with B-splines
along the z direction. For the sub-problem corresponding to
i = 1 we get

Bx
lmni jk =

(
Bx

i;p(x),B
x
l;p(x)

)(
By

j;p(y),B
y
m;p(y)

)

×
(

Bz
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x
t+τ ∂xBx

l;p(x)
)(

By
j;p(y),B

y
m;p(y)

)

×
(

Bz
k;p(z),B

z
n;p(z)

)

+τ
(

∂xBx
i;p(x),β x

t+τ Bx
l;p(x)

)(
By

j;p(y),B
y
m;p(y)

)

×
(

Bz
k;p(z),B

z
n;p(z)

)

=
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×
(

By
j;p(y) , By

m;p(y)
)(

Bz
k;p(z) , Bz

n;p(z)
)

Bx =C⊗D⊗E (16)

In our model we assume that Ki
t+τ and β i

t+τ are constant in a
given time moment. Hence, our matrices at every time step are
decomposed into three Kronecker product sub-matrices Bx =
C⊗D⊗E. Namely, each sub-problem is equivalent to the three
one-dimensional problems with multiple right-hand-sides and
can be factorized with a linear O(N) computational cost. We
refer to the Appendix for more details.
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fulfilling the requirement:

Ki
t+τ ≥ η i

t >
τ
4
‖β i(·, t + τ)‖2

L∞ , for some η i
t > 0.

However, too small values of τ > 0 will compromise the sta-
bility of the problem (same as in reaction-dominated diffusion
problems).

REMARK 2. On the discrete level, the integration back by
parts requires us to use higher order B-spline basis functions.

2.4. Direction splitting with isogeometric analysis dis-
cretization Let us perform now the discretization of the weak
sub-problem using B-spline basis functions from the isogeo-
metric analysis [8].

Let Nx, Ny and Nz be positive integers. On each axis we
consider a basis of one-dimensional B-splines of order p ∈ N.
Thus, on the x-axis we consider the basis {Bx

i;p}i=1,...,Nx ; on
the y-axis we consider the basis {By

j;p} j=1,...,Ny ; and on the z-
axis we consider the basis {Bz

k;p}k=1,...,Nz . Our general discrete
space Vh will consist in the tensor product of the previous B-
splines. This is,

Vh =: span{Bx
i;p(x)B

y
j;p(y)B

z
k;p(z)}.

Let us proceed with the discrete counterpart of the weak
sub-problems (4), (5) and (6). To exemplify, we take the
x-subproblem. The discrete counterpart of the weak sub-
problem (6) reads as follows:

{
Given wh ∈Vh, find uh ∈Vh such that:
bx(uh,vh) = lx

wh
(vh), ∀vh ∈Vh,

(12)

where

bx(uh,vh) := (uh,vh)+ τ
(
∂xuh,Kx

t+τ ∂xvh +β x
t+τ vh

)

and

lx
wh
(vh) := (wh + τ ft ,vh)+ τ

(
Ky

t ∂ 2
y wh −β y
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)

+τ
(
Kz

t ∂ 2
z wh −β z

t ∂zwh,vh
)
.

REMARK 3. Let Vx := {v ∈ L2(Ω) : ∂xv ∈ L2(Ω)} endowed
with the topology induced by the norm ‖ · ‖2

Vx
:= ‖ · ‖2

L2 +‖∂x ·
‖2

L2 . Clearly Vh ⊂ Vx. By Theorem 1 the (continuous) bilin-
ear form bx(·, ·) is coercive in Vx provided that t,τ,β x and Kx

satisfy the requirements of the aforementioned Theorem. If
the case, the discrete problem (12) is also coercive (thus, well-
posed) whenever Vh is endowed with the norm ‖ · ‖Vx .

On the other hand, notice that wh ∈ Vh represents the dis-
crete solution of a previous time-step. That solution requires
to support second order weak-derivatives to make lwh a contin-
uous functional on Vx. For that reason we need the order of the
B-splines to be p ≥ 2.

Since the solution uh ∈Vh of problem (12) is of the form

uh = ∑
i, j,k

ui jkBx
i;p(x)B

y
j;p(y)B

z
k;p(z), (13)

the problem (12) translates into a NxNyNz ×NxNyNz linear sys-
tem whose unknowns are the scalars {ui jk} and the coefficients
of the associated matrix are:



Bx
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i;p(x)B
y
j;p(y)B

z
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)
,

∀i, l = 1, . . . ,Nx ∀ j,m = 1, . . . ,Ny ∀k,n = 1, . . . ,Nz.
(14)

On the other hand, the coefficients of the right hand-side vector
are given by:


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l;p(x)B
y
m;p(y)Bz

n;p(z)),

∀l = 1, . . . ,Nx ∀m = 1, . . . ,Ny ∀n = 1, . . . ,Nz.

Let us focus on the particular entries of the left-hand-side
matrix (14) discretized with tensor product of one dimensional
B-spline basis functions:

Bx
lmni jk =(
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(15)
We perform the direction splitting for each sub-problem.
Namely, we express the matrix entries as the multiplication
of three one-dimensional integrals, the first one with B-spline
basis functions along the x direction, the second one with B-
splines along the y direction, and the third one with B-splines
along the z direction. For the sub-problem corresponding to
i = 1 we get
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+ τ
(

∂xBx
i;p(x),K

x
t+τ ∂xBx

l;p(x)+β x
t+τ Bx

l;p(x)
)]

×
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Bx =C⊗D⊗E (16)

In our model we assume that Ki
t+τ and β i

t+τ are constant in a
given time moment. Hence, our matrices at every time step are
decomposed into three Kronecker product sub-matrices Bx =
C⊗D⊗E. Namely, each sub-problem is equivalent to the three
one-dimensional problems with multiple right-hand-sides and
can be factorized with a linear O(N) computational cost. We
refer to the Appendix for more details.
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fulfilling the requirement:

Ki
t+τ ≥ η i

t >
τ
4
‖β i(·, t + τ)‖2

L∞ , for some η i
t > 0.

However, too small values of τ > 0 will compromise the sta-
bility of the problem (same as in reaction-dominated diffusion
problems).

REMARK 2. On the discrete level, the integration back by
parts requires us to use higher order B-spline basis functions.

2.4. Direction splitting with isogeometric analysis dis-
cretization Let us perform now the discretization of the weak
sub-problem using B-spline basis functions from the isogeo-
metric analysis [8].

Let Nx, Ny and Nz be positive integers. On each axis we
consider a basis of one-dimensional B-splines of order p ∈ N.
Thus, on the x-axis we consider the basis {Bx

i;p}i=1,...,Nx ; on
the y-axis we consider the basis {By

j;p} j=1,...,Ny ; and on the z-
axis we consider the basis {Bz

k;p}k=1,...,Nz . Our general discrete
space Vh will consist in the tensor product of the previous B-
splines. This is,

Vh =: span{Bx
i;p(x)B

y
j;p(y)B

z
k;p(z)}.

Let us proceed with the discrete counterpart of the weak
sub-problems (4), (5) and (6). To exemplify, we take the
x-subproblem. The discrete counterpart of the weak sub-
problem (6) reads as follows:

{
Given wh ∈Vh, find uh ∈Vh such that:
bx(uh,vh) = lx

wh
(vh), ∀vh ∈Vh,

(12)

where

bx(uh,vh) := (uh,vh)+ τ
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.
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satisfy the requirements of the aforementioned Theorem. If
the case, the discrete problem (12) is also coercive (thus, well-
posed) whenever Vh is endowed with the norm ‖ · ‖Vx .

On the other hand, notice that wh ∈ Vh represents the dis-
crete solution of a previous time-step. That solution requires
to support second order weak-derivatives to make lwh a contin-
uous functional on Vx. For that reason we need the order of the
B-splines to be p ≥ 2.

Since the solution uh ∈Vh of problem (12) is of the form

uh = ∑
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y
j;p(y)B

z
k;p(z), (13)
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,
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Let us focus on the particular entries of the left-hand-side
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We perform the direction splitting for each sub-problem.
Namely, we express the matrix entries as the multiplication
of three one-dimensional integrals, the first one with B-spline
basis functions along the x direction, the second one with B-
splines along the y direction, and the third one with B-splines
along the z direction. For the sub-problem corresponding to
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Bx =C⊗D⊗E (16)

In our model we assume that Ki
t+τ and β i

t+τ are constant in a
given time moment. Hence, our matrices at every time step are
decomposed into three Kronecker product sub-matrices Bx =
C⊗D⊗E. Namely, each sub-problem is equivalent to the three
one-dimensional problems with multiple right-hand-sides and
can be factorized with a linear O(N) computational cost. We
refer to the Appendix for more details.

4 Bull. Pol. Ac.: Tech. XX(Y) 2020
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Let us proceed with the discrete counterpart of the weak
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Namely, we express the matrix entries as the multiplication
of three one-dimensional integrals, the first one with B-spline
basis functions along the x direction, the second one with B-
splines along the y direction, and the third one with B-splines
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In our model we assume that Ki
t+τ and β i

t+τ are constant in a
given time moment. Hence, our matrices at every time step are
decomposed into three Kronecker product sub-matrices Bx =
C⊗D⊗E. Namely, each sub-problem is equivalent to the three
one-dimensional problems with multiple right-hand-sides and
can be factorized with a linear O(N) computational cost. We
refer to the Appendix for more details.
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fulfilling the requirement:

Ki
t+τ ≥ η i

t >
τ
4
‖β i(·, t + τ)‖2

L∞ , for some η i
t > 0.

However, too small values of τ > 0 will compromise the sta-
bility of the problem (same as in reaction-dominated diffusion
problems).

REMARK 2. On the discrete level, the integration back by
parts requires us to use higher order B-spline basis functions.

2.4. Direction splitting with isogeometric analysis dis-
cretization Let us perform now the discretization of the weak
sub-problem using B-spline basis functions from the isogeo-
metric analysis [8].

Let Nx, Ny and Nz be positive integers. On each axis we
consider a basis of one-dimensional B-splines of order p ∈ N.
Thus, on the x-axis we consider the basis {Bx

i;p}i=1,...,Nx ; on
the y-axis we consider the basis {By

j;p} j=1,...,Ny ; and on the z-
axis we consider the basis {Bz

k;p}k=1,...,Nz . Our general discrete
space Vh will consist in the tensor product of the previous B-
splines. This is,

Vh =: span{Bx
i;p(x)B

y
j;p(y)B

z
k;p(z)}.

Let us proceed with the discrete counterpart of the weak
sub-problems (4), (5) and (6). To exemplify, we take the
x-subproblem. The discrete counterpart of the weak sub-
problem (6) reads as follows:

{
Given wh ∈Vh, find uh ∈Vh such that:
bx(uh,vh) = lx

wh
(vh), ∀vh ∈Vh,

(12)

where
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t+τ ∂xvh +β x
t+τ vh

)

and

lx
wh
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with the topology induced by the norm ‖ · ‖2
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L2 . Clearly Vh ⊂ Vx. By Theorem 1 the (continuous) bilin-
ear form bx(·, ·) is coercive in Vx provided that t,τ,β x and Kx

satisfy the requirements of the aforementioned Theorem. If
the case, the discrete problem (12) is also coercive (thus, well-
posed) whenever Vh is endowed with the norm ‖ · ‖Vx .

On the other hand, notice that wh ∈ Vh represents the dis-
crete solution of a previous time-step. That solution requires
to support second order weak-derivatives to make lwh a contin-
uous functional on Vx. For that reason we need the order of the
B-splines to be p ≥ 2.

Since the solution uh ∈Vh of problem (12) is of the form
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ui jkBx
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y
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z
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We perform the direction splitting for each sub-problem.
Namely, we express the matrix entries as the multiplication
of three one-dimensional integrals, the first one with B-spline
basis functions along the x direction, the second one with B-
splines along the y direction, and the third one with B-splines
along the z direction. For the sub-problem corresponding to
i = 1 we get
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In our model we assume that Ki
t+τ and β i

t+τ are constant in a
given time moment. Hence, our matrices at every time step are
decomposed into three Kronecker product sub-matrices Bx =
C⊗D⊗E. Namely, each sub-problem is equivalent to the three
one-dimensional problems with multiple right-hand-sides and
can be factorized with a linear O(N) computational cost. We
refer to the Appendix for more details.
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fulfilling the requirement:
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t >
τ
4
‖β i(·, t + τ)‖2

L∞ , for some η i
t > 0.

However, too small values of τ > 0 will compromise the sta-
bility of the problem (same as in reaction-dominated diffusion
problems).

REMARK 2. On the discrete level, the integration back by
parts requires us to use higher order B-spline basis functions.

2.4. Direction splitting with isogeometric analysis dis-
cretization Let us perform now the discretization of the weak
sub-problem using B-spline basis functions from the isogeo-
metric analysis [8].

Let Nx, Ny and Nz be positive integers. On each axis we
consider a basis of one-dimensional B-splines of order p ∈ N.
Thus, on the x-axis we consider the basis {Bx

i;p}i=1,...,Nx ; on
the y-axis we consider the basis {By

j;p} j=1,...,Ny ; and on the z-
axis we consider the basis {Bz

k;p}k=1,...,Nz . Our general discrete
space Vh will consist in the tensor product of the previous B-
splines. This is,

Vh =: span{Bx
i;p(x)B

y
j;p(y)B

z
k;p(z)}.

Let us proceed with the discrete counterpart of the weak
sub-problems (4), (5) and (6). To exemplify, we take the
x-subproblem. The discrete counterpart of the weak sub-
problem (6) reads as follows:

{
Given wh ∈Vh, find uh ∈Vh such that:
bx(uh,vh) = lx

wh
(vh), ∀vh ∈Vh,

(12)

where

bx(uh,vh) := (uh,vh)+ τ
(
∂xuh,Kx

t+τ ∂xvh +β x
t+τ vh

)

and

lx
wh
(vh) := (wh + τ ft ,vh)+ τ

(
Ky

t ∂ 2
y wh −β y

t ∂ywh,vh
)

+τ
(
Kz

t ∂ 2
z wh −β z

t ∂zwh,vh
)
.

REMARK 3. Let Vx := {v ∈ L2(Ω) : ∂xv ∈ L2(Ω)} endowed
with the topology induced by the norm ‖ · ‖2

Vx
:= ‖ · ‖2

L2 +‖∂x ·
‖2

L2 . Clearly Vh ⊂ Vx. By Theorem 1 the (continuous) bilin-
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satisfy the requirements of the aforementioned Theorem. If
the case, the discrete problem (12) is also coercive (thus, well-
posed) whenever Vh is endowed with the norm ‖ · ‖Vx .
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crete solution of a previous time-step. That solution requires
to support second order weak-derivatives to make lwh a contin-
uous functional on Vx. For that reason we need the order of the
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t+τ are constant in a
given time moment. Hence, our matrices at every time step are
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C⊗D⊗E. Namely, each sub-problem is equivalent to the three
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can be factorized with a linear O(N) computational cost. We
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L∞ , for some η i
t > 0.

However, too small values of τ > 0 will compromise the sta-
bility of the problem (same as in reaction-dominated diffusion
problems).

REMARK 2. On the discrete level, the integration back by
parts requires us to use higher order B-spline basis functions.

2.4. Direction splitting with isogeometric analysis dis-
cretization Let us perform now the discretization of the weak
sub-problem using B-spline basis functions from the isogeo-
metric analysis [8].
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space Vh will consist in the tensor product of the previous B-
splines. This is,
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Let us proceed with the discrete counterpart of the weak
sub-problems (4), (5) and (6). To exemplify, we take the
x-subproblem. The discrete counterpart of the weak sub-
problem (6) reads as follows:

{
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(12)

where

bx(uh,vh) := (uh,vh)+ τ
(
∂xuh,Kx

t+τ ∂xvh +β x
t+τ vh

)

and

lx
wh
(vh) := (wh + τ ft ,vh)+ τ

(
Ky

t ∂ 2
y wh −β y

t ∂ywh,vh
)

+τ
(
Kz

t ∂ 2
z wh −β z

t ∂zwh,vh
)
.

REMARK 3. Let Vx := {v ∈ L2(Ω) : ∂xv ∈ L2(Ω)} endowed
with the topology induced by the norm ‖ · ‖2

Vx
:= ‖ · ‖2

L2 +‖∂x ·
‖2

L2 . Clearly Vh ⊂ Vx. By Theorem 1 the (continuous) bilin-
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given time moment. Hence, our matrices at every time step are
decomposed into three Kronecker product sub-matrices Bx =
C⊗D⊗E. Namely, each sub-problem is equivalent to the three
one-dimensional problems with multiple right-hand-sides and
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However, too small values of τ > 0 will compromise the sta-
bility of the problem (same as in reaction-dominated diffusion
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can be factorized with a linear O(N) computational cost. We
refer to the Appendix for more details.

4 Bull. Pol. Ac.: Tech. XX(Y) 2020
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However, too small values of τ > 0 will compromise the sta-
bility of the problem (same as in reaction-dominated diffusion
problems).

REMARK 2. On the discrete level, the integration back by
parts requires us to use higher order B-spline basis functions.

2.4. Direction splitting with isogeometric analysis dis-
cretization Let us perform now the discretization of the weak
sub-problem using B-spline basis functions from the isogeo-
metric analysis [8].
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given time moment. Hence, our matrices at every time step are
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C⊗D⊗E. Namely, each sub-problem is equivalent to the three
one-dimensional problems with multiple right-hand-sides and
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Abstract. In times of the COVID-19, reliable tools to simulate the airborne pathogens causing the infection are extremely important to enable
the testing of various preventive methods. Advection-diffusion simulations can model the propagation of pathogens in the air. We can represent
the concentration of pathogens in the air by "contamination" propagating from the source, by the mechanisms of advection (representing air
movement) and diffusion (representing the spontaneous propagation of pathogen particles in the air). The three-dimensional time-dependent
advection-diffusion equation is difficult to simulate due to the high computational cost and instabilities of the numerical methods. In this
paper, we present alternating directions implicit isogeometric analysis simulations of the three-dimensional advection-diffusion equations. We
introduce three intermediate time steps, where in the differential operator, we separate the derivatives concerning particular spatial directions.
We provide a mathematical analysis of the numerical stability of the method. We show well-posedness of each time step formulation, under the
assumption of a particular time step size. We utilize the tensor products of one-dimensional B-spline basis functions over the three-dimensional
cube shape domain for the spatial discretization. The alternating direction solver is implemented in C++ and parallelized using the GALOIS
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1. Introduction
According to the World Health Organization [1], COVID-19 is
mainly spread through particles containing virus material ex-
haled by infected people through speech breathing or spread
by sneezing or coughing.

How these particles spread, how their concentration changes
with the distance from the speaking or sneezing person
changes, and how the air movement influences these concen-
trations is in general unknown and can be measured experi-
mentally, which is very difficult estimated by using computer
simulations.

Thus, in the days of COVID-19, computer simulations can
help in making decisions such as the required distance in pub-
lic places, the need to wear masks covering the mouth and
nose, made of specific materials, the permissible time of stay
with a person infected in one room, etc. This paper focuses on
advection-diffusion equations, which can model the propaga-
tion of pathogens in the air. We can represent the concentration
of pathogens in the air by "contamination" propagating from
the source by advection and diffusion mechanisms. The first
term describes the spread of particles forced by the air move-
ments, and the second one models the spontaneous propaga-
tion of pathogen particles in the air. Unfortunately, the three-
dimensional time-dependent advection-diffusion equations are
complicated to simulate. This is related to the high compu-
tational cost of the three-dimensional problem as well as by
the instabilities of the numerical methods. As the remedy to
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the first problem, we propose the alternating directions implicit
solver. We also focus on the mathematical analysis of the sim-
ulation that presents the necessary conditions for its stability.

The alternating directions implicit solver (ADI) was origi-
nally proposed for performing finite-difference simulations of
time-dependent problems on regular grids. The first papers
concerning the ADI method were published in 1960 [2, 3, 4,
5]. The ADI with finite difference method is still popular for
fast solutions of different classes of problems with finite differ-
ence method [6, 7]. The method introduces intermediate time
steps in its basic version, and the differential operator is split
into sub-operators, containing only the x, y, z derivatives. The
time integration scheme involves sub-steps with only one sub-
operator on the left-hand side and the other sub-operators on
the right-hand side, acting on the previous sub-step solutions.
As a result of this direction splitting, after the discretization of
the linear equations system, we deal only with derivatives in
one direction while the rest of the operator is on the right-hand
side. The resulting system of linear equations, if derived on the
regular three-dimensional grid, has a Kronecker product struc-
ture, and it can be factorization in a linear O(N) computational
cost.

The isogeometric analysis (IGA) [8] is a modern method
for performing finite element method (FEM) simulations with
B-splines and NURBS. The IGA-FEM has multiple appli-
cations for simulations of time-dependent problems, includ-
ing wind turbine aerodynamics [9], turbulent flow simulations
[10], phase field phase-separation simulations [11, 12, 13,
14], incompressible hyper-elasticity [15], blood flow simula-
tions [16, 17, 18, 19] and tumor growth simulations [20, 21].

1

 (N) computational cost. We 
refer to the Appendix for more details.

3.	 NUMERICAL RESULTS
In this section, we propose a three-dimensional model of 
coughing based on advection-diffusion equation. We describe 
the three-dimensional numerical simulation of coughing with 
an advection-diffusion model over a 3D cube shape domain 
representing the area of 500£500£500 cm.

	 du
dt

 ¡ ∇ ¢ (K∇u) + β  ¢ ∇u = f .� (17)

In our equation we use the diffusion of the air

	 K = (0.25, 0.25, 0.25) [cm2/s].� (18)

The advection-diffusion model requires assuming the velocity 
of the air β as enforced by the coughing. The β is assumed to be 
given by β = (w(t), 0, 0) w(t) = 80 [cm/s] for t 2 (0, 0.2) [s] 
and w(t) = 80 ¡ 80 (t ¡ 0.2) [cm/s] for t 2 (0.2, 0.3) [s] 
and w(t) = 0 for t > 0.3 [s]. In other words, we assume the 
air velocity of 80 [cm/s] for 0.2 [s] that later goes down to 0 
within 0.1 [s].

The source function models the volume of released parti-
cles potentially with pathogens. The source is defined as a ball 
located at (1, 2.5, 2.5) [m] with radius r = 0.15 [m]. It is ampli-
fied by s(t) = max(1 ¡ t/2)2, 0), which is a function decreasing 

in quadratic way from 1 to 0 over a time interval (0, 0.2) [s]. The 
concentration inside the initial ball is defined as φ(r2), where 
r = min(kx ¡ (1.0, 2.5, 2.5)k/0.15), φ(t) = (t ¡ 1)2(t + 1)2. 
The initial state is defined as the zero pathogens concentration 
in the entire domain.

The computational domain unit is centimeter [cm], the wind 
velocity β is given in centimeters per second [cm/s], and the 
diffusion coefficient K is given in square centimeters per sec-
ond [cm2/s]. The units for the solution are then kilograms per 
cube centimeter [kg/cm3].

We recall Theorem 1, where we provide sufficient condi-
tions for the coercivity of the bilinear form. This allows us to 
estimate the coercivity constant that enters the Céa’s Lemma, 
which in this case, is a function of the time-step size τ . To avoid 
instabilities, we want this constant to be as far away as possible 
from zero.

We have derived a simple MATLAB code to estimate the 
coercivity constant as a function of the time-step size τ . The 
code allows selecting the time-step size that provides the max-
imum coercivity constant. In the MATLAB code, we consider 
0.1 [s] for the time unit and centimeter for the dimension unit. 
Thus, the diffusion in the horizontal direction z since it has the 
minimal value of K = 2.5 [cm2]/(0.1 s) affecting most of the 
stability of the simulation. We estimate also the L norm of the 
advection function to obtain beta = 8 [cm/0.1 s]. We plot the 
relationship between the time step size tau and the coercivity 
constant y in a range going from 0 to the maximum admissible 
value of 4*K/beta*^2, with the span of 100 points.
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In this section, we propose a three-dimensional model of
coughing based on advection-diffusion equation. We describe
the three-dimensional numerical simulation of coughing with
an advection-diffusion model over a 3D cube shape domain
representing the area of 500cm×500cm×500cm.
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−∇ · (K∇u)+β ·∇u = f (17)

In our equation we use the diffusion of the air

K = (0.25,0.25,0.25)[cm2/s] (18)

The advection-diffusion model requires as to assume the ve-
locity of the air β as enforced by the coughing. The β is as-
sumed to be given by β = (w(t),0,0) where w(t) = 80[cm/s]
for t ∈ (0,0.2)[s] and w(t) = 80 − 80(t − 0.2)[cm/s] for t ∈
(0.2,0.3)[s] and w(t) = 0 for t > 0.3[s]. In other words, we
assume the air velocity of 80 [cm/s] for 0.2[s] that later goes
down to 0 within 0.1[s].

The source function models the volume of released particles
potentially with pathogens. The source is defined as a ball lo-
cated at (1,2.5,2.5)[m] with radius r = 0.15[m]. It is amplified
by s(t) = max(1− t/2)2,0), which is a function decreasing in
quadratic way from 1 to 0 over a time interval (0,0.2)[s]. The
concentration inside the initial ball is defined as φ(r2), where
r = min(||x − (1.0,2.5,2.5)||/0.15), φ(t) = (t − 1)2(t + 1)2

The initial state is defined as the zero pathogens concentration
in the entire domain.

The computational domain unit is centimeter [cm], the wind
velocity β is given in centimeters per second [ cm

s ], and the dif-
fusion coefficient K is given in square centimeters per second
[ cm2

s ]. The units for the solution are then kilograms per cube
centimeter [ kg
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We recall Theorem 1, where we provide sufficient condi-

tions for the coercivity of the bilinear form. This allows us to
estimate the coercivity constant that enters the Céa’s Lemma,
which in this case, is a function of the time-step size τ . To
avoid instabilities, we want this constant to be as far away as
possible from zero.

We have derived a simple MATLAB code to estimate the
coercivity constant as a function of the time-step size τ . The
code allows selecting the time-step size that provides the max-
imum coercivity constant. In the MATLAB code, we consider
0.1 [s] for the time unit and centimeter for the dimension unit.
Thus, the diffusion in the horizontal direction z since it has the
minimal value of �����[cm2]/(0.1s) affecting most of the sta-
bility of the simulation. We estimate also the L∞ norm of the
advection function to obtain #��"�� [cm/0.1s]. We plot the
relationship between the time step size �"� and the coercivity
constant 
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We have generated the plot presented in Figure 1. The op-
timal value of τ corresponds to the maximum value of the co-
ercivity constant. We have read the optimal τ = 0.1[0.1s] =
0.01s. As a result of that, we have obtained a stable simula-
tion. We perform 500-time steps (which results in 5s of the
total time), and we present the snapshots of the simulation in
time steps 10, 20, 40, 60, 100, 200, 350, 500 in Figure 2-3.

For the simulation purposes, we use the IGA-ADS parallel
code [28], destination the shared memory Linux cluster nodes.
It utilizes the GALOIS framework [32] for the parallelization.
The total simulation time was 120 minutes on a laptop with
i7 6700Q processor 2.6GHz (8 cores with HT) and 16 GB of
RAM. Note that the alternating direction implicit solver uses
a direct solver. It utilizes the Kronecker product structure of
the matrix. It provided exact (up to the floating-point repre-
sentation and round-off errors) numerical Gaussian factoriza-
tion of the linear system of linear equations. In this sense, we
do not present the iterations or the ADI solver’s convergence
since it is executed only once. In other words, we can perform
500 Gaussian eliminations, each with 1,000,000 unknowns, on
a laptop with eight cores, with the implicit method, within 2
hours.

4. Conclusions
In this paper, we analyzed the advection-diffusion model for
the simulations of airborne pathogens mathematically. Simu-
lating the propagation of pathogens in the air may have critical
applications in preventing the spread of the COVID-19 epi-
demic. In particular, the possibility of simulating such propa-
gation enables experimental verification of preventive methods
such as social distancing or covering the mouth and nose. We
focused on an isogeometric finite element method simulations
of the advection-diffusion problem with alternating directions
implicit solver, resulting in ultra-fast, linear O(N) computa-
tional cost of the simulator. The application of B-spline basis
functions for approximation results in the smooth, higher-order
approximation of the solution. The method has been veri-
fied on the three-dimensional advection-diffusion problem. We
have shown that the problem is well-posed under the assump-
tion of zero Neumann boundary condition, and we derive the
formula to find a stable time step size. Our future work will
involve the extension of the model to more complicated ge-
ometries. In particular, we plan to study the airborne pathogen
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potentially with pathogens. The source is defined as a ball lo-
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possible from zero.

We have derived a simple MATLAB code to estimate the
coercivity constant as a function of the time-step size τ . The
code allows selecting the time-step size that provides the max-
imum coercivity constant. In the MATLAB code, we consider
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minimal value of �����[cm2]/(0.1s) affecting most of the sta-
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We have generated the plot presented in Figure 1. The op-
timal value of τ corresponds to the maximum value of the co-
ercivity constant. We have read the optimal τ = 0.1[0.1s] =
0.01s. As a result of that, we have obtained a stable simula-
tion. We perform 500-time steps (which results in 5s of the
total time), and we present the snapshots of the simulation in
time steps 10, 20, 40, 60, 100, 200, 350, 500 in Figure 2-3.

For the simulation purposes, we use the IGA-ADS parallel
code [28], destination the shared memory Linux cluster nodes.
It utilizes the GALOIS framework [32] for the parallelization.
The total simulation time was 120 minutes on a laptop with
i7 6700Q processor 2.6GHz (8 cores with HT) and 16 GB of
RAM. Note that the alternating direction implicit solver uses
a direct solver. It utilizes the Kronecker product structure of
the matrix. It provided exact (up to the floating-point repre-
sentation and round-off errors) numerical Gaussian factoriza-
tion of the linear system of linear equations. In this sense, we
do not present the iterations or the ADI solver’s convergence
since it is executed only once. In other words, we can perform
500 Gaussian eliminations, each with 1,000,000 unknowns, on
a laptop with eight cores, with the implicit method, within 2
hours.

4. Conclusions
In this paper, we analyzed the advection-diffusion model for
the simulations of airborne pathogens mathematically. Simu-
lating the propagation of pathogens in the air may have critical
applications in preventing the spread of the COVID-19 epi-
demic. In particular, the possibility of simulating such propa-
gation enables experimental verification of preventive methods
such as social distancing or covering the mouth and nose. We
focused on an isogeometric finite element method simulations
of the advection-diffusion problem with alternating directions
implicit solver, resulting in ultra-fast, linear O(N) computa-
tional cost of the simulator. The application of B-spline basis
functions for approximation results in the smooth, higher-order
approximation of the solution. The method has been veri-
fied on the three-dimensional advection-diffusion problem. We
have shown that the problem is well-posed under the assump-
tion of zero Neumann boundary condition, and we derive the
formula to find a stable time step size. Our future work will
involve the extension of the model to more complicated ge-
ometries. In particular, we plan to study the airborne pathogen
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We have generated the plot presented in Fig. 1. The optimal 
value of τ corresponds to the maximum value of the coercivity 
constant. We have read the optimal τ = 0.1 [0.1 s] = 0.1 s. As 
a result of that, we have obtained a stable simulation. We per-
form 500-time steps (which results in 5 s of the total time), and 
we present the snapshots of the simulation in time steps 10, 20, 
40, 60, 100, 200, 350, 500 in Fig. 2, 3.

Fig. 1. Optimal values of time step size
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For the simulation purposes, we use the IGA-ADS parallel 
code [28], with destination the shared memory Linux cluster 
nodes. It utilizes the GALOIS framework [32] for the paral-
lelization. The total simulation time was 120 minutes on a laptop 
with i7 6700Q processor 2.6 GHz (8 cores with HT) and 16 GB 
of RAM. Note that the alternating direction implicit solver uses 
a direct solver. It utilizes the Kronecker product structure of the 
matrix. It provided exact (up to the floating-point representa-
tion and round-off errors) numerical Gaussian factorization of 
the linear system of linear equations. In this sense, we do not 

present the iterations or the ADI solver’s convergence since it is 
executed only once. In other words, we can perform 500 Gauss-
ian eliminations, each with 1,000,000 unknowns, on a laptop 
with eight cores, with the implicit method, within 2 hours.

4.	 CONCLUSIONS
In this paper, we analyzed the advection-diffusion model for 
the simulations of airborne pathogens mathematically. Simu-
lating the propagation of pathogens in the air may have critical 

Fig. 2. Distribution of the density of pathogens at the time steps 
10, 20, 40, 60, 100, 200, 350, 500 of the simulation performed with 

quadratic B-splines over 100£100£100 mesh. Without face mask

Fig. 3. Contour of the area of pathogens spread at the time steps 
10, 20, 40, 60, 100, 200, 350, 500 of the simulation performed with 

quadratic B-splines over 100£100£100 mesh. Without face mask
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applications in preventing the spread of the COVID-19 epi-
demic. In particular, the possibility of simulating such propa-
gation enables experimental verification of preventive methods 
such as social distancing or covering the mouth and nose. We 
focused on an isogeometric finite element method simulations 
of the advection-diffusion problem with alternating directions 
implicit solver, resulting in ultra-fast, linear 
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Abstract. In times of the COVID-19, reliable tools to simulate the airborne pathogens causing the infection are extremely important to enable
the testing of various preventive methods. Advection-diffusion simulations can model the propagation of pathogens in the air. We can represent
the concentration of pathogens in the air by "contamination" propagating from the source, by the mechanisms of advection (representing air
movement) and diffusion (representing the spontaneous propagation of pathogen particles in the air). The three-dimensional time-dependent
advection-diffusion equation is difficult to simulate due to the high computational cost and instabilities of the numerical methods. In this
paper, we present alternating directions implicit isogeometric analysis simulations of the three-dimensional advection-diffusion equations. We
introduce three intermediate time steps, where in the differential operator, we separate the derivatives concerning particular spatial directions.
We provide a mathematical analysis of the numerical stability of the method. We show well-posedness of each time step formulation, under the
assumption of a particular time step size. We utilize the tensor products of one-dimensional B-spline basis functions over the three-dimensional
cube shape domain for the spatial discretization. The alternating direction solver is implemented in C++ and parallelized using the GALOIS
framework for multi-core processors. We run the simulations within 120 minutes on a laptop equipped with i7 6700Q processor 2.6GHz (8
cores with HT) and 16 GB of RAM.

Key words: COVID-19, pathogen spread, isogeometric analysis, implicit dynamics, advection-diffusion, parallel alternating directions solver

1. Introduction
According to the World Health Organization [1], COVID-19 is
mainly spread through particles containing virus material ex-
haled by infected people through speech breathing or spread
by sneezing or coughing.

How these particles spread, how their concentration changes
with the distance from the speaking or sneezing person
changes, and how the air movement influences these concen-
trations is in general unknown and can be measured experi-
mentally, which is very difficult estimated by using computer
simulations.

Thus, in the days of COVID-19, computer simulations can
help in making decisions such as the required distance in pub-
lic places, the need to wear masks covering the mouth and
nose, made of specific materials, the permissible time of stay
with a person infected in one room, etc. This paper focuses on
advection-diffusion equations, which can model the propaga-
tion of pathogens in the air. We can represent the concentration
of pathogens in the air by "contamination" propagating from
the source by advection and diffusion mechanisms. The first
term describes the spread of particles forced by the air move-
ments, and the second one models the spontaneous propaga-
tion of pathogen particles in the air. Unfortunately, the three-
dimensional time-dependent advection-diffusion equations are
complicated to simulate. This is related to the high compu-
tational cost of the three-dimensional problem as well as by
the instabilities of the numerical methods. As the remedy to
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the first problem, we propose the alternating directions implicit
solver. We also focus on the mathematical analysis of the sim-
ulation that presents the necessary conditions for its stability.

The alternating directions implicit solver (ADI) was origi-
nally proposed for performing finite-difference simulations of
time-dependent problems on regular grids. The first papers
concerning the ADI method were published in 1960 [2, 3, 4,
5]. The ADI with finite difference method is still popular for
fast solutions of different classes of problems with finite differ-
ence method [6, 7]. The method introduces intermediate time
steps in its basic version, and the differential operator is split
into sub-operators, containing only the x, y, z derivatives. The
time integration scheme involves sub-steps with only one sub-
operator on the left-hand side and the other sub-operators on
the right-hand side, acting on the previous sub-step solutions.
As a result of this direction splitting, after the discretization of
the linear equations system, we deal only with derivatives in
one direction while the rest of the operator is on the right-hand
side. The resulting system of linear equations, if derived on the
regular three-dimensional grid, has a Kronecker product struc-
ture, and it can be factorization in a linear O(N) computational
cost.

The isogeometric analysis (IGA) [8] is a modern method
for performing finite element method (FEM) simulations with
B-splines and NURBS. The IGA-FEM has multiple appli-
cations for simulations of time-dependent problems, includ-
ing wind turbine aerodynamics [9], turbulent flow simulations
[10], phase field phase-separation simulations [11, 12, 13,
14], incompressible hyper-elasticity [15], blood flow simula-
tions [16, 17, 18, 19] and tumor growth simulations [20, 21].

1

 (N) computa-
tional cost of the simulator. The application of B-spline basis 
functions for approximation results in the smooth, higher-order 
approximation of the solution. The method has been verified 
on the three-dimensional advection-diffusion problem. We have 
shown that the problem is well-posed under the assumption of 
zero Neumann boundary condition, and we derive the formula 
to find a stable time step size. Our future work will involve 
the extension of the model to more complicated geometries. In 
particular, we plan to study the airborne pathogen in a realis-
tic geometry setup. It is a common misunderstanding that the 
alternating-direction implicit solver is limited to simple tensor 
product geometries. Indeed, as it has been recently shown in 
[33], it can be used for simulations in extremely complicated 
geometries.
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5.	 APPENDIX: LU FACTORIZATION OF KRONECKER 
PRODUCT MATRICES

Let us assume that we want to LU factorize the system of linear 
equations

	 Mx = b� (19)

with M = A   B, where A is n£n, B is m£m. From the defi-
nition of the Kronecker product we have
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with M = A ⊗ B, where A is n × n, B is m × m. From the
definition of the Kronecker product we have

M = A⊗B =




AB11 AB12 · · · AB1m

AB21 AB22 · · · AB2m
...

...
. . .

...
ABm1 ABm2 · · · ABmm




(20)

The right-hand side and the solution vectors are partitioned
into m blocks of size n each

xi = (xi1, . . . ,xin)
T

bi = (bi1, . . . ,bin)
T (21)

We can rewrite our system as a block matrix equation:



AB11x1 +AB12x2 + · · ·+AB1mxm = b1

AB21x1 +AB22x2 + · · ·+AB2mxm = b2

...
...

...
...

ABm1x1 +ABm2x2 + · · ·+ABmmxm = bm

Now, we factor out A:




A
(
B11x1 +B12x2 + · · ·+B1mxm

)
= b1

A
(
B21x1 +B22x2 + · · ·+B2mxm

)
= b2

...
...

...
...

A
(
Bm1x1 +Bm2x2 + · · ·+Bmmxm

)
= bm

(22)

We multiply by A−1 and define yi = A−1bi. We have here one
1D problem A yi = bi with multiple right-hand sides




A11y1i +A12y2i + · · ·+A1nyni = b1i

A21y1i +A22y2i + · · ·+A2nyni = b2i

...
...

...
...

Am1y1i +Am2y2i + · · ·+Annyni = bni

(23)

Finally, in our family of problems



B11x1 +B12x2 + · · ·+B1mxm = y1

B21x1 +B22x2 + · · ·+B2mxm = y2

...
...

...
...

Bm1x1 +Bm2x2 + · · ·+Bmmxm = ym

(24)

we consider each component of xi and yi to get a family of
linear systems




B11x1i +B12x2i + · · ·+B1mxmi = y1i

B21x1i +B22x2i + · · ·+B2mxmi = y2i

...
...

...
...

Bm1x1i +Bm2x2i + · · ·+Bmmxmi = ymi

(25)

for each i = 1, . . . ,n. We have another 1D problem here with
multiple right-hand-sides B xi = yi.

In the case of finite element method computations with ma-
trices 16, the systems of linear equations 23 and 25 have multi-
diagonal matrices with 2p+ 1 diagonals. This is because the
one-dimensional B-splines of order p span over p + 1 ele-
ments, the rows and columns in the one-dimensional matri-
ces are related to particular B-splines, the entries are non-
zero only if the B-splines from rows and columns overlap,
and the maximum span of overlaping B-splines is thus 2p+1.
The method generalizes into three-dimensions. Thus, these
matrices can be factorizes in O(Nx px + Ny py + Nz pz) where
Nx,Ny,Nz are the number of B-splines along x,y, and z axis,
px, py, pz are the B-splines orders. We have NyNz,NxNz, and
Nx,Ny right-hand sides in steps representing the factorizations
along x,y, and z directions. Thus the overall computational
cost is O(NxNyNz px +NxNyNz py +NxNyNz pz) = O(N p) since
NxNyNz = N and p = max{px, py, pz}.
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with M = A ⊗ B, where A is n × n, B is m × m. From the
definition of the Kronecker product we have

M = A⊗B =
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AB21 AB22 · · · AB2m
...

...
. . .

...
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The right-hand side and the solution vectors are partitioned
into m blocks of size n each

xi = (xi1, . . . ,xin)
T

bi = (bi1, . . . ,bin)
T (21)

We can rewrite our system as a block matrix equation:



AB11x1 +AB12x2 + · · ·+AB1mxm = b1

AB21x1 +AB22x2 + · · ·+AB2mxm = b2

...
...

...
...

ABm1x1 +ABm2x2 + · · ·+ABmmxm = bm

Now, we factor out A:
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We multiply by A−1 and define yi = A−1bi. We have here one
1D problem A yi = bi with multiple right-hand sides
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A21y1i +A22y2i + · · ·+A2nyni = b2i

...
...

...
...

Am1y1i +Am2y2i + · · ·+Annyni = bni
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Finally, in our family of problems
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B11x1 +B12x2 + · · ·+B1mxm = y1

B21x1 +B22x2 + · · ·+B2mxm = y2

...
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Bm1x1 +Bm2x2 + · · ·+Bmmxm = ym

(24)

we consider each component of xi and yi to get a family of
linear systems


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B21x1i +B22x2i + · · ·+B2mxmi = y2i

...
...

...
...

Bm1x1i +Bm2x2i + · · ·+Bmmxmi = ymi

(25)

for each i = 1, . . . ,n. We have another 1D problem here with
multiple right-hand-sides B xi = yi.

In the case of finite element method computations with ma-
trices 16, the systems of linear equations 23 and 25 have multi-
diagonal matrices with 2p+ 1 diagonals. This is because the
one-dimensional B-splines of order p span over p + 1 ele-
ments, the rows and columns in the one-dimensional matri-
ces are related to particular B-splines, the entries are non-
zero only if the B-splines from rows and columns overlap,
and the maximum span of overlaping B-splines is thus 2p+1.
The method generalizes into three-dimensions. Thus, these
matrices can be factorizes in O(Nx px + Ny py + Nz pz) where
Nx,Ny,Nz are the number of B-splines along x,y, and z axis,
px, py, pz are the B-splines orders. We have NyNz,NxNz, and
Nx,Ny right-hand sides in steps representing the factorizations
along x,y, and z directions. Thus the overall computational
cost is O(NxNyNz px +NxNyNz py +NxNyNz pz) = O(N p) since
NxNyNz = N and p = max{px, py, pz}.
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We can rewrite our system as a block matrix equation:
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with M = A ⊗ B, where A is n × n, B is m × m. From the
definition of the Kronecker product we have

M = A⊗B =




AB11 AB12 · · · AB1m

AB21 AB22 · · · AB2m
...

...
. . .

...
ABm1 ABm2 · · · ABmm




(20)

The right-hand side and the solution vectors are partitioned
into m blocks of size n each

xi = (xi1, . . . ,xin)
T

bi = (bi1, . . . ,bin)
T (21)

We can rewrite our system as a block matrix equation:



AB11x1 +AB12x2 + · · ·+AB1mxm = b1

AB21x1 +AB22x2 + · · ·+AB2mxm = b2

...
...

...
...

ABm1x1 +ABm2x2 + · · ·+ABmmxm = bm

Now, we factor out A:
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(
B11x1 +B12x2 + · · ·+B1mxm

)
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A
(
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)
= b2

...
...

...
...

A
(
Bm1x1 +Bm2x2 + · · ·+Bmmxm

)
= bm

(22)

We multiply by A−1 and define yi = A−1bi. We have here one
1D problem A yi = bi with multiple right-hand sides




A11y1i +A12y2i + · · ·+A1nyni = b1i

A21y1i +A22y2i + · · ·+A2nyni = b2i

...
...

...
...

Am1y1i +Am2y2i + · · ·+Annyni = bni
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Finally, in our family of problems




B11x1 +B12x2 + · · ·+B1mxm = y1

B21x1 +B22x2 + · · ·+B2mxm = y2

...
...

...
...

Bm1x1 +Bm2x2 + · · ·+Bmmxm = ym

(24)

we consider each component of xi and yi to get a family of
linear systems


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

B11x1i +B12x2i + · · ·+B1mxmi = y1i

B21x1i +B22x2i + · · ·+B2mxmi = y2i

...
...

...
...

Bm1x1i +Bm2x2i + · · ·+Bmmxmi = ymi

(25)

for each i = 1, . . . ,n. We have another 1D problem here with
multiple right-hand-sides B xi = yi.

In the case of finite element method computations with ma-
trices 16, the systems of linear equations 23 and 25 have multi-
diagonal matrices with 2p+ 1 diagonals. This is because the
one-dimensional B-splines of order p span over p + 1 ele-
ments, the rows and columns in the one-dimensional matri-
ces are related to particular B-splines, the entries are non-
zero only if the B-splines from rows and columns overlap,
and the maximum span of overlaping B-splines is thus 2p+1.
The method generalizes into three-dimensions. Thus, these
matrices can be factorizes in O(Nx px + Ny py + Nz pz) where
Nx,Ny,Nz are the number of B-splines along x,y, and z axis,
px, py, pz are the B-splines orders. We have NyNz,NxNz, and
Nx,Ny right-hand sides in steps representing the factorizations
along x,y, and z directions. Thus the overall computational
cost is O(NxNyNz px +NxNyNz py +NxNyNz pz) = O(N p) since
NxNyNz = N and p = max{px, py, pz}.
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with M = A ⊗ B, where A is n × n, B is m × m. From the
definition of the Kronecker product we have

M = A⊗B =




AB11 AB12 · · · AB1m

AB21 AB22 · · · AB2m
...
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. . .

...
ABm1 ABm2 · · · ABmm




(20)

The right-hand side and the solution vectors are partitioned
into m blocks of size n each

xi = (xi1, . . . ,xin)
T

bi = (bi1, . . . ,bin)
T (21)

We can rewrite our system as a block matrix equation:




AB11x1 +AB12x2 + · · ·+AB1mxm = b1

AB21x1 +AB22x2 + · · ·+AB2mxm = b2

...
...

...
...
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Now, we factor out A:
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We multiply by A−1 and define yi = A−1bi. We have here one
1D problem A yi = bi with multiple right-hand sides
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Finally, in our family of problems
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we consider each component of xi and yi to get a family of
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for each i = 1, . . . ,n. We have another 1D problem here with
multiple right-hand-sides B xi = yi.

In the case of finite element method computations with ma-
trices 16, the systems of linear equations 23 and 25 have multi-
diagonal matrices with 2p+ 1 diagonals. This is because the
one-dimensional B-splines of order p span over p + 1 ele-
ments, the rows and columns in the one-dimensional matri-
ces are related to particular B-splines, the entries are non-
zero only if the B-splines from rows and columns overlap,
and the maximum span of overlaping B-splines is thus 2p+1.
The method generalizes into three-dimensions. Thus, these
matrices can be factorizes in O(Nx px + Ny py + Nz pz) where
Nx,Ny,Nz are the number of B-splines along x,y, and z axis,
px, py, pz are the B-splines orders. We have NyNz,NxNz, and
Nx,Ny right-hand sides in steps representing the factorizations
along x,y, and z directions. Thus the overall computational
cost is O(NxNyNz px +NxNyNz py +NxNyNz pz) = O(N p) since
NxNyNz = N and p = max{px, py, pz}.
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we consider each component of xi and yi to get a family of
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for each i = 1, . . . ,n. We have another 1D problem here with
multiple right-hand-sides B xi = yi.

In the case of finite element method computations with ma-
trices 16, the systems of linear equations 23 and 25 have multi-
diagonal matrices with 2p+ 1 diagonals. This is because the
one-dimensional B-splines of order p span over p + 1 ele-
ments, the rows and columns in the one-dimensional matri-
ces are related to particular B-splines, the entries are non-
zero only if the B-splines from rows and columns overlap,
and the maximum span of overlaping B-splines is thus 2p+1.
The method generalizes into three-dimensions. Thus, these
matrices can be factorizes in O(Nx px + Ny py + Nz pz) where
Nx,Ny,Nz are the number of B-splines along x,y, and z axis,
px, py, pz are the B-splines orders. We have NyNz,NxNz, and
Nx,Ny right-hand sides in steps representing the factorizations
along x,y, and z directions. Thus the overall computational
cost is O(NxNyNz px +NxNyNz py +NxNyNz pz) = O(N p) since
NxNyNz = N and p = max{px, py, pz}.
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In the case of finite element method computations with ma-
trices 16, the systems of linear equations 23 and 25 have multi-
diagonal matrices with 2p+ 1 diagonals. This is because the
one-dimensional B-splines of order p span over p + 1 ele-
ments, the rows and columns in the one-dimensional matri-
ces are related to particular B-splines, the entries are non-
zero only if the B-splines from rows and columns overlap,
and the maximum span of overlaping B-splines is thus 2p+1.
The method generalizes into three-dimensions. Thus, these
matrices can be factorizes in O(Nx px + Ny py + Nz pz) where
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because the one-dimensional B-splines of order p span over 
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matrices are related to particular B-splines, the entries are non-
zero only if the B-splines from rows and columns overlap, 
and the maximum span of overlaping B-splines is thus 2p + 1. 
The method generalizes into three-dimensions. Thus, these 
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Abstract. In times of the COVID-19, reliable tools to simulate the airborne pathogens causing the infection are extremely important to enable
the testing of various preventive methods. Advection-diffusion simulations can model the propagation of pathogens in the air. We can represent
the concentration of pathogens in the air by "contamination" propagating from the source, by the mechanisms of advection (representing air
movement) and diffusion (representing the spontaneous propagation of pathogen particles in the air). The three-dimensional time-dependent
advection-diffusion equation is difficult to simulate due to the high computational cost and instabilities of the numerical methods. In this
paper, we present alternating directions implicit isogeometric analysis simulations of the three-dimensional advection-diffusion equations. We
introduce three intermediate time steps, where in the differential operator, we separate the derivatives concerning particular spatial directions.
We provide a mathematical analysis of the numerical stability of the method. We show well-posedness of each time step formulation, under the
assumption of a particular time step size. We utilize the tensor products of one-dimensional B-spline basis functions over the three-dimensional
cube shape domain for the spatial discretization. The alternating direction solver is implemented in C++ and parallelized using the GALOIS
framework for multi-core processors. We run the simulations within 120 minutes on a laptop equipped with i7 6700Q processor 2.6GHz (8
cores with HT) and 16 GB of RAM.
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1. Introduction
According to the World Health Organization [1], COVID-19 is
mainly spread through particles containing virus material ex-
haled by infected people through speech breathing or spread
by sneezing or coughing.

How these particles spread, how their concentration changes
with the distance from the speaking or sneezing person
changes, and how the air movement influences these concen-
trations is in general unknown and can be measured experi-
mentally, which is very difficult estimated by using computer
simulations.

Thus, in the days of COVID-19, computer simulations can
help in making decisions such as the required distance in pub-
lic places, the need to wear masks covering the mouth and
nose, made of specific materials, the permissible time of stay
with a person infected in one room, etc. This paper focuses on
advection-diffusion equations, which can model the propaga-
tion of pathogens in the air. We can represent the concentration
of pathogens in the air by "contamination" propagating from
the source by advection and diffusion mechanisms. The first
term describes the spread of particles forced by the air move-
ments, and the second one models the spontaneous propaga-
tion of pathogen particles in the air. Unfortunately, the three-
dimensional time-dependent advection-diffusion equations are
complicated to simulate. This is related to the high compu-
tational cost of the three-dimensional problem as well as by
the instabilities of the numerical methods. As the remedy to
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the first problem, we propose the alternating directions implicit
solver. We also focus on the mathematical analysis of the sim-
ulation that presents the necessary conditions for its stability.

The alternating directions implicit solver (ADI) was origi-
nally proposed for performing finite-difference simulations of
time-dependent problems on regular grids. The first papers
concerning the ADI method were published in 1960 [2, 3, 4,
5]. The ADI with finite difference method is still popular for
fast solutions of different classes of problems with finite differ-
ence method [6, 7]. The method introduces intermediate time
steps in its basic version, and the differential operator is split
into sub-operators, containing only the x, y, z derivatives. The
time integration scheme involves sub-steps with only one sub-
operator on the left-hand side and the other sub-operators on
the right-hand side, acting on the previous sub-step solutions.
As a result of this direction splitting, after the discretization of
the linear equations system, we deal only with derivatives in
one direction while the rest of the operator is on the right-hand
side. The resulting system of linear equations, if derived on the
regular three-dimensional grid, has a Kronecker product struc-
ture, and it can be factorization in a linear O(N) computational
cost.

The isogeometric analysis (IGA) [8] is a modern method
for performing finite element method (FEM) simulations with
B-splines and NURBS. The IGA-FEM has multiple appli-
cations for simulations of time-dependent problems, includ-
ing wind turbine aerodynamics [9], turbulent flow simulations
[10], phase field phase-separation simulations [11, 12, 13,
14], incompressible hyper-elasticity [15], blood flow simula-
tions [16, 17, 18, 19] and tumor growth simulations [20, 21].

1

 (Nx px + Ny py + Nz pz) where 
Nx, Ny, Nz are the number of B-splines along x, y, and z axis, 
px, py, pz are the B-splines orders. We have Ny Nz, Nx Nz, and 
Nx , Ny right-hand sides in steps representing the factorizations 
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1. Introduction
According to the World Health Organization [1], COVID-19 is
mainly spread through particles containing virus material ex-
haled by infected people through speech breathing or spread
by sneezing or coughing.

How these particles spread, how their concentration changes
with the distance from the speaking or sneezing person
changes, and how the air movement influences these concen-
trations is in general unknown and can be measured experi-
mentally, which is very difficult estimated by using computer
simulations.

Thus, in the days of COVID-19, computer simulations can
help in making decisions such as the required distance in pub-
lic places, the need to wear masks covering the mouth and
nose, made of specific materials, the permissible time of stay
with a person infected in one room, etc. This paper focuses on
advection-diffusion equations, which can model the propaga-
tion of pathogens in the air. We can represent the concentration
of pathogens in the air by "contamination" propagating from
the source by advection and diffusion mechanisms. The first
term describes the spread of particles forced by the air move-
ments, and the second one models the spontaneous propaga-
tion of pathogen particles in the air. Unfortunately, the three-
dimensional time-dependent advection-diffusion equations are
complicated to simulate. This is related to the high compu-
tational cost of the three-dimensional problem as well as by
the instabilities of the numerical methods. As the remedy to
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the first problem, we propose the alternating directions implicit
solver. We also focus on the mathematical analysis of the sim-
ulation that presents the necessary conditions for its stability.

The alternating directions implicit solver (ADI) was origi-
nally proposed for performing finite-difference simulations of
time-dependent problems on regular grids. The first papers
concerning the ADI method were published in 1960 [2, 3, 4,
5]. The ADI with finite difference method is still popular for
fast solutions of different classes of problems with finite differ-
ence method [6, 7]. The method introduces intermediate time
steps in its basic version, and the differential operator is split
into sub-operators, containing only the x, y, z derivatives. The
time integration scheme involves sub-steps with only one sub-
operator on the left-hand side and the other sub-operators on
the right-hand side, acting on the previous sub-step solutions.
As a result of this direction splitting, after the discretization of
the linear equations system, we deal only with derivatives in
one direction while the rest of the operator is on the right-hand
side. The resulting system of linear equations, if derived on the
regular three-dimensional grid, has a Kronecker product struc-
ture, and it can be factorization in a linear O(N) computational
cost.

The isogeometric analysis (IGA) [8] is a modern method
for performing finite element method (FEM) simulations with
B-splines and NURBS. The IGA-FEM has multiple appli-
cations for simulations of time-dependent problems, includ-
ing wind turbine aerodynamics [9], turbulent flow simulations
[10], phase field phase-separation simulations [11, 12, 13,
14], incompressible hyper-elasticity [15], blood flow simula-
tions [16, 17, 18, 19] and tumor growth simulations [20, 21].
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1. Introduction
According to the World Health Organization [1], COVID-19 is
mainly spread through particles containing virus material ex-
haled by infected people through speech breathing or spread
by sneezing or coughing.

How these particles spread, how their concentration changes
with the distance from the speaking or sneezing person
changes, and how the air movement influences these concen-
trations is in general unknown and can be measured experi-
mentally, which is very difficult estimated by using computer
simulations.

Thus, in the days of COVID-19, computer simulations can
help in making decisions such as the required distance in pub-
lic places, the need to wear masks covering the mouth and
nose, made of specific materials, the permissible time of stay
with a person infected in one room, etc. This paper focuses on
advection-diffusion equations, which can model the propaga-
tion of pathogens in the air. We can represent the concentration
of pathogens in the air by "contamination" propagating from
the source by advection and diffusion mechanisms. The first
term describes the spread of particles forced by the air move-
ments, and the second one models the spontaneous propaga-
tion of pathogen particles in the air. Unfortunately, the three-
dimensional time-dependent advection-diffusion equations are
complicated to simulate. This is related to the high compu-
tational cost of the three-dimensional problem as well as by
the instabilities of the numerical methods. As the remedy to
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the first problem, we propose the alternating directions implicit
solver. We also focus on the mathematical analysis of the sim-
ulation that presents the necessary conditions for its stability.

The alternating directions implicit solver (ADI) was origi-
nally proposed for performing finite-difference simulations of
time-dependent problems on regular grids. The first papers
concerning the ADI method were published in 1960 [2, 3, 4,
5]. The ADI with finite difference method is still popular for
fast solutions of different classes of problems with finite differ-
ence method [6, 7]. The method introduces intermediate time
steps in its basic version, and the differential operator is split
into sub-operators, containing only the x, y, z derivatives. The
time integration scheme involves sub-steps with only one sub-
operator on the left-hand side and the other sub-operators on
the right-hand side, acting on the previous sub-step solutions.
As a result of this direction splitting, after the discretization of
the linear equations system, we deal only with derivatives in
one direction while the rest of the operator is on the right-hand
side. The resulting system of linear equations, if derived on the
regular three-dimensional grid, has a Kronecker product struc-
ture, and it can be factorization in a linear O(N) computational
cost.

The isogeometric analysis (IGA) [8] is a modern method
for performing finite element method (FEM) simulations with
B-splines and NURBS. The IGA-FEM has multiple appli-
cations for simulations of time-dependent problems, includ-
ing wind turbine aerodynamics [9], turbulent flow simulations
[10], phase field phase-separation simulations [11, 12, 13,
14], incompressible hyper-elasticity [15], blood flow simula-
tions [16, 17, 18, 19] and tumor growth simulations [20, 21].

1

 (Np) since 
Nx Ny Nz = N and p = max{ px, py, pz}.
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