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Abstract

There are reasons researchers may be interested in accounting for spatial
heterogeneity of preferences, including avoiding model misspecification and the
resulting bias, and deriving spatial maps of willingness-to-pay (WTP), which
are relevant for policy-making and environmental management. We employ
a Monte Carlo simulation of three econometric approaches to account for
spatial preference heterogeneity in discrete choice models. The first is based
on the analysis of individual-specific estimates of the mixed logit model. The
second extends this model to explicitly account for spatial autocorrelation of
random parameters, instead of simply conditioning individual-specific estimates
on population-level distributions and individuals’ choices. The third is the
geographically weighted multinomial logit model, which incorporates spatial
dimensions using geographical weights to estimate location-specific choice
models. We analyze the performance of these methods in recovering population-,
region- and individual-level preference parameter estimates and implied WTP
in the case of spatial preference heterogeneity. We find that, although ignoring
spatial preference heterogeneity did not significantly bias population-level
results of the simple mixed logit model, neither individual-specific estimates
nor the geographically weighted multinomial logit model was able to reliably
recover the true region- and individual-specific parameters. We show that the
spatial mixed logit proposed in this study is promising and outline possibilities
for future development.

Keywords: discrete choice experiment, discrete choice models, individual-,
region- and population-level parameter estimates, spatial preference
heterogeneity

JEL Classification: C31, C25, Q51

∗University of Warsaw; e-mail: wbudzinski@wne.uw.edu.pl; ORCID: 0000-0001-9866-4267
†University of Warsaw; e-mail: mc@uw.edu.pl; ORCID: 0000-0001-5118-2308

1 W. Budziński and M. Czajkowski
CEJEME 13: 1-24 (2021)



Wiktor Budziński and Mikołaj Czajkowski

1 Introduction
Preferences for environmental goods may follow spatial patterns. This becomes an
important issue for discrete choice models, commonly used for modeling consumers’
preferences and willingness-to-pay (WTP; Carson and Czajkowski, 2014; Hanley and
Czajkowski, 2019). First, ignoring any important source of preference heterogeneity
may lead to model misspecification and result in biased estimates. However, because
modern developments in geographical information systems (GIS) allow researcher to
easily combine them with individuals’ locations (e.g., zip-codes) and provide detailed
information about the spatial configuration of environmental goods, it is now easy
to control for spatial patterns in stated and revealed preferences, such as spatial
autocorrelation. Second, explicitly accounting for spatial dependencies is useful for
policy-making and environmental management, for example by allowing derivation of
detailed spatial maps of WTP.
These reasons spark increasing interest in using location-specific references or
improvement levels of choice attributes, or including location-specific characteristics
as explanatory variables of preferences in discrete choice models, mostly in stated
preference setting (e.g., Campbell et al. 2008; Campbell et al. 2009; Hynes et al.
2010; Johnston et al. 2011). More importantly, however, parametric methods of
accounting for spatial heterogeneity are being developed, which allow for uncovering
spatial patterns that are otherwise difficult to attribute to any characteristic that is
observable and available in the data (e.g., Johnston and Ramachandran, 2014).
The most common parametric way to account for spatial preference heterogeneity in
discrete choice models is to include a two-step procedure, in which the Mixed Logit
(MXL) model is estimated and individual-specific parameter estimates (conditional
on respondents’ choices) are derived; they are then used for spatial analysis, such as
the spatial lag model, the spatial error model, or kriging (e.g., Abildtrup et al. 2013;
Broch et al. 2013a; Yao et al. 2014; Czajkowski et al. 2017). This approach can be
extended to explicitly allow random parameters to follow a spatial lag process. Such
a spatial mixed logit (S-MXL) model is proposed in this study. Finally, the third
approach considered in this study is the geographically weighted multinomial logit
model (GW-MNL; Budziński et al. 2018). This is an extension of the geographically
weighted regression, in which spatial dimension is incorporated using geographical
weights to estimate location-specific models (Fotheringham et al. 1998) of discrete
choice data.
In this study, we provide an overview of the three methods, reviewing their advantages
and limitations, and employ a Monte Carlo simulation to investigate their performance
in the case of spatial preference heterogeneity. We evaluate the models’ performances
in terms of the ability to correctly recover population-, region- and individual-level
preferences and WTP.
Section 2 presents the three methods mentioned above with more detail and
mathematical rigor. Technical details regarding the S-MXL model proposed here
and its estimation are provided in Appendix A. Section 3 describes and justifies the
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data generating process used in the Monte Carlo simulation. Section 4 presents
results in terms of model bias when recovering population-level preferences and
WTP, individual-specific parameters, and region-specific estimates. The last section
concludes.

2 Methods
We use a Monte Carlo simulation to compare three models that may be applied
to discrete choice data with spatial dimension of preference heterogeneity. We
start the description of these models with a standard mixed logit (MXL) model,
and then follow it with a novel extension, a spatial mixed logit (S-MXL) model.
In the last part, we describe a geographically weighted multinomial logit (GW-
MNL) model. The software codes for estimating the models presented here were
developed in Matlab and are available from http://github.com/czaj/DCE under
Creative Commons BY 4.0 license. The simulation data and supplementary materials
are available from http://czaj.org/research/supplementary-materials. We use
maximum likelihood method to estimate MXL and GW-MNL models, whereas S-
MXL is estimated with Bayesian inference. We use a Bayesian techniques to facilitate
estimation, and avoid numerical issues related to spatially correlated random effects.

2.1 Mixed logit model
The theoretical foundation for the discrete choice model is random utility theory,
which assumes that the utility a person derives depends on observed characteristics
and unobserved idiosyncrasies, represented by a stochastic component (McFadden,
1974). As a result, individual i’s utility resulting from choosing alternative j in
choice set t can be expressed as:

Uijt = βiXnon-cost
ijt − αiXcost

ijt + εijt. (1)

In what follows we use NP to denote number of people and NCT to denote number
of choice tasks, namely i ∈ {1, 2, ..., NP} and t ∈ {1, 2, ..., NCT}. In the simulation
that follows we assume NP = 1000, NCT = 6 and number of alternatives equal to
3. In the mixed logit model, it is assumed that each individual i has a separate,
independent set of parameters, βi and αi. Assuming extreme value distribution
for the error component, εijt, leads to a well-known formulation of conditional
likelihood in a multinomial logit form. As individual-specific parameters are not
directly observed, a distribution for them needs to be assumed and integrated. Such
unconditional likelihood can then be used for estimation of parameters describing
the distribution of random effects; for example, their means and variances, which we
denote jointly by a vector of parameters, Ω.
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Estimation of MXL is usually performed using the maximum simulated likelihood
(MSL) method, and this is also the case in the present study. Let denote by
f (αi,βi | Ω) a joint density function of the random parameters in (1). In MSL
method, we take R quasi-random draws from this distribution to approximate a
likelihood function. (For our simulation, we employ R = 10, 000 draws from a
scrambled Sobol sequence (Czajkowski and Budziński, 2015)). Denoting by yijt a
binary variable, which equals 1 if individual i has chosen alternative j in choice
situation t, probability of choosing alternative j, p (yijt = 1 | Xi,Ω, αi,βi), is given by
multinomial logit formula. As random parameters are unobserved, and each individual
is assumed to make NCT choices, likelihood function and its approximation are given
by

Li =
∫ (∏NCT

t=1

∑3

j=1
yijtp(yijt = 1 | Xi,Ω, αi,βi)

)
f (αi,βi | Ω) d (αi,βi) ≈

≈ 1
R

∑R

r=1

∏NCT

t=1

∑3

j=1
yijtp(yijt = 1 | Xi,Ω, αri ,βri ), (2)

where αri , βri denote draws from the assumed distribution. Logarithm of likelihood
function in (2) is then maximized with respect to parameters in Ω.
Throughout the study we assume that individual-specific parameters for non-cost
attributes, βi, follow normal distributions, whereas the individual-specific parameter
for cost, αi, follows a log-normal distribution. Although the individual specific
parameters are not observed by the researcher, it is possible to estimate their values
as implied by each respondents’ choices conditional on the population-level estimates
of parameter distributions (Bayesian posterior means) using the Bayes theorem. We
note, that even though formula (3) employs a Bayes theorem, the model is estimated
with MSL method, and therefore, we treat model parameters, Ω, as non-random,
substituting the values obtained from the estimation procedure. We will focus on
predicting individual-specific marginal WTP with the following formula

E

(
βi
αi
| yi,Xi,Ω

)
=
∫
βi
αi

p (yi | Xi,Ω, αi,βi) f (αi,βi | Ω)
p (yi | Xi,Ω) d (αi,βi) , (3)

where yi is a vector stacking all yijt variables, p(yi | Xi,Ω, αi,βi) is the likelihood
of individual i making the observed choices conditional on the values of random
parameters, and p(yi | Xi,Ω) is the same likelihood but unconditional (random
parameters are integrated out, so it is equal to Li in (2)). As model in (1) has linear
form, marginal WTP is a ratio of parameter for a given attribute and a parameter
for cost (marginal rate of substitution). For more details about this approach and
examples of its applications, refer to Czajkowski et al. (2017), Abildtrup et al. (2013),
Broch et al. (2013b) and Yao et al. (2014).
Note that the MXL model does not assume any spatial dependence in its specification.
Any spatial effect we observe in individual-specific WTP obtained from formula (3)
is due to conditioning on the vector of observed choices, yi.
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2.2 Spatial mixed logit
In this study, we propose a novel extension of the MXL model, which directly
accounts for spatial dependencies in preference heterogeneity. Although S-MXL
follows the same utility specification as described in (1), the difference arises due
to the specification of the distribution of random parameters. In standard MXL, it
is assumed that parameters are independent among individuals; this is not the case
here. In this specification, we follow Smith and LeSage (2004). Let us define random
parameters in S-MXL as

βik = µk + θik, (4)

if the k-th attribute is not a cost (k < K), and as

αi = exp(µK + θiK), (5)

for the cost attribute (k = K). In this model, µk are parameters to estimate (means of
random parameters), whereas θik are normally distributed auxiliary variables, used to
incorporate preference heterogeneity with spatial dependence. Similarly, as in Train
and Sonnier (2005) any distribution that is a transformation of a normal distribution
can be specified here, but in this simulation, we limit ourselves to the most common
specifications of normal and log-normal distributions. Auxiliary variables, θik, are
defined as:

θik = ρk

NP∑
m=1

wimθmk + uik, (6)

where uik ∼ N(0, σk2 ). We assume that uik are independent among individuals and
attributes. The latter assumption is likely to be too restrictive, as it implies that
there is no correlation between different random parameters, and therefore no scale
heterogeneity or correlation of tastes (Train, 2009; Hess and Train, 2017). The model
can be extended to incorporate such correlation, but this is beyond the scope of this
study.
Equation (6) describes a spatial autoregressive process, which can be written in
vectorized form as θ·k = B−1

ρk
u·k, where Bρk

= I − ρkW , and W is a spatial
weight matrix, whose rows sum to 1. Throughout the study, we use the inverse
squared distance as a weight matrix, which is a standard approach in spatial
econometrics. From this it follows that θ·k follows multivariate normal distribution,
namely θ·k ∼ MVN

(
0, σ2

k

(
B′ρk

Bρk

)−1
)
. Note that in this model we assume that

random parameters are spatially auto-correlated, rather than utilities or choices.
Note that in general this model cannot be estimated by MSL. This is because of
the non-zero correlation between choices of all individuals. In MSL, the researcher
would have to calculate the product of conditional probabilities of choices across all
individuals and choice tasks. If the number of individuals is large, such a product
would become effectively equal to 0 due to numerical precision. This issue can be, to
some extent, resolved if the particular specification of W is assumed; for example, k
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nearest neighbors. In this study, to test a more general case, we estimate the model
using Bayesian inference, based on Train and Sonnier (2005) and Smith and LeSage
(2004). The detailed specification of the model and its estimation details are provided
in Appendix A.
Individual-specific estimates of WTP (analogous as in (3)) are easy to obtain from
S-MXL, as we can simply use saved draws from posterior distributions to calculate
them. Let us denote as µnk , µnK , θnik and θniK the n-th draws from the conditional
posterior distribution of µk, µK , θik and θiK , respectively. Then, having R = 10, 000
draws generated with Markov Chain Monte Carlo method (consult Appendix A) for
each of these variables, the mean WTP of individual i for the t-th attribute can be
calculated as

E(WTPik) ≈ 1
R

R∑
n=1

βnik
αni

= 1
R

R∑
n=1

µnk + θnik
exp(µnk + θniK) . (7)

We calculate median WTP analogously.
To our knowledge, this specification of the model has never been used before for any
application aimed at uncovering spatial heterogeneity of preferences.

2.3 Geographically weighted multinomial logit
The geographically weighted multinomial logit model (GW-MNL; Budziński et al.
2018) is an extension of the geographically weighted regression (Fotheringhamet
al. 1998) of discrete choice data, in which the spatial dimension is incorporated
using geographical weights to estimate location-specific models. The rationale of this
approach is that if spatial clusters of preferences do exist, a locally-weighted maximum
likelihood method can be used to account for spatial autocorrelation or other spatial
patterns of preferences and welfare measures. Because this is a semi-parametric
approach, no a priori assumptions about the spatial distribution of preferences are
necessary.
The utility function in GW-MNL is defined analogously as in (1), with the only
difference being that the parameters are now location-specific rather than individual-
specific, and therefore, they are indexed by l. If the number of locations is the same
as the number of individuals, then the two specifications are the same (which is the
case in our simulation).

Uijt = βlXnon-cost
ijt − αlXcost

ijt + εijt. (8)

The assumption that allows for the estimation of GW-MNL is that individuals located
close to each other have more similar preference parameters than individuals located
far away from each other. As a result, the parameters become spatially correlated.
The estimation is conducted by estimating L ‘local’ models, where L is a number
of distinct locations. In the case of our simulation, it will be equal to the number
of individuals, so there will be a separate local model estimated for each individual.
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Each local model is estimated via the weighted maximum likelihood method. The
likelihood of the choices of individual i, assuming the l-th local model, can then be
written as

Lli =
NCT∏
t=1

exp
(
βlXnon-cost

iyitt
− αlXcost

iyitt

)∑
j exp

(
βlXnon-cost

ijt − αlXcost
ijt

) . (9)

The weighted log-likelihood for the l-th model is defined as follows:

WLl =
NP∑
i=1

λ(Lati, Longi, b, l)log
(
Lli
)
, (10)

where λ(Lati, Longi, b, l) is a geographical weight (kernel) that depends on the
latitude and longitude of individual i’s location, b which is called the ‘bandwidth
parameter’ and the location l for which the local model is estimated. (Note that
geographically weighted models normally use projected data, with the location given
as metric coordinates X and Y (easting and northing), to avoid the complex and
computationally time-consuming 3D calculation of geographic distance with the two
angular coordinates (latitude and longitude). Nevertheless, this distinction is not
relevant for current study, as in simulation we assume that each individual is placed
within flat square). There are a few functional forms of λ(·) proposed in the
literature. In what follows, we use the Gaussian kernel (for other possible kernels, see
Fotheringham et al. 2003) defined as:

λ(Lati, Longi, b, l) = exp

(
−0.5(Lati − Latl)2 + (Longi − Longl)2

b2

)
. (11)

This is simply an exponential function of negative half of the squared Euclidean
distance of individual i’s location from location l divided by the square of the
bandwidth parameter. If the individual lives exactly in location l, this weight is
equal to 1. The use of this weight implies the clustering of similar values because
observations near location l have a larger bearing on the local model’s log-likelihood
compared to observations that are further away. The bandwidth parameter therefore
determines what “further away” means. If the bandwidth is low, then practically,
only the observations in very close proximity of the given location influence the local
model. Specifically, when b → 0, each local model is estimated using observations
only from the given location. Analogously, when bandwidth is high, all local models
will have similar parameter estimates, with b → ∞ leading to a simple MNL model
for the whole sample.
In GW-MNL, individual-specific WTP can be calculated simply with marginal WTP
for each local model, i.e. WTPl = βl/αl, and then assigning them to the individuals
who live in those locations.
For more details about this approach and an example of its applications, see Budziński
et al. (2018).
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The main differences between GW-MNL and S-MXL models are that the former
is a semi-parametric approach where the only assumption regarding preference
heterogeneity is that individuals living closer have more similar preferences.
Therefore, GW-MNL can theoretically recover a wide range of preference
distributions, even if they are non-standard ones. On the other hand, preference
heterogeneity in this model is mostly driven by the spatial dimension, and, therefore,
this model is likely to ignore other sources of preference heterogeneity that may occur
in the data. In contrast, the S-MXL model makes a relatively strong assumption about
parametric distribution of the preferences (although assuming normal and log-normal
distribution is a standard in discrete choice modelling literature), but can account
for both spatial and non-spatial sources of heterogeneity. The spatial autocorrelation
equation in (6) is used to obtain a distribution of preferences with spatial dependence(
θ·k ∼MVN

(
0, σ2

k

(
B′ρk

Bρk

)−1
))

.

We do not postulate that there is some causality involved in preference formation, for
example, individuals forming their tastes by observing behavior of other individuals
residing nearby. We use equation (6) to formulate the probabilistic model in which
individuals located closer to each other have higher probability of having similar
preference parameters than individuals located far away from each other. There
may be various reasons for this dependence such as residential sorting, availability of
substitute goods or unobserved covariates which are spatially auto-correlated on their
own. The same reasons are valid for the GW-MNL and the S-MXL model.

3 Simulation setting
Our simulation setting was aimed at recovering individual preferences in the case
of the spatial dependencies in preference heterogeneity. Even though we expect the
S-MXL model to perform best, as it is fully consistent with the data generating
process, this model is relatively more complex and demanding in terms of estimation
time (approximately 1 hour, compared to 1 minute for MXL and 40 minutes for
all GW-MNL models). It is therefore useful to test if the alternative approach
to uncovering spatial patterns (the GW-MNL model) or using individual-specific
estimates from the MXL that ignores spatial dimension perform reasonably well.
The models will be compared using three different measures of performance. First,
we compare the characteristics of the WTP distribution implied by the estimated
models, such as WTP mean and standard deviation. Here, we are not directly
interested in the spatial dimension of preferences, but we rather focus on obtaining
a good description of the WTP distribution in the population. Second, we compare
individual-specific WTP estimates with their true values and calculate mean absolute
percentage error (MAPE). This analysis will allow us to conclude whether individual-
specific estimates can be used for valid inference. Last, we will compare the models’
“regional” predictions based on their individual-specific WTP estimates. Specifically,
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we will divide the simulated area into nine squares of equal sizes, and predict mean
WTP for each of them using our models. Then, we will compare these predictions
with the true mean regional values and calculate absolute percentage errors. This
measure will provide us with information about how useful these methods are when
it comes to using national level samples for more “regional” analysis.
The data generating process assumes the sample of 1, 000 individuals, with each
individual making six choices and each choice consisting of three alternatives.
Simulated data has therefore a panel structure, as is usually the case in stated
preference setting employing the discrete choice experiment method. Alternatives
differ only in terms of two attributes (so K = 2), denoted here as Quality and
Cost, which follow uniform distributions on [0, 2] interval. For each alternative those
attributes take different values, and it is assumed that individuals choose the best
alternative for themselves from three such alternatives at the time. Such a simple
setting leads to only one vector of WTP (one value for each individual), which we will
use to evaluate the performance of the approaches presented in the previous section.
Specifically, the utility function that drives individuals’ choices is given by:

Uijt = βiQualityijt − αiCostijt + εijt. (12)

Quality and Cost attributes are assumed to be observed by the researcher and
therefore they are used in the estimation as the independent variables. On the other
hand, the stochastic term, εijt, follows a standard extreme value distribution, βi
follows a normal distribution, and αi follows a log-normal distribution. The values
of εijt, βi and αi are unobserved by the researcher. In the simulation setting we
assume to know distribution of these parameters. In the real-life case study, these
assumptions would have to additionally be tested. Spatial autocorrelation coefficient
was assumed to be equal to 0.6 for both parameters. We also conducted simulations
in which ρ for the Quality attribute took values 0.2 or 0.9 to analyze different degrees
of spatial autocorrelation. The obtained results were qualitatively the same, although
we generally observed higher errors for all models when spatial dependence was
stronger. These results are available from the authors upon request. The spatial
weight matrix, W , is calculated using an inverse squared distance, with sum of rows
normalized to 1. The values of parameters used in the data generating process are
summarized in Table 1. Having utility function calculated for each individual, choice
and alternative, we then generated the dependent variable, which would take value
of 1 if given alternative had the highest utility in a given choice set, and 0 otherwise.
We assumed the individuals’ locations were distributed uniformly on a 10×10 square.
An example of spatial distribution of WTP is presented in Figure 1. The spatial
dependence is not straightforward to see, as there is still significant variation on the
local level, but Moran’s I statistic is actually equal to 0.67 in this case. Moran I
statistic was calculated using the same spatial weights matrix that was assumed in
the data generating process, namely inverse squared distance. This data generating
process may correspond to a situation where spatial dependence is only one of
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Table 1: True values of parameters used in the Data Generating Process of the Monte
Carlo simulation

µk σ2
k ρk

Quality 3 1 0.6
Cost −1 1 0.6

the factors driving the preference heterogeneity, which is likely to be the case in
a real-world scenario. Nevertheless, significant spatial autocorrelation means that
individuals located near each other are more likely to have similar preferences and
values of WTP.
The simulation uses 100 artificial samples according to the described data generating
process. We then estimate MXL, S-MXL, and GW-MNL models for each sample, with
40 GW-MNL models for each sample (the GW-MNL models differed in the value of
bandwidth parameters, ranging from 0.05 to 2 with 0.05 increases). For GW-MNL,
Lati and Longi were defined as coordinates of locations, as presented in Figure 1. We
note as a reminder that the models are estimated with different procedures; MXL uses
maximum simulated likelihood method with quasi Monte Carlo ‘draws’ (Czajkowski
and Budziński, 2019), S-MXL uses the Bayesian estimation procedure, and GW-MNL
employs a locally-weighted maximum likelihood method.

Table 2: Comparison of selected moments and quantiles of the recovered willingness-
to-pay distribution with their true values implied by the data generating process

Mean Std. Dev 10th 25th 50th 75th 90th
percentile percentile percentile percentile percentile

True 15.4547 31.4383 1.6151 3.4386 7.6339 16.693 33.8052
S-MXL 16.5629

(4.8087)
39.1574
(25.4946)

1.6188
(0.2094)

3.4655
(0.4327)

7.7824
(1.2865)

17.3120
(3.9552)

35.7671
(10.4885)

MXL 16.3096
(4.6023)

30.0706
(14.7791)

1.5780
(0.1964)

3.4112
(0.4141)

7.8236
(1.2556)

17.7638
(3.9752)

37.1703
(10.7712)

GW-MNL (min. AIC) −0.0191
(55.1850)

302.5630
(1617.1076)

2.4358
(0.4508)

3.2610
(0.4026)

4.5097
(0.4681)

6.7887
(0.8828)

11.3977
(2.3929)

GW-MNL (min. MAPE) 4.7185
(1.4703)

9.8760
(26.0672)

2.2433
(3.4068)

3.3625
(1.6781)

4.3330
(1.0085)

5.5394
(0.8548)

7.4295
(1.5778)

4 Results
Table 2 provides the characteristics of WTP, as implied by the data generating process
and the estimated models. Each characteristic is simulated, as the WTP distribution
is non-standard (normal random variable divided by log-normal random variable; in
the case of true values and S-MXL, they are additionally spatially autocorrelated)
with unknown analytic formulas. For each of 100 generated datasets we calculated
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Figure 1: Example of spatial distribution of WTP in the data generating process
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the implied characteristics of WTP for each model. Table 2 reports their means and
standard errors (in brackets).
In the case of GW-MNL, it was not clear which value of bandwidth parameter should
be selected. There are several methods available in the literature, such as the corrected
Akaike information criterion (AIC, Dekker et al. 2014), taking the lowest bandwidth
at which all local models converge (Dekker et al. 2014), a leave-one-individual-
out cross-validation criterion (Fotheringham et al. 2003), or simply “eye-balling”
as suggested by Koster and Koster (2015). We compare the bandwidth chosen based
on the AIC method, with the bandwidth that minimizes MAPE for individual-specific
WTP. The latter should result in the best possible performance of the GW-MNL, as it
is optimized by considering the true values of the parameters. In a real-life situation,
however, it would not be possible to use this method, as true individual-specific WTP
would be unknown.
The results presented in Table 2 show that S-MXL and MXL provide estimates that
are close to each other, and at the same time, close to the true characteristics. The
only difference is in the standard deviation, which S-MXL seems to overestimate.
As percentiles of the distribution are well recovered, and standard deviation is not,
this would imply that there are some outliers within the 100 estimated models. We
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attempted to re-estimate the models that implied values of the standard deviations
of WTP that were too large using different starting values and a greater number of
iterations in Gibbs sampler, but this did not qualitatively change the results. It may
be the case that a more sophisticated Bayesian algorithm needs to be used, such as the
Hamiltonian Monte Carlo (Gelman et al. 2014), or that some other candidate function
could be considered in Metropolis-Hastings algorithm instead of normal distribution.
For example, LeSage (1999) proposes to use t-student distribution. It is also possible,
that the complexity of the model makes it difficult to properly recover the variance
of preferences, as σk and ρk parameters can both influence it.
In the case of GW-MNL, the results depend on the choice of bandwidth parameter. If
the bandwidth is chosen to minimize AIC (on average b = 0.47), means and standard
deviations are highly biased because some local models did not converge, resulting in
unreasonably high or low values of local parameters. On the other hand, estimates of
percentiles are too high for low percentiles, and too low for higher ones. This implies
that GW-MNL cannot provide a proper estimate of the distribution of WTP. This
is likely because this model only considers spatial dimension of data, ignoring any
other possible sources of heterogeneity. When the bandwidth is chosen to minimize
the MAPE of individual-specific WTP (on average b = 1.01), the means and standard
deviations are less biased, but the percentile estimates are similar to the ones from
GW-MNL with the AIC-based bandwidth. In the supplementary materials available
online, we provide the results of a simulation in which preference heterogeneity
depends deterministically on some spatial process (e.g., distance decay). In such
a case GW-MNL works much better and different methods of choosing bandwidth
provide similar results.
In Table 3, we present a summary of the results of the MAPE, calculated by comparing
true individual-specific WTP with individual-specific WTP predicted by the models.
As we have a separate MAPE calculated for each of 100 artificial datasets, we present
a summary, with the mean MAPE value, and the 5th and 95th percentiles of MAPE
values. The cases analyzed here are similar to Table 2, with the exception of S-MXL,
which was divided into two cases. We calculate the posterior mean of individual-
specific WTP, as well as the posterior median of individual-specific WTP, as the
latter seems to have significantly lower error. This is an interesting finding, as the
mean is usually used for inference, while the median is known to be less sensitive to
outliers. Nevertheless, for MXL we calculate only the posterior mean, as the posterior
median is not easily obtainable.
As for the performance of the models, MXL has the highest MAPE on average (535%).
Next are GW-MNL with bandwidth chosen based on AIC (417%) and S-MXL, with
posterior means of WTP (398%). The best performance is provided by the GW-
MNL, where the bandwidth is chosen to minimize the MAPE (149%) and S-MXL
with posterior medians of individual-specific WTP (146%). It should be noted again
that the former could not be chosen in a real-life scenario, as the values of MAPE
could not be calculated. As a result, although GW-MNL can follow S-MXL when it
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comes to the prediction of individual-specific WTP, it remains limited by the lack of
a robust method for choosing a bandwidth parameter. Last, it should be noted that
even for S-MXL, which works best in this setting, an average bias is 146%, which may
be considered significant in real-world applications.

Table 3: Mean absolute percentage error calculated for individual-specific willingness
to pay estimates

Mean Absolute Percentage Error (%)
[90% confidence interval]

S-MXL – posterior mean of WTP 398.0874
[160.29 – 744.49]

S-MXL – posterior median of WTP 145.8917
[88.49 – 284.06]

MXL – posterior mean of WTP 535.2666
[166.38 – 1226.17]

GW-MNL (min. AIC) 417.3288
[113.95 – 1607.45]

GW-MNL (min. MAPE) 148.8819
[98.32 - 243.85]

Table 4: Minimum, Mean and Maximum absolute percentage errors calculated for
region-specific willingness to pay estimates

Minimum Absolute
Percentage Error (%)
[90% confidence interval]

Mean Absolute
Percentage Error (%)
[90% confidence interval]

Maximum Absolute
Percentage Error (%)
[90% confidence interval]

S-MXL – posterior 9.3109 44.0709 110.4981

mean of WTP [0.39 – 37.93] [13.82 – 127.33] [31.65 – 327.31]

S-MXL – posterior 24.1706 42.3833 59.8446

median of WTP [5.48 – 43.58] [26.79 – 55.07] [41.46 – 72.44]

MXL – posterior 31.8365 71.7537 122.3254

mean of WTP [0.41 – 186.43] [13.85 – 266.29] [30.47 – 372.05]

GW-MNL 29.9781 130.9899 658.9347

(min. AIC) [5.77 – 55.33] [52.05 – 170.34] [71.77 – 982.27]

GW-MNL 49.0685 68.6270 88.0015

(min. MAPE) [18.66 – 62.75] [60.08 – 96.86] [69.44 – 161.82]

13 W. Budziński and M. Czajkowski
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In Table 4, we present a summary of absolute percentage errors when comparing mean
WTP across nine “regions” (which we defined simply as nine squares of equal size).
We calculated minimal, mean, and maximal absolute percentage error (across nine
“regions”) for each model and each artificial dataset. To summarize the results, we
once again present mean results, as well as 5th and 95th percentiles.
When comparing MAPE the conclusions from this Table are slightly different from
those in Table 3 – here S-MXL performs best irrespectively whether it uses mean
(44%) or median (42%) posterior WTP. GW-MNL (69%, with bandwidth that
minimizes MAPE from Table 3) and MXL (72%) follow, although we note that
MXL’s MAPE has relatively large interquantile range here. Lastly, GW-MNL with
bandwidth that minimizes AIC (131%) performs worst. When comparing MAPE the
order is the same as for Table 3. It seems that although S-MXL (with posterior mean
of WTP) has low error on average, it may produce much larger error (up to 110%)
for some “regions”. The results for S-MXL (with posterior median) and GW-MNL
(with bandwidth that minimizes MAPE) provide more uniform distribution of errors
across 9 “regions”.

5 Summary and conclusions
In this study, we compared the performance of three models that can be used to
analyze discrete choice data in which preference heterogeneity depends on some
spatial factors, which affect spatially autocorrelated preferences. The models
compared include 1) the traditional MXL model, which does not explicitly assume
any spatial dependence but recovers spatial effects by conditioning individual-specific
WTP on the vector of observed choices, 2) the novel specification for the MXL
model, in which spatial dependence of preference heterogeneity is explicitly accounted
for (S-MXL), and 3) the geographically-weighted (locally estimated) MNL model
(GW-MNL). The comparison was based on the models’ ability to recover true
parameters of the data generating process, as assumed in the simulation.
Our results show that the S-MXL model generally performs best. This should not
come as a surprise, as this is the only currently available model which is specified
consistently with our data generating process, involving both unobserved and
spatially autocorrelated preference heterogeneity. The individual-specific estimates
resulting from the traditional MXL model are conditional on population-level
distributions and observed choices without explicitly allowing for spatial auto-
correlation in random parameters, while the GW-MNL is unable to recover the
non-spatial unobserved preference heterogeneity implied by the data generating
process in our experiment. The model performs well in an idealized situation of no
such source of preference heterogeneity; this is equivalent to the MNL model failure
in the case of, for example, normally distributed preference parameters, as implied
by the common MXL model specification.
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It must be noted here that although in our simulation setting the proposed S-MXL
model shows promising results, further work is needed to confirm its performance in
real-life studies. In particular, we acknowledge two limitations of this model, which
future research could focus on: 1) establishing more efficient algorithms for faster
estimation and better convergence (e.g., other Bayesian estimation techniques, use
of probit instead of logit kernel) and 2) allowing for correlation between random
parameters, which in our opinion could be a significant limiting factor for empirical
applications.
The good news of our experiment is that if the goal of the analysis is to estimate
the overall distribution of WTP in the population, in our simulation setting the
standard MXL model was sufficient. Not accounting for spatial dependencies did not
significantly bias estimates of the mean or some other characteristics of the WTP
distribution (Table 2).
On the contrary, we find that if one is interested in deriving individual-specific or
region-specific estimates of WTP, using a model that accounts for spatial dependencies
may be necessary and the results of commonly used approaches may be misleading.
In our simulation, the MXL and GW-MNL models resulted in substantial bias
of individual-specific (Table 3) and region-specific (Table 4) estimates. Therefore,
researchers should be careful when using a popular two-step method with individual-
specific estimates from MXL as, in this setting, even the correct model (S-MXL) led
to the bias of nearly 150%, on average.
The likely reason the GW-MNLmodel fails in these settings is that although the model
accounts for spatial dimension of heterogeneity, it does not allow for other sources of
(unobserved) preference heterogeneity. (In a real-life situation, one would typically
have several individuals per location (e.g., per ZIP-code area), which would likely
render GW-MNL’s performance even worse). This could be addressed by developing
more advanced models, such as a geographically weighted latent class model, or
geographically weighted mixed logit (GW-MXL) models. The development and
proliferation of these approaches to applied studies would remain limited, however,
until reliable methods for selection of the bandwidth parameter, responsible for
weighting in other nearby locations in geographically weighted models, are found
(Budziński et al., forthcoming).
In Appendix B, we present results from simulation with different data generating
process, where preference heterogeneity is driven solely by a deterministic factor (for
example, a distance decay function). We find that in such a setting the proposed
S-MXL performed rather poorly, and could not provide reliable results. On the other
hand, GW-MNL performed quite well. This indicates that the proposed S-MXL model
is appropriate for settings which lie in between the two extreme cases of no spatial
dependence in preference heterogeneity (as in MXL) and preference heterogeneity
being driven purely by the spatial pattern (as in GW-MNL). As in real-life there can
be multiple factors driving preference heterogeneity (both spatial and non-spatial),
we find it to be more realistic description of preference heterogeneity.
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Overall, our results are encouraging, showing that it is generally possible to mitigate
bias resulting from spatial autocorrelation of individual preferences for environmental
goods. At the same time, we demonstrate that by employing correct parametric
methods to explicitly account for spatial dependencies, it is possible to derive unbiased
individual- and region-specific preference and WTP estimates. We call for the further
development of these methods, however, so that they better fit the real-life situations
that are encountered in many applied studies.
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Appendix

A Econometric specification and estimation of the
spatially autocorrelated mixed logit model

To specify the posterior distribution of this hierarchical Bayes model, we start with
the conditional probability of making an observed choice. If random parameters, βi
and αi, are known, the likelihood of a vector of choices (yi) is given by:

p (yi | Xi,µ,θi·) =
NCT∏
t=1

exp
(
βiXnon-cost

iyitt
− αiXcost

iyitt

)∑
j exp

(
βiXnon-cost

ijt − αiXcost
ijt

) , (13)

where variable yit denotes which alternative individual i has chosen in a choice
situation t. The joint distribution of observed choices, and model parameters is
therefore proportional to:

p
(
yi,µ,θi·,σ

2,ρ | Xi
)
∝ p (yi | Xi,µ,θi·) p

(
θi· | σ2,ρ

)
p
(
µ,σ2,ρ

)
. (14)

We note that conditional distribution of θ was obtained in Section 2.2, namely
θ·k ∼MVN

(
0, σ2

k

(
B′ρk

Bρk

)−1
)
. p
(
µ,σ2,ρ

)
denotes priors of these parameters. We

have chosen standard diffuse priors, analogously as in Smith and LeSage (2004), which
are presented in (15). We assume that a priori each parameter is independent. For
spatial autocorrelation coefficients, ρk, distribution is uniform on interval depending
on minimal and maximal eigenvalues of the W matrix.

p(µk) ∝ exp
(
− 1

2

(
µk

1000
2
))

for k ∈ {1, 2, ...,K},

p
(

1
σ2

k

)
∝ 1

σ2
k

for k ∈ {1, 2, ...,K},

p(ρk) ∝ 1{Eig−1
Min

<ρk<Eig
−1
Max
} for k ∈ {1, 2, ...,K}.

(15)

In the proposed model, only the conditional posterior distribution for σ2
k is a known

distribution, namely 1/σ2
k | q·k, ρk,yi ∼ Γ

(
m
2 , q

′
·kB′ρk

Bρk
q·k
)
, where m is a number

of distinct spatial locations (in our case, equal to the number of respondents). Spatial
autocorrelation has a conditional posterior distribution proportional to

p(ρk | θ·k,yi) = 1{Eig−1
Min

<ρk<Eig
−1
Max
} | Bρk

|
[
θ′·kB′ρk

Bρk
θ·k

m

]−m
2 1
Eig−1

Max − Eig
−1
Min

which does not describe any known distribution. Other parameters have conditional
posterior distributions given as a product of (13) and their prior from (15). As some
conditional posteriors are unknown, the proposed estimation algorithm is a Gibbs
sampler, with four steps in total, where three of them employ the Metropolis-Hastings
algorithm. The estimation process proceeds as follows:
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1. Some initial values of all parameters are assumed: µ0, σ0, ρ0, θ0.

2. For the each individual, we draw the candidate vector of individual-specific
parameters, θi· = θ0

i· + τ1η, where η is a vector of random variables from a
multivariate normal distribution centered around 0, with standard deviations
equal to vector σ0, and τ1 is the tuning parameter, used to assure an acceptance
rate of approximately 0.3. This step has numerous sub-steps equal to the number
of individuals in the sample. For individual l, there is the following procedure:

a. We define θl·k = (θ1
1k, θ

1
2k, ..., θlk, θ

0
l+1k, ..., θ

0
NPk)′, where, for example,

θ1
1k denotes the saved draw for individual 1. Analogously we define
θ−l·k = (θ1

1k, θ
1
2k, ..., θ

0
lk, θ

0
l+1k, ..., θ

0
NPk)′. Then

R =
p
(
yi | Xi, µ

0, θli·
)∏

k f(θl·k)
p
(
yi | Xi, µ0, θl−1

i·
)∏

k f(θl−1
·k )

is compared with a random draw from the uniform distribution, ω.
Specifically, if ω < R we set θ1

lk = θlk for each k, and θ1
lk = θ0

lk

otherwise. In the formula for R f(θl·k) is a pdf function of a multivariate
normal distribution with mean equal to 0, and variance matrix equal to
σ2
k

(
B′ρk

Bρk

)−1.

3. The vector of variances
(
ρ1)2 is drawn from the inverse gamma distribution

conditional on θ1 matrix and ρ0 vector.

4. We draw a candidate vector for means of random parameters, µ = µ0 + τ2η,
where η is a vector of random variables from a multivariate normal distribution
centered around 0, and τ2 is the tuning parameter, used to assure an acceptance
rate of approximately 0.3. Then,

R =
p (yi | Xi,µ,θi·)ϕ

(
µ√
1000

)
p (yi | Xi,µ0,θi·)ϕ

(
µ0
√

1000

)
is compared with a random draw from the uniform distribution, ω, where ϕ(·)
is a density function of a normal distribution. Specifically, if ω < R, we set
µ1 = µ, and µ1 = µ0 otherwise.

5. We draw a candidate vector ρ = ρ0 + τ3η, where η is a vector of random
variables from a multivariate normal distribution centered around 0, and τ3 is
the tuning parameter, used to assure an acceptance rate of approximately 0.3.
If the candidate draw is not from the interval [Eig−1

Min, Eig
−1
Max], we set ρ1 = ρ0.

Otherwise, we compare

R =
∏
k p(ρk | q1

·k,yi)∏
k p(ρ0

k | q1
·k,yi)
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with a random draw from the uniform distribution, ω. Specifically, if ω < R we
set ρ1 = ρ, and ρ1 = ρ0 otherwise.

After all steps, the procedure is repeated but the initial values µ0, σ0, ρ0, θ0 are
replaced by µ1, σ1, ρ1, θ1. We run this process 40,000 times, considering the first
10,000 draws as the “burn-ins” sample, and then taking every third draw of the rest of
the generated draws. In total we obtain 10,000 draws from the posterior distribution
for inferences.
In Figure 2 we illustrate a convergence of the algorithm, for the first sample in the
simulation. First, we plotted draws from the conditional posterior distribution for
each of the 6 coefficients against the number of the algorithm’s iterations. For all
parameters, we observe that draws oscillate around true values of the coefficients
assumed in the data generating process. Next, we employed CUSUM plots. It reveals
that in some cases the algorithm suffers from the autocorrelation of Markov chain.
For example, in the case of µ parameter for cost, it takes long time for the algorithm,
to reverse back to the mean value. Nevertheless, we do not observe consistent drifting
away from the mean on the CUSUM plot (it always reverses back), which indicates
convergence.

B Results of a simulation with a deterministic
spatial heterogeneity of preferences

In this Appendix we provide the results of an analogous simulation as in the main
text, with the difference that now preference heterogeneity is solely driven by a
deterministic spatial process. Specifically, we assume that researcher is trying to value
some public good, for which there are available 4 substitutes in the area of interest.
The distance to those substitutes will be a driver of preference heterogeneity. We
assume that individual-specific parameters are given by βi = −1 + 3 log(Disti) and
αi = 2

√
Disti, where Disti is a distance to the nearest substitute for individual i. In

Figure 3 we present a distribution of WTP implied by these parameters, for substitutes
located at points (−4,−4), (3, 2), (−4.5, 3) and (1,−3). This distribution follows an
intuitive dependence, that individuals living further away from the substitutes are
willing to pay more for a public good. The difference with respect to Figure 1 is that
now, the dependence is deterministic. The question we investigate with such data
generating process is whether proposed models can recover such spatial process, if,
e.g., substitutes are unknown or we cannot control for them for some reason.
Below we present 3 tables analogous to tables 2, 3 and 4 from the main text. In this
comparison we do not include S-MXL model as we obtained very strange results
with this data generating process, with implied WTP distribution characteristics
sometimes more than 100 times larger than the true values. We believe that this
is because for such data generating process spatial autocorrelation parameter, ρk,
is equal to 1, which is its upper boundary. We think that this may cause some
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Figure 2: Example of convergence of the Gibbs sampler, for the first simulated dataset
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identification issues, which could possibly be resolved with development of spatial
autoregressive process of second order. We decided to not pursue this path, as to the
best of our knowledge, such processes are not really analyzed in spatial econometrics,
as they do not arise very often in practice. Nevertheless, we note that if researcher
suspects similar process of preference heterogeneity in his study, S-MXL may not be
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Figure 3: Example of spatial distribution of WTP in the deterministic data generating
process
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an appropriate approach.
We report three interesting findings based on Tables 5, 6 and 7. First, in all
Tables GW-MNL significantly outperforms MXL. This is different from the main
text, where in some cases MXL outperformed GW-MNL (especially with wrongly
chosen bandwidth parameter). Second, in here the method of choosing bandwidth
matters less. Indeed, whether we minimize AIC or MAPE, we obtain quite similar
results, as on average the optimal bandwidth was 0.45 for the former, and 0.59 for
the latter, so the difference is much smaller than in the main text. Lastly, as can
be seen in Table A1, although GW-MNL recovers percentiles of WTP distribution
well, the mean and standard deviation are still off, therefore we recommend using
characteristics such as median, when using GW-MNL for inference.
The results reported in this Appendix indicate that GW-MNL is much better suited
for analysis of data generating processes as presented in Figure 3, rather than the one
as in Figure 1 in the main text.
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Table 5: Comparison of selected moments and quantiles of the recovered willingness-
to-pay distribution with their true values implied by the data generating process

Mean Std. Dev 10th 25th 50th 75th 90th
percentile percentile percentile percentile percentile

True 0.1221 1.1546 −0.6342 0.1046 0.4717 0.6526 0.7407
MXL 0.3515

(0.0198)
0.6889
(0.0327)

−0.4614
(0.0317)

−0.0804
(0.0215)

0.3218
(0.0182)

0.7539
(0.0250)

1.2055
(0.0460)

GW-MNL (min. AIC) 0.2125
(0.0212)

0.6631
(0.0455)

−0.6646
(0.0528)

0.0711
(0.0302)

0.4342
(0.0208)

0.6287
(0.0210)

0.7418
(0.0279)

GW-MNL (min. MAPE) 0.2308
(0.0240)

0.5657
(0.0747)

−0.5729
(0.0694)

0.0587
(0.0272)

0.4154
(0.0237)

0.6126
(0.0223)

0.7190
(0.0280)

Table 6: Mean absolute percentage error calculated for individual-specific willingness
to pay estimates

Mean Absolute Percentage Error (%)
[90% confidence interval]

MXL – posterior mean of WTP 185.2022
[156.21 – 223.35]

GW-MNL (min. AIC) 49.0520
[39.99 – 58.51]

GW-MNL (min. MAPE) 46.1726
[38.86 – 55.00]

Table 7: Minimum, Mean and Maximum absolute percentage errors calculated for
region-specific willingness to pay estimates

Minimum Absolute
Percentage Error (%)
[90% confidence interval]

Mean Absolute
Percentage Error (%)
[90% confidence interval]

Maximum Absolute
Percentage Error (%)
[90% confidence interval]

MXL – posterior 9.6101 63.3339 145.9910

mean of WTP [0.57 – 20.28] [53.71 – 71.94] [119.23 – 173.70]

GW-MNL 1.7086 34.3477 94.9462

(min. AIC) [0.16 – 4.65] [26.84 – 40.62] [68.29 – 129.28]

GW-MNL 2.1241 42.1818 114.5984

(min. MAPE) [0.13 – 5.72] [30.17 – 51.70] [84.91 – 150.12]
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