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Abstract: In this paper, we proposed amodifiedmeta-heuristic algorithm based on the blind
naked mole-rat (BNMR) algorithm to solve the multiple standard benchmark problems.
We then apply the proposed algorithm to solve an engineering inverse problem in the
electromagnetic field to validate the results. The main objective is to modify the BNMR
algorithm by employing two different types of distribution processes to improve the search
strategy. Furthermore, we proposed an improvement scheme for the objective function and
we have changed some parameters in the implementation of the BNMR algorithm. The
performance of the BNMR algorithm was improved by introducing several new parameters
to find the better target resources in the implementation of a modified BNMR algorithm.
The results demonstrate that the changed candidate solutions fall into the neighborhood of
the real solution. The results show the superiority of the propose method over other methods
in solving various mathematical and electromagnetic problems.
Key words: electromagnetic design problems, global optimization, meta-heuristic algo-
rithm

1. Introduction

The meta-heuristic algorithms are fitting apparatuses for tackling complex engineering prob-
lems. Due to their applications in the field of engineering, numerous researches have been
conducted to develop meta-heuristic algorithms. Meta-heuristic algorithms have a fast conver-
gence rate and have been utilized to overcome the disadvantages of traditional techniques in the
comprehensive pursuit of the best arrangement in an issue space for the dominant part of subjects.
Having the option to escape effectively from local optima and dodge untimely intermingling
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by utilizing a heuristic system, they can accomplish ideal arrangements in a short time. Meta-
heuristic algorithms are especially useful when managing enormous scope and obliged issues,
and are considered as a compelling answer for an assortment of enhancement issues.

Recently, various researches studied meta-heuristic and haphazardly techniques in the elec-
tromagnetic field on the grounds that deterministic strategies neglect to locate the global optimal.
Note that deterministic algorithms were well known before. In clear strategies, problems and
vulnerabilities in the plan of an engineering issue are regularly unavoidable. Consequently, re-
search has been led to create meta-heuristic strategies and to advance the speed of convergence
rate by utilizing various parameters and administrators. Due to the type of issues in the field
of electromagnetism, there is no global enhancer that can tackle all the problems. Hence, it
is important to investigate and build up other global enhancements for electromagnetic design
problems.

Optimization of Loney’s solenoid benchmark is a complicated issue in electromagnetic in
which meta-heuristic algorithms can be all around applied [1]. The modeling difficulties incorpo-
rate the suspicions utilized in the electromagnetic frameworks and their advancement by boosting
or limiting the planned boundary. In this manner, the capacity to optimize the Loney’s solenoid
benchmark expands the demonstrating exactness of designing gadgets in the electromagnetic
field.

Alotto and Coelho [2] utilized an optimization algorithm, Nelder-Mead simplex technique,
with focusing on local search. The researchers focused on opt-aiNet and opt-aiNet-NM draws
near, and tackled the electromagnetic optimization benchmark issue. As of lately, the gravitation
search algorithm (GSA) is presented as a novel optimization method [3]. The GSA has a few
impediments, for instance, the reliance of the fitness function on themass of the active ingredients.
To tackle this problem, the authors presented an adjusted procedure. The modified algorithm was
contrasted with different strategies in solving of the electromagnetic backwards issue.

Duca et al. [4] introduced an altered ant colony optimization algorithm dependent on the
abilities of ant-like factors. In another research, a new methodology focused on accomplishing
a superior compromise among misuse and investigation periods of the inquiry is characterized.
Despite the fact that GABC optimization technique provided good outcomes, the execution of the
GABC advancement algorithm is complicated [5].

The quantum particle swarm optimization (QPSO) algorithm [6] is a meta-heuristic algorithm
that is developed based on the original PSO algorithm and quantum hypothesis idea. Duca et
al. [6] presented another mutation methodology and added to the principle best arrangement.
The QPSO algorithm accomplished exact outcomes. Nonetheless, further examination indicated
that the algorithm experiences a few drawbacks, for example, the probability of getting caught in
a local optimum [6].

Using the PSO algorithm, Griuprina et al. [8] utilized a methodology with key parameters
contrasted with the past techniques and revealed reasonable outcomes. Santos Coelho [7] utilized
this mutation procedure and acquainted another heading factor to improve the global search
instrument [7]. In this strategy, distinctive neighboring techniques, for example, randommean and
the Gaussian attractor are utilized. Utilizing the GQPSO algorithm [7], the authors accomplished
an arrangement contrasted with the other PSO-based algorithms. However, one of the downsides
of the QPSO technique is the untimely combination. To upgrade the global search to locate
a global ideal arrangement and forestall untimely convergence in the QPSO technique, Rehman
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et al. [9] proposed a mutation methodology for the mean best position and advancement of
powerful factors. The creators demonstrated that the MQPSO strategy beats the QPSO algorithm.
In the MQPSO method, Rehman et al. acquainted a few parameters with update of the recently
presented mutation procedure. The goal was to find some kind of harmony in the compromise
among investigation and abuse phases of the search process [9].

We consider the optimization of Loney’s solenoid benchmark in the modified blind, naked
mole-rat algorithm that we call the MBNMR algorithm. We modify the BNMR algorithm by
employing two different types of distribution processes to improve the search strategy. Also, we
added an improvement scheme for the objective function and we have changed some parameters
in the implementation of the BNMR algorithm. The performance of the BNMR algorithm was
improved by introducing several new parameters to find the better target resources in the imple-
mentation of the Modified BNMR algorithm. With these changed the candidate solutions will fall
into the neighborhood of the real solution. The outcomes acquired were prevalent in examination
with those of different techniques. The MBNMR algorithm was effectively utilized in the plan
of an electromagnetic device, as upheld by the test results. The proposed strategy extensively
diminishes the deviation in the ideal solutions.

2. Modified blind naked mole-rat algorithm

The blind naked mole-rat (BNMR) algorithm is a bio-inspired meta-heuristic algorithm that
is built based on the social behavior of blind naked mole-rats in large colonies. In the BNMR
algorithm [10–12], the search process starts from the center of the colony, where the queen and
the offspring reside. In the modified version of the BNMR algorithm, the search process by the
worker and the soldier moles are handled separately.

At the beginning, the initial population of the blind naked mole-rat colony is produced and
starts the random search of the entire problem space. The size of the initial population is twice
the number of food sources. Note that each food source is considered as a potential solution in
the problem space.

In the modified version, in order to produce a candidate food position in the memory of each
mole-rat, the following was defined:

xi = xMinimum
i + β

(
xMaximum
i − xMinimum

i

)
i = 1, . . . , S

, (1)

where: xi is the i-th food source, β is the random variable within the [0, 1] interval, and S is the
total number of food sources. The function (F (xi)) can be defined as follows:

F (xi), xi ∈ RD

i = 1, . . . , S
, (2)

where xi is the D-dimensional vector. Therefore, the food sources, i.e. solutions, are the targets
of the search process and must be found by the worker moles. This includes finding the location
of the food sources and their neighbors, determining its richness, evacuating the food source,
and storing it in the pantry. Thus, the random movement of worker moles from the center of the
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colony towards the food sources and their neighbors begins. At the same time, the worker moles
are responsible for digging the tunnels while searching for the food sources. In every iteration,
each worker mole tries to update its practicable food source location, i.e. a solution using a local
search process.

The update process is used to simplify the process of finding the food source in a neighborhood
and determine the unexplored regions as some regions might be overlooked due to the randomness
of the search process within the problem space. The update process significantly increases the
convergence speed of the algorithm. The following equations are used to update the regions and
search for food sources in a neighborhood.

Ni =



xi + µ [xi − xk] if Q < 0.5
xi Otherwise

,

i = {1, 2, . . . , k, . . . , S} i , k
(3)

where µ is the random integer in [–1, 1]. Herein, S is the number of food sources, and Q is the
integer in [0, 1], which reflects the neighborhood’s distance from the food sources. Q is usually
between 0.5 to 1. Note that i and k are slightly different. The difference is problem-dependent
and might change according to the optimization problem.

Once the food sources are found by the worker moles, their locations and access routes are
shared with the other members of the colony and the queen. The queen then sorts the obtained
food sources in a table by their fitness value in descending order. The fitness value of a food source
is determined by both its original quality and the shortest path from the center of the colony to
its location. Furthermore, the queen selects the food sources based on the probability P, which is
computed using the following equation:

Pi =
Fitnessi = FSi × Ri

N∑
j=1

Fitnessj

. (4)

The Fitness is evaluated by the soldier moles. FSi reflects the richness of the food source
and, Ri is related to the shortest path to the food source. N is the total number of food sources.
From Eq. (4), we can find better solutions. For more accuracy, we have to consider the velocity
and position of agents in the D-dimensional problem space. In order to reach this target, we have
controlled these two parameters by the following equations:

XD
i (t + 1) = XD

i + v
D
i (t + 1),

VD
i (t + 1) = Ri · v

D
i (t) + qD

i (t) ·
(
1 −

t
I

)q
,

i = 1, . . . , N,

(5)

where X is the position and V is the velocity of a mole. q is the constant and the best value of
it is 0.07, D is the dimension of the problem space, and Ri is the random variable in [0, 1] with
uniform distribution. I is the constant, and t indicates the iteration in each step of the process.

The first food source representing the highest probability, is selected by the queen. There-
after, two worker moles carrying the information of the food source are selected to perform
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the recruitment process and move toward the food source. Once they reach the food source,
one of these two workers randomly select some of the soldiers to collect the food. The other
worker selects and leads another group of soldiers to search the neighborhood for more food
sources. Collecting the food from the sources and searching the neighboring regions for new food
sources at the same time would significantly reduce the required time for reaching an optimal
solution, which consequently increases the convergence rate. This process would be repeated for
all food sources and their neighborhoods until there is no food source left, i.e. the optimal solution
is found.

The next part of the algorithm is concerned with defending the colony and stopping the
invaders that are trying to enter the tunnels. In the proposed algorithm, in each iteration, the
points with low fitness values are considered as invaders and are eliminated from the optimization
process. In other words, they are no longer considered as members of the population involved
in the optimization process. The number of eliminated points in each iteration is a factor of its
counterpart in the previous iteration, and is determined by the following equation:

Bt
i = ζ × Bt−1

i , (6)

where ζ is equal or larger than 1 and is the problem-dependent constant determined by the
designer. Bt

i is the number of eliminated points for the i-th food source in iteration t. In each
iteration, the eliminated points are replaced with new points that are randomly selected in the
entire problem space.

Using this idea, we can inject mutation processes into the proposed algorithm. Therefore, the
new members with their new information prevent the algorithm from being trapped in a local
minimum.

We employed two types of population distribution to cover the entire problem space; a uniform
distribution and a beta distribution which uses a fraction of the initial population. Thus, the entire
problem space is searched and the chance of being trapped in a local maximum is reduced. Even in
the case that the algorithm is trapped in a local maximum, the newmembers of the colony without
prior knowledge about the problem space might change the course of optimization from diverging
to a local maximum, or the search path might change at the regions of the beta distribution.

Furthermore, we developed the proposed algorithm in case of maximization problems, the
best and worst solutions are given as follows:

Xbest = Maximumj

{
Fitnessj (t)

}

Xworst = Minimumj

{
Fitnessj (t)

}

j = 1, . . . , N

, (7)

while in minimization problems, the best and worst solutions are given by Equation (8):

Xbest = Minimumj

{
Fitnessj (t)

}

Xworst = Maximumj

{
Fitnessj (t)

}

j = 1, . . . , N

. (8)
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3. Numerical validation

3.1. Mathematical test

In order to measure the potential and reliability of the MBNMR algorithm and assess the
performance against other algorithms, solving different standard benchmark issues is the best
methodology. Accordingly, to investigate the abilities of the MBNMR algorithm and compare it
with the other optimization algorithms, the best option is to use the algorithms to solve benchmark
functions with various degrees of complexity [16].

In order to evaluated the performance of the algorithm, the dimensionality of the benchmark
functions should be suitably high, and various characteristics such as modality, separability, and
differentiability must be considered. For example, modality characteristic refers to the number
of ambiguous extremes of the functions, which has a negative impact on the search process of
the meta-heuristic algorithms, and the modality of separability refers to the complexity of the
benchmark functions. These characteristics are intensified as the dimensionality of the benchmark
functions increases. Selecting and solving a set of benchmark functions is an appropriate approach
to evaluate the performance of meta-heuristic algorithms.

We present the accompanying benchmark functions because of their intricacy to accomplish
ideal focuses. The four standard benchmark functions are exhibited in Table 1 [13], and the control
parameters of the apparent multitude of all the algorithms are summarized as follows:

GABC; the population size equals 100, the number of sites selected for neighborhood search
equals 15, the number of bees recruited for best sites equals 10, ρ = 0.3, the number of iterations
equals 2 000;

QPSO; the population size equals 100, α = 1.0, φ1 = 1.0, φ2 = 1.5,ωmin = 0.7,ωmax = 0.97,
the number of iterations equals 2 000;

GQPSO; the population size equals 100, α = 1.0, φ1 = 0.9, φ2 = 1.6, ωmin = 0.7,
ωmax = 0.97, the number of iterations equals 2 000;

MQPSO; the population size equals 100, α = 0.5, β = 0.5, φ = 0.9, ωmin = 0.56,
ωmax = 0.98, the number of iterations equals 2 000;

ACOR; the population size equals 100, ξ = 0.86, q = 1E − 4, ω = 0.5, the number of
iterations equals 2 000;

IGSA; the population size equals 100, α = 0.5, β = 0.5, the number of iterations equals 2 000,
MBNMR; the population size equals 100, Q = 0.5 and 0.9, α = 0.5, β = 0.5, γ = 0.5, the

number of iterations equals 2 000.
In experimental studies, each algorithm was run 30 times, i.e. 30 independent runs, to make

sure the final solutions are reliable. A population size of 100 was considered with a dimension
of 50. The number of iterations to reach the stop criterion was set to 2 000. It must be noted that
the minimum value is zero for all objective functions. Table 1 presents the final results of the
algorithms in terms of mean and variance after 30 runs of each algorithm. Figure 1 compares the
convergence rate of the employed algorithms for each function. The initial population size was
set to 30, 50, 80, and 100. The optimal solutions were obtained in a short period by testing and
repeating the algorithm independently. Therefore, a population of 100 was used for all algorithms.

As evident from Table 2, the MBNMR algorithm offers better performance than the other
methods listed in the table with the standard benchmark functions f1(x), f2(x), f3(x), and f4(x).
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Table 1. The list of four standard benchmark functions

Formulation Global optimum

f1(x) = −a exp *.
,
−b

√
1
n

n∑
m=1

x2
m
+/
-
− exp *.

,

1
n

n∑
m=1

cos (c · xm)+/
-
+ a + fbias,

x ∈ [−32, 32]n, a = 20, b = 0.2, c = 2π, fbias = 1,

0

f2(x) =
n∑

m=1

(
100 ·

(
Sm+1 − S2

m

)2
+ (Sm − 1)2

)
+ fbias,

S = x − o + 1, fbias = −390, x ∈ [−100, 100]n,
0

f3(x) =
1

4000

n∑
m=1

S2
m −

n∏
m=1

cos
(

Sm
√

m

)
+ 1 + fbias,

S = x − o, fbias = 450, x ∈ [−100, 100]n,
0

f4(x) =
n∑

m=1

*.
,

m∏
j=1

s j
+/
-

2

+ fbias,

S = x − o, fbias = −450, x ∈ [−100, 100]n .

0

Fig. 1. Convergence rate comparison of different optimal algorithms for solving f1(x), f2(x), f3(x), and
f4(x) functions
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The MBNMR algorithm provides a reliable convergence rate to reach the optimum solution.
According to Figure 1, the MBNMR algorithm shows a better performance compared to the other
methods in terms of convergence rate to the best optimal solution.

Table 2. Mean and variance of different methods for 50 dimensional problems

Methods f1(x) f2(x) f3(x) f4(x)

GABC
Mean 3.77E – 15 4.77E + 3 1.79E + 2 1.35E – 1

Variance 1.87E – 21 2.38E + 2 6.04E +1 1.99E – 2

QPSO
Mean 3.84E – 15 1.22E + 4 2.11E + 1 3.27E – 1

Variance 2.67E – 21 0.77E + 2 7.55E – 1 2.78E – 2

GQPSO
Mean 9.32E – 14 6.34E + 1 5.17E – 1 5.66E – 4

Variance 1.66E – 22 2.18E – 1 4.36E – 2 9.02E – 5

MQPSO
Mean 2.18E – 19 2.44E – 4 7.28E – 5 8.22E – 7

Variance 5.72E – 31 7.16E – 6 1.22E – 6 4.67E – 10

ACOR
Mean 3.67E – 19 1.88E – 1 4.22E – 1 4.62E – 6

Variance 2.16E – 23 5.62E – 2 3.66E – 2 2.88E – 8

IGSA
Mean 2.14E – 19 9.03E – 4 7.26E – 3 1.18E – 6

Variance 0.55E – 25 3.06E – 5 0.79E – 4 2.94E – 9

MBNMR
Mean 1.89E – 22 2.77E – 6 6.44E – 8 3.08E – 11

Variance 1.35E – 35 3.66E – 9 2.34E – 9 1.09E – 16

Using the considered benchmark functions, the proposed method was compared to the other
methods, namely the modified quantum particle swarm optimization (MQPSO) [9], Gaussian-
quantumparticle swarmoptimization (GQPSO) [7], quantumparticle swarmoptimization (QPSO),
Gaussian artificial bee colony (GABC) algorithm [8], improved gravitational search algorithm
(IGSA) [3], and ACOR [4] algorithms.

A population size of 100 and dimension 50 was used, and the stop criterion was set to 2 000
iterations in each algorithm. To confirm the final solutions, each algorithmwas run 5 times for each
selected function, and the result was approved once significant inconsistencies were observed.

We compared the outcomes of the MBNMR algorithm to the other employed algorithms by
using the number of objective function calls. The comparison results are presented in Table 5.

3.2. Numerical application

We employed the MBNMR algorithm to solve the engineering inverse problems in electro-
magnetism in order to validate its results.
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3.3. Loney’s solenoid benchmark problem

Specifying the location and volume of two correcting coils is important in Loney’s solenoid
design. The coils create magnetic flux with uniform distribution in the solenoid. Figure 2 shows
the top half-plane of the axial cross-section of Loney’s solenoid [2, 5, 8, 9, 14, 15].

Fig. 2. Axial cross section of Loney’s solenoid

In this study, the objective is to determine the distance between the two coils and their lengths
with other parameters known. The magnetic flux density (B) must remain uniform in [−z0, z0].

The two coils (s) and their lengths (l) are bounded to [0, 0.2] and are determined in all other
dimensions (the location s and length l of the two correcting coils are unknown) [14].

The field can be calculated along the axis by analytical integration or finite-element methods.
However, for comparison, each coil was presented in coaxial current sheets similar to other studies.
Accordingly, the original problem can be solved through the following minimization problem:

min F (s, l), (9)

where F is the objective function and is defined as follows:

F =
BMaximum − BMinimum

B0
. (10)

There BMaximum and BMinimum denote the maximum and minimum values of magnetic flux
densities and fall in a range of [−z0, z0], and B0 is the flux density at the center of the solenoid
(z = 0). The function F is a non-analytic, ill-conditioned, function with a gorge behavior [12],
because of BMaximum, BMinimum, B0, and the positions of BMaximum and BMinimum belong in the
[−z0, z0] range and are functions of s and l.

The objective function is highly noisy, as the field is calculated by representing coils as four
sheets (each coil is divided into four current sheets in the radial direction [12]), BMaximum and
BMinimum are evaluated at ten points at regular intervals in [−z0, 0].

The local minima are determined in three areas in the domain of F, namely F > 4 × 10−8

(high-level area, HL), 3× 10−8 < F < 4× 10−8 (low-level area, LL), and F < 3× 10−8 (very-low
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level area, VL). The very-low level region is an oval area in the thin low-level valley. In VL and
LL regions, any minute variation in parameters can lead to variations several times the magnitude
of the objective function.

It is noted that the tuning process is time-consuming if a meta-heuristic algorithm has a large
number of parameters, and especially when these parameters are optimized one by one regardless
of their interactions. In general, the effectiveness of a meta-heuristic algorithm heavily depends on
parameters and interactions among them. Therefore, we conducted parameter tuning for finding
the optimal values before running the proposed algorithm. For the problems in this study the
selected parameter values of the MBNMR algorithm are not necessarily needed to be optimal
as the parameter tuning is performed by a self-adaptive approach. The self-adaptive approach
demonstrates the highest degree of reliance on our MBNMR algorithm itself in sitting the
parameters. Therefore, it is concluded that the self-adaptive approach is the optimal approach for
tuning parameters of the proposed algorithm. Herein, Q, α, β, and γ are used as the initial values
at the beginning of the tuning process and updated dynamically.

4. Discussion

This study analyzes the performance of the proposed algorithm with several algorithms in the
electromagnetic field for the inverse issue. The explanation behind choosing these algorithms are
quickly referenced beneath.

The GABC algorithm has a superior performance compared with SOMA, TRIBES based on
the PSO algorithm [5]. The QPSO algorithm has a superior performance compared with BPSO,
IPSO, GPSO, and MPSO algorithms [7]. The MQPSO algorithm has indicated good outcomes
compared to the LIQPSO, QPSO, GQPSO, PSO, DE2, ARDGDE2, and QPSO algorithms [9].
The IGSA algorithm has been compared against the GABC, TRIBES (PSO), QPSO, IPSO,
ACOR, and SGSA algorithms and has gained incredible results [2].

The MBNMR algorithm is compared with different optimization algorithms such as, GABC,
NSGA-II, QPSO,GQPSO,MQPSO,ACOR, and IGSA that have previously been applied to global
optimization and the electromagnetic design problems. A population size of 100 andmeasurement
of 50 was utilized. The stopping criteria was set to 2 000 iterations in every algorithm. To confirm
the final solution, every algorithm was run five times for each chosen function and the outcomes
were endorsed once, no huge irregularities were watched.

The convergence rate performance of MBNMR, GABC, QPSO, GQPSO, MQPSO, ACOR,
and IGSA algorithms, as far as the mean best values of objective function assessment numbers,
is shown in Figure 1. The outcomes show the better convergence performance of the MBNMR
algorithm for every one of the four functions. The convergence speed of the MBNMR algorithm
is sturdier when compared with different algorithms. The GABC algorithm has the lowest con-
vergence rate when compared with the other applied strategies. The QPSO, GQPSO, ACOR, and
IGSA algorithms are not reliable for the comprehending four standard benchmark functions and
experience issues arriving at the local optimal focuses.

Every convergence chart is separated into four sections, based on the assessment axis, so as
to additionally assess the advancement characteristics of the algorithms. For the first section, the
convergence rate and enhancement for the mean best value for the each of the four benchmark
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functions are altogether better for the MBNMR algorithm. For the second, third, and fourth
sections, mean best value of the objective function diminishes gradually comparing with first
section.

As indicated by Figure 1, the acquired outcomes by the MBNMR algorithm are more reliable.
The convergence rate is higher than the number of iterations in the MBNMR algorithm and it
is a productive algorithm regarding less multifaceted complexity, a better convergence rate and
arriving at the optimal point in a less ideal opportunity to illuminate standard benchmark functions
than the MQPSO algorithm. The execution of the MQPSO is more intricate that the MBNMR
algorithm, which makes the MQPSO algorithm less ideal for different applications with respect
to complex engineering issues, more parameters should be characterized. The outcomes indicate
that the MBNMR algorithm outperforms the wide range of various algorithms of all benchmark
functions and give better performance. The GABC, QPSO, GQPSO, MQPSO, ACOR, and IGSA
techniques need at any rate three or five times more function assessments than the proposed
algorithm to arrive at nearly the comparable mean best qualities.

According to Table 2, the MBNMR algorithm has fewer mean and variance values than those
from the GABC, QPSO, GQPSO, ACOR, and IGSA algorithms. The proposed algorithm has
arrived at a satisfactory average and a superior variance compared to the MQPSO algorithm,
indicating the quality of the MBNMR algorithm.

Table 3 shows the best optimal response to the Loney’s solenoid problem in 30 separate
implementations for every algorithm. The outcomes show the MBNMR algorithm has the best
performance comparing to the other techniques.

Table 3. Best optimal solution for Loney’s solenoid in 30 runs

Method Separation s (cm) Length l (cm) F(s,l) × 10−10

GABC 14.35627 7.66728 0.8837

QPSO 14.88454 9.00373 0.4468

GQPSO 12.99673 9.76255 0.8842

MQPSO 12.00256 4.67726 0.3247

ACOR 14.11183 8.56278 0.9904

IGSA 11.05688 3.99772 0.1467

MBNMR 9.167277 3.02265 0.1007

The evolutionary algorithms are usually employed to minimize the objective functions during
the search for the optimal solution. The optimization process becomesmore complex by increasing
the dimension of the problem. This is especially true for the optimization technique with a large
number of input parameters. TheMBNMR algorithm has less parameter than the other algorithms
in this study.

Table 4 presents the maximum, the mean, and the minimum (best) values of F (s, l) × 10−8

for the all algorithms. The outcomes show that the MBNMR algorithm has the best performance
when compared to the other techniques. The MBNMR algorithm accomplished the best standard
deviation with the lowest number of iterations and the minimum number of objective function
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calls shown in Table 5 in comparison to all benchmark problems, as the algorithm has less
unpredictability then the other utilized techniques.

Table 4. Comparing the maximum, mean, and minimum values of F (s, l)×10−8, standard deviation, number
of iterations and CPU time of all the employed optimization methods

Method
maximum

mean
minimum Standard Number of CPU Time

(worst) (best) Deviation iterations in seconds

GABC 4.26786 3.55748 2.67535 0.08667 1867 5.673

QPSO 3.98534 3.42773 2.60044 0.02574 1642 5.832

GQPSO 3.67525 3.22557 2.45627 0.06643 1702 4.672

MQPSO 1.58662 1.24566 0.90672 0.00198 1297 3.349

ACOR 1.78638 1.43779 1.25663 0.04552 1378 8.877

IGSA 1.96525 1.52837 1.10067 0.03743 1637 9.455

MBNMR 1.13388 0.89443 0.62765 0.00011 998 0.658

Table 5. Comparing the number of objective function calls of all the employed optimization methods with
two dimensions (D = 30, 50)

Method f1(x) f2(x) f3(x) f4(x)

GABC
D = 30 247108 193672 207405 189637

D = 50 388290 344728 329993 302891

QPSO
D = 30 217004 189722 211008 181002

D = 50 349777 307839 344882 289017

GQPSO
D = 30 215884 179728 199564 159627

D = 50 364557 298019 277543 245992

MQPSO
D = 30 103670 98473 127996 89637

D = 50 214894 170728 192647 146827

ACOR
D = 30 178452 166029 182546 164827

D = 50 288023 302763 266537 248628

IGSA
D = 30 188435 188792 189360 157526

D = 50 279667 309828 270537 224627

MBNMR
D = 30 58910 76928 57910 51892

D = 50 86784 101738 84927 81720

It is noted that parameter tuning is a complex process for all the optimization algorithms, but
the MBNMR algorithm has fewer parameters to tuned. So, in the meta-heuristic algorithms a few
objective function calls are needed, so that the proposed algorithm was satisfied. This is clearly
seen in Table 5.
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It is apparent in the structure of Figure 1, and Tables 2 to 4 that the adjustments looking like
the objective assets and the kind of distribution that improved the performance of the MBNMR
algorithm to accomplish adequate outcomes, are quicker than different techniques.

We aimed to eliminate unnecessary calls to the objective function to decrease the compu-
tational costs. The comparison results between the MBNMR algorithm and the other algorithm
shown in Table 5, that indicate the superior performance of the proposed algorithm for solving
four different benchmark functions, and electromagnetic inverse problems used in numerical
experiments.

We conclude that the MBNMR algorithm has the best performance and the best character-
istics of the last arrangements in solving mathematical and electromagnetic inverse problems,
comparing to the different algorithms introduced in this study.

5. Conclusion

The modified blind, naked mole-rat algorithm is proposed for solving electromagnetic design
issues. We focused on numerical optimization issues to confirm the performance and abilities
of the MBNMR algorithm. We utilized the MBNMR algorithm to illuminate the progression of
standard benchmark functionswith differentmodality, separability, and differentiability properties
to assess the nature of global search (in the numerical examination, the maxima and minima of
a function), just as the performance at the local limits and local optima. Assessing the reproduction
results and measurable examination, the MBNMR algorithm shows the unrivaled presentation
with respect to the convergence rate and speed, just as, the capacity to accomplish the best global
search process when compared to the other utilized algorithms. The proposed algorithm can
possibly reach far higher convergence rates and speeds. In any case, the other algorithms miss the
global optimum point.

The MBNM algorithm requires less computation time, which makes the method suitable for
multi-objective optimization in industrial design problems. Future works may focus on applying
distinctive distribution functions and administrators to improve the search cycle of the algo-
rithm. Moreover, utilizing control parameters to further differentiate the population distribution
is a relevant procedure that can be explored.
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