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Abstract. Time invariant linear operators are the building blocks of signal processing. Weighted circular convolution and signal processing 
framework in a generalized Fourier domain are introduced by Jorge Martinez. In this paper, we prove that under this new signal processing 
framework, weighted circular convolution also has a generalized time invariant property. We also give an application of this property to algo-
rithm of continuous wavelet transform (CWT). Specifically, we have previously studied the algorithm of CWT based on generalized Fourier 
transform with parameter 1. In this paper, we prove that the parameter can take any complex number. Numerical experiments are presented to 
further demonstrate our analyses.
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1. INTRODUCTION

Nowadays, wavelets are a powerful tool which has been used
in numerical techniques [1–3]. Wavelets theory are mostly used
in the areas of applied engineering and sciences [4–6]. Specifi-
cally, wavelet transform can provide time-frequency localiza-
tion analysis [7]. There is no position (or time) information
in frequency analysis provided by Fourier transform [8]. An
example of signal analysis by wavelet transform and Fourier
transform is given in Fig. 1 [9]. Another example of sig-
nal analysis of climate data by wavelet transform is given in
Fig. 2 [10].

Time invariant linear operators, such as linear convolution
and circular convolution, play an important role in classic dis-
crete signal processing algorithms [11, 12]. Circular convolu-
tion has a FFT-based fast algorithm due to convolution theo-
rem [13]. Linear convolution is usually calculated by apply-
ing circular convolution on signals doubled with zero-padding
[13,14]. Right angle circular convolution [15], skew-cyclic con-
volution [16] weighted circular convolution [17] etc. are also
introduced to study the computation of linear convolution.

Linear time invariant operators can be used in the algorithm
design of continuous wavelet transform(CWT) [18, 19]. CWT
is a linear convolution of signal and wavelet function for a fixed
scale [9]. In general, the time domain sampling of wavelet func-
tion has the following form [12]

p =
(
h(−aT ),h(−aT +1), · · · ,h(−1),

h(0),h(1), · · · ,h(aT ),0, · · · ,0
)
. (1)

∗∗∗e-mail: 876145777@qq.com

Manuscript submitted 2020-10-26, revised 2021-06-03, initially
accepted for publication 2021-06-09, published in August 2021.

If the CWT is computed directly by the linear convolution of
signal and p, then this method is known as time-domain algo-
rithm of CWT [12]. The discrete Fourier transform(DFT) of
p is

DFTp ≈ e−iaT ω ψ̂∗(aω)
∣∣
ω=

[
2π·0

N , 2π·1
N ,··· , 2π·(N−1)

N

]T , (2)

where ψ is the analytic expression of mother wavelet. By con-
sidering the shift property of DFT and (2). It is natural to define
a filter q such that [12]

DFTq ≈ ψ̂∗(aω)
∣∣
ω=

[
2π·0

N , 2π·1
N ,··· , 2π·(N−1)

N

]T . (3)

By the shift property of DFT, (2) and (3), we know that [12]

RaT q = p. (4)

So the convolution of signal x and p can be transformed into
the convolution of signal and q. According to the time invariant
property of convolution, we have

x� p = x�RaT q = RaT (x�q), (5)

where � can be linear convolution or circular convolution.
The method using RaT (x � q) to compute CWT is known as

frequency-domain algorithm of CWT [12].
One of the main tasks of this paper is to study the time in-

variant properties of weighted circular convolution which is a
generalization of (5). We need to study it in the generalized
Fourier domain(GFD). For a finite-length signal, weighted pe-
riodic signal extension will naturally occur when working in
GFD [17, 20]. In fact, the signal is weighted periodic in time
domain and periodic in GFD.

The definition of generalized discrete Fourier transform
(GDFT) of causal signal and that of non causal signal are in-
troduced in Ref. [17] and Ref. [12] respectively. If p defined
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Fig. 1. This figure is the figure 1 in [9]. This figure shows that wavelet transform can provide time-frequency localization analysis. There is no position information
in time-frequency analysis provided by Fourier transform
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Fig. 2. This figure is the figure 10 in [10]. This figure shows the contour of the
real part of wavelet transform of the monthly average temperature of No. 50978

from January 1, 1951 to December 31, 2010

in (1) is regarded as a non causal signal and the definition of
GDFT of non causal signal is adopted, then GDFT of p is [12]

(
Fα p

)
(k)≈ e

−iaT 2πk
N ψ̂∗

(
a
(

2πk
N

+ iβ
))

,

for k = 0,1, . . . ,N−1. (6)

By considering the relationship between (2) and (3), according
to (6), we hope to find a q such that

(
Fα q

)
(k)≈ ψ̂∗

(
a
(

2πk
N

+ iβ
))

,

for k = 0,1, . . . ,N−1. (7)

Surprisingly, q satisfying (7) is exactly [12]

RaT q = p, (8)

where Rk is a weighted circular shift operator, and Rk defined in
(4) a circular shift operator. To simplify the notation, the same
symbol here represents different meanings. The reader should
be able to understand the meaning according to the context.

Weighted circular convolution has also been used to study the
algorithm of CWT since CWT is a linear convolution of signal
and wavelet function for a fixed scale [12]. The method using
the weighted circular convolution of signal and q (see equation
(35)) to compute CWT is known as GDFT-based algorithm of
CWT [12].

In this paper, time invariant properties of weighted circular
convolution are used to deduce the algorithm of CWT. Some
new results are obtained in this paper, which generalizes the
previous results of Ref. [12]. Specifically, Ref. [12] only con-
siders GDFT-based algorithm for CWT with parameter α = 1,
but in this paper, we can consider the algorithm with parame-
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The time invariant property of weighted  
circular convolution is proposed and proved. 

Using this property, the computation of CWT is 
transformed into the computation of weighted circular 
convolution with any complex parameter .α

The work of this paper:

Fig. 3. Block diagram shows the research framework and innovation of this paper

ter of arbitrary complex number. Figure 3 shows the research
framework and innovation of this paper.

This paper is organized as follows. In section 2, the defini-
tions of GDFT and inverse GDFT are given firstly. Then time
domain shift property of GDFT is deduced. In section 3, we
firstly give the mutual representation of linear convolution and
weighted circular convolution. Secondly, the fast algorithm of
weighted circular convolution is presented. Lastly, time invari-
ant properties of weighted circular convolution are derived. In
section 4, the theory and algorithms of CWT are studied. Sec-
tion 5 presents numerical experiments to demonstrate our anal-
yses and finally, We end this paper with conclusions in sec-
tion 6.

2. GDFT AND ITS PROPERTIES

Definition 1. Let us define the generalized discrete Fourier
transform (GDFT) for finite-length signal

h =
{

h(n)
}−M+N−1

n=−M
, (9)

where 0 ≤ M < N, with parameter α ∈C\{0} as

(
Fα h)(k) def

= Hα(k) =
−M+N−1

∑
n=−M

h(n)eβne−i(2π/N)k(n+M),

for k = 0,1, . . . ,N−1, (10)
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where β = log(α)/N. The inverse GDFT is given by,

(
F−1

α Hα
)
(n) def

= h(n) =
e−βn

N

N−1

∑
k=0

Hα(k)ei(2π/N)k(n+M),

for n =−M,−M+1, . . . ,−M+N−1. (11)

If M = 0 in (10) and (11), the definitions of GDFT and the
inverse GDFT are the same as that of Refs. [17, 20].

From (10), we known that Fα h is periodic with period N.
From (11), we have {h(n)}n∈Z which is a weighted periodic
extension [17,20] of {h(n)}n=−M,−M+1,...,−M+N−1. Particularly,
we have

h(−M : N −1) =
(h(−M),h(−M+1), . . . ,h(−1),h(0), . . . ,h(−M+N −1),

1
α

h(−M),
1
α

h(−M+1), . . . ,
1
α

h(−1)). (12)

In fact, if n ∈ [−M +N,N − 1], thus n′ = n−N ∈ [−M,−1].
From (11), we have

h(n) =
e−βn

N

N−1

∑
k=0

Hα [k]ei(2π/N)k(n+M)

=
e−β (n′+N)

N

N−1

∑
k=0

Hα [k]ei(2π/N)k(n′+M+N)

=
1

eβN

e−βn′

N

N−1

∑
k=0

Hα [k]ei(2π/N)k(n′+M)

=
1
α

h(n−N).

Thus, (12) is obtained. For the clarity of notation, we denote

p(−M : −M+N −1) def
= h(−M : −M+N −1)

=
(
h(−M),h(−M+1), . . . ,h(−1),h(0), . . . ,h(−M+N −1)

)
;

q(0 : N −1) def
= h(0 : N −1) =

(
h(0), . . . ,h(−M+N −1),

1
α

h(−M),
1
α

h(−M+1), . . . ,
1
α

h(−1)
)
. (13)

From (13), we see that both p, q are different parts of
{h(n)}n∈Z , where the domains of definition of p and q are
{−M,−M+1, · · · ,−M+N −1} and {0,1, · · · ,N −1} respec-
tively.

Define weighted circular shift operator as

(Rkh)(n) = h(n− k), for n ∈ Z. (14)

It should be noted that Rk only has practical significance for
finite length signals. For example, from (5), we know that Rk
acts on the finite length signal q or x�q.

Writing p and q in (13) together, we have

p = (p(−M), · · · , p(−1), p(0), · · · , p(−M+N −1)),

q =

(
p(0), · · · , p(−M+N −1),

p(−M)

α
, · · · , p(−1)

α

)
.

(15)

From (15), we see that

RMq = p, (16)

and RM is a right shift by M.

Next, we present the shift property [21] for the GDFT. It
should be noted that this shift property in this paper is differ-
ent from that of Ref. [20] because the definition of GDFT for
non causal signal in Ref. [20] is different from that of this paper.

Proposition 1. time domain shift property of GDFT: Sup-
pose q and RMq is defined in (13) and (16). Then

(Fα{RMq})(k) = e−i(2π/N)kM(Fα q)(k),

k = 0,1, . . . ,N−1, (17)

Proof. By equations (10), (13) and (16), we have

(Fα{RMq})(k) = (Fα p)(k)

=
−M+N−1

∑
n=−M

h(n)eβne−i(2π/N)k(n+M)

= e−i(2π/N)kM

(
−1

∑
n=−M

h(n)eβne−i(2π/N)kn

+
−M+N−1

∑
n=0

h(n)eβne−i(2π/N)kn

)

= e−i(2π/N)kM

(
−1

∑
n=−M

1
α

h(n)eβ (n+N)e−i(2π/N)kn

+
−M+N−1

∑
n=0

h(n)eβne−i(2π/N)kn

)

= e−i(2π/N)kM

(
−1

∑
n=−M

h(n+N)eβ (n+N)e−i(2π/N)k(n+N)

+
−M+N−1

∑
n=0

h(n)eβne−i(2π/N)kn

)

= e−i(2π/N)kM(Fα q)(k), for k = 0,1, . . . ,N−1.

3. LINEAR CONVOLUTION AND WEIGHTED CIRCULAR
CONVOLUTION

Let x = {x(n)}N−1
n=0 , Xα = Fα x. Let Pα = Fα p, Qα = Fα q,

where p, q are defined in (13). Let ��, �c, �α represent linear
convolution, circular convolution, weighted circular convolu-
tion with parameter α , respectively.

3.1. The relationship of linear convolution and weighted
circular convolution

The linear convolution of x = {x(n)}N−1
n=0 and

p = {p(n)}−M+N−1
n=−M can be expressed as [12]




x�� p(−M)

x�� p(−M+1)
...

x�� p(−M+2N −2)



= P ·




x(0)

x(1)
...

x(N −1)



,
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where

P =



p(−M)

p(−M+1) p(−M)
...

...
. . .

p(−M+N −1) p(−M+N −2) · · · p(−M)

p(−M+N −1) · · · p(−M+1)
. . .

...
p(−M+N −1)




.

Thus the definition of linear convolution can also be written in
the following form [15]:

x�� p(n) =
n+M

∑
r=0

x(r)p(n− r),

n =−M,−M+1, . . . ,−M+N−1

x�� p(n+N) =
N−1

∑
r=n+M+1

x(r)p(n− r+N),

n =−M,−M+1, . . . ,−M+N−2.

(18)

Weighted circular convolution is first introduced in Ref. [17]. In
this paper, the weighted circular convolution of x = {x(n)}N−1

n=0
and p = {p(n)}−M+N−1

n=−M with parameter α ∈C\{0}, denoted as
{x�α p(n)}−M+N−1

n=−M , is defined as follows,

x�α p(n) def
= x�� p(n)+α(x�� p(n+N)),

n =−M,−M+1, . . . ,−M+N−1, (19)

where x �� p(−M + 2N − 1) is defined as 0 since x �� p(−M +
2N − 1) have not been defined by (18). The weighted circular
convolution with α = 1 in (19) is just circular convolution [22].
From (19), we have

x�(−α) p(n) = x�� p(n)−α(x�� p(n+N)),

n =−M,−M+1, . . . ,−M+N−1, (20)

From (19) and (20), we have

x�� p(n) =


x�α p(n)+ x�(−α) p(n)
2

,

if −M ≤ n ≤−M+N−1,

x�α p(n−N)− x�(−α) p(n−N)

2α
,

if −M+N ≤ n ≤−M+2N−2.

(21)

Thus, the mutual representation of linear convolution and
weighted circular convolution are given by (19) and (21). α = i
or α = 1 in (21) are studied respectively in Ref. [17] and
Ref. [12]. If using weighted circular convolution to represent
linear convolution for two real signals, a simpler form can be
found in Ref. [17].

By making GDFT and inverse transform to {x �α p(n), n ∈
{−M,−M + 1, · · · ,−M + N − 1}}, the definition domain of
x �α p(n) becomes {n|n ∈ Z}. Thus, it may be that there are

two signals with different definition domains corresponding to
the same frequency signal Fα{x �α p} which is periodic with
period N. In the following part of this paper, readers should try
to figure out the definition domain of x �α p according to the
context.

3.2. The fast algorithm of weighted circular convolution
The fast algorithm of weighted circular convolution, namely,
weighted circular convolution theorem, has been proved in
Ref. [17] for causal signals, in Ref. [12] for non causal signals.
Proposition 2 is another version of weighted circular convolu-
tion theorem for non causal signals. For the sake of complete-
ness, the proof of proposition 2 is given as follows; while the
proof idea is similar to that of Ref. [17].

Proposition 2. Point wise multiplication of Xα(k) and Pα(k)
corresponds to the weighted circular convolution of {x(n)}N−1

n=0
and {p(n)}−M+N−1

n=−M in the time domain, i.e.

F−1
α {Xα(k)Pα(k)}= x�α p(n) for n ∈ Z. (22)

Proof. F−1
α {Xα(k)Pα(k)}= e−βn

N ∑N−1
k=0 Xα(k)Pα(k)ei 2π

N k(n+M)

=
e−βn

N

N−1

∑
k=0

(
N−1

∑
r=0

x(r)eβ re−i 2π
N rk

)

(
−M+N−1

∑
�=−M

h(�)eβ�e−i 2π
N k(�+M)

)
ei 2π

N k(n+M)

=
e−βn

N

N−1

∑
r=0

x(r)eβ r
−M+N−1

∑
�=−M

h(�)eβ�
N−1

∑
k=0

ei 2π
N k(−r−�+n)

For p′ ∈ Z we have

N−1

∑
k=0

ei 2π
N k(−r−�+n) =

{
N, if �= n− r+ p′N,
0, otherwise.

(23)

Therefore, we should choose p′ such that �+M = n− r+M+
p′N ∈ {0,1, . . . ,N − 1} since −M ≤ � ≤ −M +N − 1, that is
to say, p′ = −� n−r+M

N �, where �x� is the nearest integer ≤ x.
Further using (23) we obtain [17]

F−1
α {Xα(k)Pα(k)}=

N−1

∑
r=0

x(r)α p′h(n− r+ p′N). (24)

Since n ∈ {−M,−M + 1, . . . ,−M +N − 1}, we have that n+
M− r ∈ {−N +1, . . . ,N −1}, and thus p′ ∈ {0,1}, so that (24)
can be rewritten as

F−1
α {Xα(k)Pα(k)}=

n+M

∑
r=0

x(r)h(n− r)

+α
N−1

∑
r=n+M+1

x(r)h(n− r+N).

Considering (18), (19) and the relationship between p and h
(see (13)), (22) can be obtained.
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where

P =



p(−M)

p(−M+1) p(−M)
...

...
. . .

p(−M+N −1) p(−M+N −2) · · · p(−M)

p(−M+N −1) · · · p(−M+1)
. . .

...
p(−M+N −1)




.

Thus the definition of linear convolution can also be written in
the following form [15]:

x�� p(n) =
n+M

∑
r=0

x(r)p(n− r),

n =−M,−M+1, . . . ,−M+N−1

x�� p(n+N) =
N−1

∑
r=n+M+1

x(r)p(n− r+N),

n =−M,−M+1, . . . ,−M+N−2.

(18)

Weighted circular convolution is first introduced in Ref. [17]. In
this paper, the weighted circular convolution of x = {x(n)}N−1

n=0
and p = {p(n)}−M+N−1

n=−M with parameter α ∈C\{0}, denoted as
{x�α p(n)}−M+N−1

n=−M , is defined as follows,

x�α p(n) def
= x�� p(n)+α(x�� p(n+N)),

n =−M,−M+1, . . . ,−M+N−1, (19)

where x �� p(−M + 2N − 1) is defined as 0 since x �� p(−M +
2N − 1) have not been defined by (18). The weighted circular
convolution with α = 1 in (19) is just circular convolution [22].
From (19), we have

x�(−α) p(n) = x�� p(n)−α(x�� p(n+N)),

n =−M,−M+1, . . . ,−M+N−1, (20)

From (19) and (20), we have

x�� p(n) =


x�α p(n)+ x�(−α) p(n)
2

,

if −M ≤ n ≤−M+N−1,

x�α p(n−N)− x�(−α) p(n−N)

2α
,

if −M+N ≤ n ≤−M+2N−2.

(21)

Thus, the mutual representation of linear convolution and
weighted circular convolution are given by (19) and (21). α = i
or α = 1 in (21) are studied respectively in Ref. [17] and
Ref. [12]. If using weighted circular convolution to represent
linear convolution for two real signals, a simpler form can be
found in Ref. [17].

By making GDFT and inverse transform to {x �α p(n), n ∈
{−M,−M + 1, · · · ,−M + N − 1}}, the definition domain of
x �α p(n) becomes {n|n ∈ Z}. Thus, it may be that there are

two signals with different definition domains corresponding to
the same frequency signal Fα{x �α p} which is periodic with
period N. In the following part of this paper, readers should try
to figure out the definition domain of x �α p according to the
context.

3.2. The fast algorithm of weighted circular convolution
The fast algorithm of weighted circular convolution, namely,
weighted circular convolution theorem, has been proved in
Ref. [17] for causal signals, in Ref. [12] for non causal signals.
Proposition 2 is another version of weighted circular convolu-
tion theorem for non causal signals. For the sake of complete-
ness, the proof of proposition 2 is given as follows; while the
proof idea is similar to that of Ref. [17].

Proposition 2. Point wise multiplication of Xα(k) and Pα(k)
corresponds to the weighted circular convolution of {x(n)}N−1

n=0
and {p(n)}−M+N−1

n=−M in the time domain, i.e.

F−1
α {Xα(k)Pα(k)}= x�α p(n) for n ∈ Z. (22)

Proof. F−1
α {Xα(k)Pα(k)}= e−βn

N ∑N−1
k=0 Xα(k)Pα(k)ei 2π

N k(n+M)

=
e−βn

N

N−1

∑
k=0

(
N−1

∑
r=0

x(r)eβ re−i 2π
N rk

)

(
−M+N−1

∑
�=−M

h(�)eβ�e−i 2π
N k(�+M)

)
ei 2π

N k(n+M)

=
e−βn

N

N−1

∑
r=0

x(r)eβ r
−M+N−1

∑
�=−M

h(�)eβ�
N−1

∑
k=0

ei 2π
N k(−r−�+n)

For p′ ∈ Z we have

N−1

∑
k=0

ei 2π
N k(−r−�+n) =

{
N, if �= n− r+ p′N,
0, otherwise.

(23)

Therefore, we should choose p′ such that �+M = n− r+M+
p′N ∈ {0,1, . . . ,N − 1} since −M ≤ � ≤ −M +N − 1, that is
to say, p′ = −� n−r+M

N �, where �x� is the nearest integer ≤ x.
Further using (23) we obtain [17]

F−1
α {Xα(k)Pα(k)}=

N−1

∑
r=0

x(r)α p′h(n− r+ p′N). (24)

Since n ∈ {−M,−M + 1, . . . ,−M +N − 1}, we have that n+
M− r ∈ {−N +1, . . . ,N −1}, and thus p′ ∈ {0,1}, so that (24)
can be rewritten as

F−1
α {Xα(k)Pα(k)}=

n+M

∑
r=0

x(r)h(n− r)

+α
N−1

∑
r=n+M+1

x(r)h(n− r+N).

Considering (18), (19) and the relationship between p and h
(see (13)), (22) can be obtained.
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3.3. Time-invariant property of weighted circular
convolution

Time invariant property of circular convolution has been proved
in Ref. [12], namely

x�c (RMq) = RM(x�c q). (25)

This property has been used to deduce the frequency domain
algorithm of CWT [12]. For the signal processing framework
based on Fourier domain and generalized Fourier domain, the
discretization of time domain signal will lead to the period of
frequency domain signal. Therefore, the proof idea of (26) is
the same as that of (25). It should be noted that the operator RM
in (25) represents circular shift, while the operator RM in (26)
represents weighted circular shift [12].

Theorem 1. Time-invariant property of weighted circular
convolution:

x�α (RMq) = RM(x�α q). (26)

Proof. It is easy to check that the definition domain of x �α
(RMq) and RM(x �α q) are the same, namely, {−M,−M +
1, · · · ,−M+N−1}. It suffices to show that the two signals have
a common generalized frequency domain represention. By (22)
and (17),

(Fα(x�α (RMq)))(k) =

(Fα x)(k)Fα(RMq)(k) = (Fα x)(k)(Fα q)(k)e
−2πikM

N ;

(Fα{RM(x�α q)})(k) = (Fα x)(k)(Fα q)(k)e
−2πikM

N ,

for k = 0,1, . . . ,N−1.

Thus
Fα{x�α (RMq)}= Fα{RM(x�α q)}.

Corollary 1.

x�α q(n) =


x�α p(n) if n ∈ {0,1, · · · ,−M+N−1}
x�α p(n−N)

α
if n ∈ {N−M,N−M+1, . . . ,N−1}

. (27)

Proof. From (16) and (26), we have

x�α p = x�α (RMq) = RM(x�α q).

By noting that RM represents weighted circular shift operator
and repeating the derivation process of (12), (27) is obtained.

4. APPLICATION: THE ALGORITHM OF CWT AND
NUMERICAL EXPERIMENTS

Assume that the support of the mother wavelet ψ(t) is [−T,T ].
The discrete version of continuous wavelet transform of a sig-
nal {x(k)}N−1

k=0 at a scale a ∈ R+ with this mother wavelet is
expressed by the following linear convolution [12]

Wx(a,n) = x�� p(n),n = 0,1, . . . ,N −1, (28)

where

p(−aT : −aT +N −1) =
(
h(−aT ), h(−aT +1), . . . ,

h(−1), h(0), . . . , h(aT ), 0, . . . ,0
)
, (29)

and

h(k) =
1
a

ψ∗
(
−k
a

)
,

for k =−aT,−aT+1, . . . ,aT.

By (21), the linear convolution in (28) can be represented as
weighted circular convolution,

Wx(a,n) =




x�α p(n)+ x�(−α) p(n)
2

,

if 0 ≤ n ≤−aT +N −1,

x�α p(n−N)− x�(−α) p(n−N)

2α
,

if −aT +N ≤ n ≤ N −1.

(30)

The weighted periodic extension of (29) is

h(−aT : N −1) =
(
h(−aT ), h(−aT +1), . . . ,

h(−1), h(0), . . . , h(aT ), 0, . . . , 0,
1
α

h(−aT ),

1
α

h(−aT +1), . . . ,
1
α

h(−1)). (31)

Define
q(0 : N −1) = h(0 : N −1). (32)

Then
RaT q = p. (33)

Lemma 1.
x�α q(n)+ x�(−α) q(n)

2
=




x�α p(n)+ x�(−α) p(n)
2

,

if 0 ≤ n ≤−aT+N−1,
x�α p(n−N)− x�(−α) p(n−N)

2α
,

if −aT+N ≤ n ≤ N−1.

(34)

Proof. By corollary 1, if 0≤ n≤−aT +N−1, then x�α q(n)=
x �α p(n) and x �(−α) q(n) = x �(−α) p(n). Thus the first part
of (34) is proved. If −aT +N ≤ n ≤ N − 1, then x �α q(n) =
x�α p(n−N)

α and x �(−α) q(n) =
x�(−α) p(n−N)

−α
by corollary 1.

Thus the last part of (34) can be proved.

Theorem 2.

Wx(a,n) =
x�α q(n)+ x�(−α) q(n)

2
,

for n = 0,1, . . . ,N−1, (35)

where α ∈C\{0}.

Proof. By (30) and (34), (35) can be obtained.
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Corollary 2. [12] If α = 1 in theorem 2, then

Wx(a,n) =
x�1 q(n)+ x�(−1) q(n)

2
,

for n = 0,1, . . . ,N−1. (36)

Only α = 1 is considered in GDFT based algorithm for the
computation of CWT in Ref. [12]. However, In this paper, any
α ∈C may be used.

Algorithm 1. GDFT based algorithm for CWT
Input:
the signal, f [n], n = 0,1, · · · ,N−1
scale, a
parameter, α ∈C
ψ̂(ω), the Fourier transform of the Morlet wavelet ψ(t)
Output:
wavelet coefficients, W a

f [i], i = 0,1, · · · ,N −1
1. Let f = [ f0, f1, . . . , fN−1]

T;
2. for γ = [α,−α];
3. Let β = logγ

N ;
4. Let Fγ q = ψ̂∗(a( 2πk

N + iβ ))|k=[0,1,··· ,N−1]T ;
5. zγ [i] = F−1

γ (Fγ f .∗Fγ q), i = 0,1, · · · ,N −1.
6. end for
7. W a

f [i] =
zα [i]+z−α [i]

2 , i = 0,1, · · · ,N −1.

5. NUMERICAL EXPERIMENTS
We will repeat experiments previously done in Ref. [12], with
various algorithms. Specifically, GDFT-based algorithm with
parameter α = 1 is considered in Ref. [12]. However, in this
paper, any α ∈C may be used.

For the signal with length n = 1024 in Fig. 1 of Ref. [12], we
conduct Morlet wavelet transform, where the Morlet wavelet
parameters are σ2 = 1, η = 5, using various algorithms.

The various algorithms are time domain algorithm [12, 23],
frequency domain algorithm [12, 23], GDFT based algorithm
with parameters α = 1,3,5, . . ., 19, i, 3i, 5i, . . . , 19i, 1+i,
3+3i, 5+5i, . . . , 19+19i, 38+38i, 380+380i, 3800+3800i,
38000+38000i.

The mean squared errors

(
MSE =

1
n

n

∑
i=1

(
Yi − Ŷi

)2

)
of

wavelet coefficients of various algorithms compared with
GDFT based algorithm(α = 1) are shown in Table 1.

Table 2 is the same with Table 1, but the Morlet wavelet pa-
rameters are σ2 = 1,η = 6.

From Table 1 and 2, some information can be drawn.
• If the modulus of the parameter α is not too large, the errors

among the algorithms based on GDFT with different parame-
ter α is small. This shows that these algorithms have a closer
relationship.

• The error between GDFT based algorithm(α = 1) and
frequency-domain algorithm is less than that between
GDFT based algorithm(α = 1) and time-domain algorithm.
This shows that the relationship between GDFT based
algorithm(α = 1) and frequency-domain algorithm is closer
than that between GDFT based algorithm(α = 1) and time-
domain algorithm.

Table 1

The mean squared errors (MSE =
1
n

n

∑
i=1

(Yi − Ŷi)
2) of wavelet coefficients of

various algorithms compared with GDFT based algorithm(α = 1). The Morlet
wavelet parameters are σ2 = 1,η = 5. The various algorithms are time domain
algorithm [12, 23], frequency domain algorithm [12, 23], GDFT based algo-
rithm with parameters α = 1,3,5, · · · , 19, i,3i,5i, · · · , 19i,1+i, 3+3i, 5+5i, · · · ,

19+19i, 38+38i, 380+380i, 3800+3800i, 38000+38000i

Algorithms Errors Algorithms Errors
α = 1 0 time-dom-algo 0.1081×10−14

fre-dom-algo 0.0352×10−14 α = 3 0.0021×10−14

α = 5 0.0037×10−14 α = 7 0.0051×10−14

α = 9 0.0064×10−14 α = 11 0.0076×10−14

α = 13 0.0089×10−14 α = 15 0.0102×10−14

α = 17 0.0116×10−14 α = 19 0.0131×10−14

α = 1i 0.0102×10−14 α = 3i 0.0099×10−14

α = 5i 0.0125×10−14 α = 7i 0.0152×10−14

α = 9i 0.0180×10−14 α = 11i 0.0207×10−14

α = 13i 0.0235×10−14 α = 15i 0.0264×10−14

α = 17i 0.0293×10−14 α = 19i 0.0323×10−14

α = 1+1i 0.0215×10−14 α = 3+3i 0.0216×10−14

α = 5+5i 0.0256×10−14 α = 7+7i 0.0301×10−14

α = 9+9i 0.0347×10−14 α = 11+11i 0.0394×10−14

α = 13+13i 0.0442×10−14 α = 15+15i 0.0491×10−14

α = 17+17i 0.0542×10−14 α = 19+19i 0.0593×10−14

α = 38+38i 0.1148×10−14 α = 380+380i 0.3041×10−13

α = 3800+3800i 0.1957×10−11 α = 38000+38000i 0.1552×10−9

Table 2
The same with Table 1, but the Morlet wavelet parameters are σ2 = 1, η = 6

Algorithms Errors Algorithms Errors
α = 1 0 time-dom-algo 0.1028×10−19

fre-dom-algo 0.0456×10−19 α = 3 0.0027×10−19

α = 5 0.0048×10−19 α = 7 0.0065×10−19

α = 9 0.0081×10−19 α = 11 0.0097×10−19

α = 13 0.0113×10−19 α = 15 0.0130×10−19

α = 17 0.0147×10−19 α = 19 0.0165×10−19

α = 1i 0.0136×10−19 α = 3i 0.0132×10−19

α = 5i 0.0166×10−19 α = 7i 0.0202×10−19

α = 9i 0.0239×10−19 α = 11i 0.0276×10−19

α = 13i 0.0313×10−19 α = 15i 0.0351×10−19

α = 17i 0.0391×10−19 α = 19i 0.0431×10−19

α = 1+1i 0.0293×10−19 α = 3+3i 0.0293×10−19

α = 5+5i 0.0348×10−19 α = 7+7i 0.0410×10−19

α = 9+9i 0.0473×10−19 α = 11+11i 0.0538×10−19

α = 13+13i 0.0605×10−19 α = 15+15i 0.0674×10−19

α = 17+17i 0.0744×10−19 α = 19+19i 0.0816×10−19

α = 38+38i 0.1598×10−19 α = 380+380i 0.4359×10−18

α = 3800+3800i 0.2822×10−16 α = 38000+38000i 0.2243×10−14

• The running result of GDFT based algorithm is stable and
reliable if the absolute value of parameter α is not large
enough. For example, for α = 1,3,5, · · · , 19, i,3i,5i, · · · ,19i,
1+i, 3+3i, 5+5i, 7+7i, the errors of GDFT based algorithms
are smaller than that of frequency domain algorithm.

• For GDFT based algorithms, if the modulus of the parameter
α is too large, the error will increase. For example, the errors
of GDFT based algorithm with parameter α = 38+38i, α =
380+380i, α = 3800+3800i, α = 38000+38000i are larger
than that of time domain algorithm.
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Corollary 2. [12] If α = 1 in theorem 2, then

Wx(a,n) =
x�1 q(n)+ x�(−1) q(n)

2
,

for n = 0,1, . . . ,N−1. (36)

Only α = 1 is considered in GDFT based algorithm for the
computation of CWT in Ref. [12]. However, In this paper, any
α ∈C may be used.

Algorithm 1. GDFT based algorithm for CWT
Input:
the signal, f [n], n = 0,1, · · · ,N−1
scale, a
parameter, α ∈C
ψ̂(ω), the Fourier transform of the Morlet wavelet ψ(t)
Output:
wavelet coefficients, W a

f [i], i = 0,1, · · · ,N −1
1. Let f = [ f0, f1, . . . , fN−1]

T;
2. for γ = [α,−α];
3. Let β = logγ

N ;
4. Let Fγ q = ψ̂∗(a( 2πk

N + iβ ))|k=[0,1,··· ,N−1]T ;
5. zγ [i] = F−1

γ (Fγ f .∗Fγ q), i = 0,1, · · · ,N −1.
6. end for
7. W a

f [i] =
zα [i]+z−α [i]

2 , i = 0,1, · · · ,N −1.

5. NUMERICAL EXPERIMENTS
We will repeat experiments previously done in Ref. [12], with
various algorithms. Specifically, GDFT-based algorithm with
parameter α = 1 is considered in Ref. [12]. However, in this
paper, any α ∈C may be used.

For the signal with length n = 1024 in Fig. 1 of Ref. [12], we
conduct Morlet wavelet transform, where the Morlet wavelet
parameters are σ2 = 1, η = 5, using various algorithms.

The various algorithms are time domain algorithm [12, 23],
frequency domain algorithm [12, 23], GDFT based algorithm
with parameters α = 1,3,5, . . ., 19, i, 3i, 5i, . . . , 19i, 1+i,
3+3i, 5+5i, . . . , 19+19i, 38+38i, 380+380i, 3800+3800i,
38000+38000i.

The mean squared errors

(
MSE =

1
n

n

∑
i=1

(
Yi − Ŷi

)2

)
of

wavelet coefficients of various algorithms compared with
GDFT based algorithm(α = 1) are shown in Table 1.

Table 2 is the same with Table 1, but the Morlet wavelet pa-
rameters are σ2 = 1,η = 6.

From Table 1 and 2, some information can be drawn.
• If the modulus of the parameter α is not too large, the errors

among the algorithms based on GDFT with different parame-
ter α is small. This shows that these algorithms have a closer
relationship.

• The error between GDFT based algorithm(α = 1) and
frequency-domain algorithm is less than that between
GDFT based algorithm(α = 1) and time-domain algorithm.
This shows that the relationship between GDFT based
algorithm(α = 1) and frequency-domain algorithm is closer
than that between GDFT based algorithm(α = 1) and time-
domain algorithm.

Table 1

The mean squared errors (MSE =
1
n

n

∑
i=1

(Yi − Ŷi)
2) of wavelet coefficients of

various algorithms compared with GDFT based algorithm(α = 1). The Morlet
wavelet parameters are σ2 = 1,η = 5. The various algorithms are time domain
algorithm [12, 23], frequency domain algorithm [12, 23], GDFT based algo-
rithm with parameters α = 1,3,5, · · · , 19, i,3i,5i, · · · , 19i,1+i, 3+3i, 5+5i, · · · ,

19+19i, 38+38i, 380+380i, 3800+3800i, 38000+38000i

Algorithms Errors Algorithms Errors
α = 1 0 time-dom-algo 0.1081×10−14

fre-dom-algo 0.0352×10−14 α = 3 0.0021×10−14

α = 5 0.0037×10−14 α = 7 0.0051×10−14

α = 9 0.0064×10−14 α = 11 0.0076×10−14

α = 13 0.0089×10−14 α = 15 0.0102×10−14

α = 17 0.0116×10−14 α = 19 0.0131×10−14

α = 1i 0.0102×10−14 α = 3i 0.0099×10−14

α = 5i 0.0125×10−14 α = 7i 0.0152×10−14

α = 9i 0.0180×10−14 α = 11i 0.0207×10−14

α = 13i 0.0235×10−14 α = 15i 0.0264×10−14

α = 17i 0.0293×10−14 α = 19i 0.0323×10−14

α = 1+1i 0.0215×10−14 α = 3+3i 0.0216×10−14

α = 5+5i 0.0256×10−14 α = 7+7i 0.0301×10−14

α = 9+9i 0.0347×10−14 α = 11+11i 0.0394×10−14

α = 13+13i 0.0442×10−14 α = 15+15i 0.0491×10−14

α = 17+17i 0.0542×10−14 α = 19+19i 0.0593×10−14

α = 38+38i 0.1148×10−14 α = 380+380i 0.3041×10−13

α = 3800+3800i 0.1957×10−11 α = 38000+38000i 0.1552×10−9

Table 2
The same with Table 1, but the Morlet wavelet parameters are σ2 = 1, η = 6

Algorithms Errors Algorithms Errors
α = 1 0 time-dom-algo 0.1028×10−19

fre-dom-algo 0.0456×10−19 α = 3 0.0027×10−19

α = 5 0.0048×10−19 α = 7 0.0065×10−19

α = 9 0.0081×10−19 α = 11 0.0097×10−19

α = 13 0.0113×10−19 α = 15 0.0130×10−19

α = 17 0.0147×10−19 α = 19 0.0165×10−19

α = 1i 0.0136×10−19 α = 3i 0.0132×10−19

α = 5i 0.0166×10−19 α = 7i 0.0202×10−19

α = 9i 0.0239×10−19 α = 11i 0.0276×10−19

α = 13i 0.0313×10−19 α = 15i 0.0351×10−19

α = 17i 0.0391×10−19 α = 19i 0.0431×10−19

α = 1+1i 0.0293×10−19 α = 3+3i 0.0293×10−19

α = 5+5i 0.0348×10−19 α = 7+7i 0.0410×10−19

α = 9+9i 0.0473×10−19 α = 11+11i 0.0538×10−19

α = 13+13i 0.0605×10−19 α = 15+15i 0.0674×10−19

α = 17+17i 0.0744×10−19 α = 19+19i 0.0816×10−19

α = 38+38i 0.1598×10−19 α = 380+380i 0.4359×10−18

α = 3800+3800i 0.2822×10−16 α = 38000+38000i 0.2243×10−14

• The running result of GDFT based algorithm is stable and
reliable if the absolute value of parameter α is not large
enough. For example, for α = 1,3,5, · · · , 19, i,3i,5i, · · · ,19i,
1+i, 3+3i, 5+5i, 7+7i, the errors of GDFT based algorithms
are smaller than that of frequency domain algorithm.

• For GDFT based algorithms, if the modulus of the parameter
α is too large, the error will increase. For example, the errors
of GDFT based algorithm with parameter α = 38+38i, α =
380+380i, α = 3800+3800i, α = 38000+38000i are larger
than that of time domain algorithm.
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for n = 0,1, . . . ,N−1. (36)

Only α = 1 is considered in GDFT based algorithm for the
computation of CWT in Ref. [12]. However, In this paper, any
α ∈C may be used.

Algorithm 1. GDFT based algorithm for CWT
Input:
the signal, f [n], n = 0,1, · · · ,N−1
scale, a
parameter, α ∈C
ψ̂(ω), the Fourier transform of the Morlet wavelet ψ(t)
Output:
wavelet coefficients, W a

f [i], i = 0,1, · · · ,N −1
1. Let f = [ f0, f1, . . . , fN−1]

T;
2. for γ = [α,−α];
3. Let β = logγ

N ;
4. Let Fγ q = ψ̂∗(a( 2πk

N + iβ ))|k=[0,1,··· ,N−1]T ;
5. zγ [i] = F−1

γ (Fγ f .∗Fγ q), i = 0,1, · · · ,N −1.
6. end for
7. W a

f [i] =
zα [i]+z−α [i]

2 , i = 0,1, · · · ,N −1.

5. NUMERICAL EXPERIMENTS
We will repeat experiments previously done in Ref. [12], with
various algorithms. Specifically, GDFT-based algorithm with
parameter α = 1 is considered in Ref. [12]. However, in this
paper, any α ∈C may be used.

For the signal with length n = 1024 in Fig. 1 of Ref. [12], we
conduct Morlet wavelet transform, where the Morlet wavelet
parameters are σ2 = 1, η = 5, using various algorithms.

The various algorithms are time domain algorithm [12, 23],
frequency domain algorithm [12, 23], GDFT based algorithm
with parameters α = 1,3,5, . . ., 19, i, 3i, 5i, . . . , 19i, 1+i,
3+3i, 5+5i, . . . , 19+19i, 38+38i, 380+380i, 3800+3800i,
38000+38000i.

The mean squared errors

(
MSE =

1
n

n

∑
i=1

(
Yi − Ŷi

)2

)
of

wavelet coefficients of various algorithms compared with
GDFT based algorithm(α = 1) are shown in Table 1.

Table 2 is the same with Table 1, but the Morlet wavelet pa-
rameters are σ2 = 1,η = 6.

From Table 1 and 2, some information can be drawn.
• If the modulus of the parameter α is not too large, the errors

among the algorithms based on GDFT with different parame-
ter α is small. This shows that these algorithms have a closer
relationship.

• The error between GDFT based algorithm(α = 1) and
frequency-domain algorithm is less than that between
GDFT based algorithm(α = 1) and time-domain algorithm.
This shows that the relationship between GDFT based
algorithm(α = 1) and frequency-domain algorithm is closer
than that between GDFT based algorithm(α = 1) and time-
domain algorithm.

Table 1

The mean squared errors (MSE =
1
n

n

∑
i=1

(Yi − Ŷi)
2) of wavelet coefficients of

various algorithms compared with GDFT based algorithm(α = 1). The Morlet
wavelet parameters are σ2 = 1,η = 5. The various algorithms are time domain
algorithm [12, 23], frequency domain algorithm [12, 23], GDFT based algo-
rithm with parameters α = 1,3,5, · · · , 19, i,3i,5i, · · · , 19i,1+i, 3+3i, 5+5i, · · · ,

19+19i, 38+38i, 380+380i, 3800+3800i, 38000+38000i

Algorithms Errors Algorithms Errors
α = 1 0 time-dom-algo 0.1081×10−14

fre-dom-algo 0.0352×10−14 α = 3 0.0021×10−14

α = 5 0.0037×10−14 α = 7 0.0051×10−14

α = 9 0.0064×10−14 α = 11 0.0076×10−14

α = 13 0.0089×10−14 α = 15 0.0102×10−14

α = 17 0.0116×10−14 α = 19 0.0131×10−14

α = 1i 0.0102×10−14 α = 3i 0.0099×10−14

α = 5i 0.0125×10−14 α = 7i 0.0152×10−14

α = 9i 0.0180×10−14 α = 11i 0.0207×10−14

α = 13i 0.0235×10−14 α = 15i 0.0264×10−14

α = 17i 0.0293×10−14 α = 19i 0.0323×10−14

α = 1+1i 0.0215×10−14 α = 3+3i 0.0216×10−14

α = 5+5i 0.0256×10−14 α = 7+7i 0.0301×10−14

α = 9+9i 0.0347×10−14 α = 11+11i 0.0394×10−14

α = 13+13i 0.0442×10−14 α = 15+15i 0.0491×10−14

α = 17+17i 0.0542×10−14 α = 19+19i 0.0593×10−14

α = 38+38i 0.1148×10−14 α = 380+380i 0.3041×10−13

α = 3800+3800i 0.1957×10−11 α = 38000+38000i 0.1552×10−9

Table 2
The same with Table 1, but the Morlet wavelet parameters are σ2 = 1, η = 6

Algorithms Errors Algorithms Errors
α = 1 0 time-dom-algo 0.1028×10−19

fre-dom-algo 0.0456×10−19 α = 3 0.0027×10−19

α = 5 0.0048×10−19 α = 7 0.0065×10−19

α = 9 0.0081×10−19 α = 11 0.0097×10−19

α = 13 0.0113×10−19 α = 15 0.0130×10−19

α = 17 0.0147×10−19 α = 19 0.0165×10−19

α = 1i 0.0136×10−19 α = 3i 0.0132×10−19

α = 5i 0.0166×10−19 α = 7i 0.0202×10−19

α = 9i 0.0239×10−19 α = 11i 0.0276×10−19

α = 13i 0.0313×10−19 α = 15i 0.0351×10−19

α = 17i 0.0391×10−19 α = 19i 0.0431×10−19

α = 1+1i 0.0293×10−19 α = 3+3i 0.0293×10−19

α = 5+5i 0.0348×10−19 α = 7+7i 0.0410×10−19

α = 9+9i 0.0473×10−19 α = 11+11i 0.0538×10−19

α = 13+13i 0.0605×10−19 α = 15+15i 0.0674×10−19

α = 17+17i 0.0744×10−19 α = 19+19i 0.0816×10−19

α = 38+38i 0.1598×10−19 α = 380+380i 0.4359×10−18

α = 3800+3800i 0.2822×10−16 α = 38000+38000i 0.2243×10−14

• The running result of GDFT based algorithm is stable and
reliable if the absolute value of parameter α is not large
enough. For example, for α = 1,3,5, · · · , 19, i,3i,5i, · · · ,19i,
1+i, 3+3i, 5+5i, 7+7i, the errors of GDFT based algorithms
are smaller than that of frequency domain algorithm.

• For GDFT based algorithms, if the modulus of the parameter
α is too large, the error will increase. For example, the errors
of GDFT based algorithm with parameter α = 38+38i, α =
380+380i, α = 3800+3800i, α = 38000+38000i are larger
than that of time domain algorithm.
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2
,

for n = 0,1, . . . ,N−1. (36)

Only α = 1 is considered in GDFT based algorithm for the
computation of CWT in Ref. [12]. However, In this paper, any
α ∈C may be used.

Algorithm 1. GDFT based algorithm for CWT
Input:
the signal, f [n], n = 0,1, · · · ,N−1
scale, a
parameter, α ∈C
ψ̂(ω), the Fourier transform of the Morlet wavelet ψ(t)
Output:
wavelet coefficients, W a

f [i], i = 0,1, · · · ,N −1
1. Let f = [ f0, f1, . . . , fN−1]

T;
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3. Let β = logγ
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4. Let Fγ q = ψ̂∗(a( 2πk

N + iβ ))|k=[0,1,··· ,N−1]T ;
5. zγ [i] = F−1

γ (Fγ f .∗Fγ q), i = 0,1, · · · ,N −1.
6. end for
7. W a

f [i] =
zα [i]+z−α [i]

2 , i = 0,1, · · · ,N −1.

5. NUMERICAL EXPERIMENTS
We will repeat experiments previously done in Ref. [12], with
various algorithms. Specifically, GDFT-based algorithm with
parameter α = 1 is considered in Ref. [12]. However, in this
paper, any α ∈C may be used.

For the signal with length n = 1024 in Fig. 1 of Ref. [12], we
conduct Morlet wavelet transform, where the Morlet wavelet
parameters are σ2 = 1, η = 5, using various algorithms.

The various algorithms are time domain algorithm [12, 23],
frequency domain algorithm [12, 23], GDFT based algorithm
with parameters α = 1,3,5, . . ., 19, i, 3i, 5i, . . . , 19i, 1+i,
3+3i, 5+5i, . . . , 19+19i, 38+38i, 380+380i, 3800+3800i,
38000+38000i.

The mean squared errors

(
MSE =

1
n

n

∑
i=1

(
Yi − Ŷi

)2

)
of

wavelet coefficients of various algorithms compared with
GDFT based algorithm(α = 1) are shown in Table 1.

Table 2 is the same with Table 1, but the Morlet wavelet pa-
rameters are σ2 = 1,η = 6.

From Table 1 and 2, some information can be drawn.
• If the modulus of the parameter α is not too large, the errors

among the algorithms based on GDFT with different parame-
ter α is small. This shows that these algorithms have a closer
relationship.

• The error between GDFT based algorithm(α = 1) and
frequency-domain algorithm is less than that between
GDFT based algorithm(α = 1) and time-domain algorithm.
This shows that the relationship between GDFT based
algorithm(α = 1) and frequency-domain algorithm is closer
than that between GDFT based algorithm(α = 1) and time-
domain algorithm.

Table 1

The mean squared errors (MSE =
1
n

n

∑
i=1

(Yi − Ŷi)
2) of wavelet coefficients of

various algorithms compared with GDFT based algorithm(α = 1). The Morlet
wavelet parameters are σ2 = 1,η = 5. The various algorithms are time domain
algorithm [12, 23], frequency domain algorithm [12, 23], GDFT based algo-
rithm with parameters α = 1,3,5, · · · , 19, i,3i,5i, · · · , 19i,1+i, 3+3i, 5+5i, · · · ,

19+19i, 38+38i, 380+380i, 3800+3800i, 38000+38000i

Algorithms Errors Algorithms Errors
α = 1 0 time-dom-algo 0.1081×10−14

fre-dom-algo 0.0352×10−14 α = 3 0.0021×10−14

α = 5 0.0037×10−14 α = 7 0.0051×10−14

α = 9 0.0064×10−14 α = 11 0.0076×10−14

α = 13 0.0089×10−14 α = 15 0.0102×10−14

α = 17 0.0116×10−14 α = 19 0.0131×10−14

α = 1i 0.0102×10−14 α = 3i 0.0099×10−14

α = 5i 0.0125×10−14 α = 7i 0.0152×10−14

α = 9i 0.0180×10−14 α = 11i 0.0207×10−14

α = 13i 0.0235×10−14 α = 15i 0.0264×10−14

α = 17i 0.0293×10−14 α = 19i 0.0323×10−14

α = 1+1i 0.0215×10−14 α = 3+3i 0.0216×10−14

α = 5+5i 0.0256×10−14 α = 7+7i 0.0301×10−14

α = 9+9i 0.0347×10−14 α = 11+11i 0.0394×10−14

α = 13+13i 0.0442×10−14 α = 15+15i 0.0491×10−14

α = 17+17i 0.0542×10−14 α = 19+19i 0.0593×10−14

α = 38+38i 0.1148×10−14 α = 380+380i 0.3041×10−13

α = 3800+3800i 0.1957×10−11 α = 38000+38000i 0.1552×10−9

Table 2
The same with Table 1, but the Morlet wavelet parameters are σ2 = 1, η = 6

Algorithms Errors Algorithms Errors
α = 1 0 time-dom-algo 0.1028×10−19

fre-dom-algo 0.0456×10−19 α = 3 0.0027×10−19

α = 5 0.0048×10−19 α = 7 0.0065×10−19

α = 9 0.0081×10−19 α = 11 0.0097×10−19

α = 13 0.0113×10−19 α = 15 0.0130×10−19

α = 17 0.0147×10−19 α = 19 0.0165×10−19

α = 1i 0.0136×10−19 α = 3i 0.0132×10−19

α = 5i 0.0166×10−19 α = 7i 0.0202×10−19

α = 9i 0.0239×10−19 α = 11i 0.0276×10−19

α = 13i 0.0313×10−19 α = 15i 0.0351×10−19

α = 17i 0.0391×10−19 α = 19i 0.0431×10−19

α = 1+1i 0.0293×10−19 α = 3+3i 0.0293×10−19

α = 5+5i 0.0348×10−19 α = 7+7i 0.0410×10−19

α = 9+9i 0.0473×10−19 α = 11+11i 0.0538×10−19

α = 13+13i 0.0605×10−19 α = 15+15i 0.0674×10−19

α = 17+17i 0.0744×10−19 α = 19+19i 0.0816×10−19

α = 38+38i 0.1598×10−19 α = 380+380i 0.4359×10−18

α = 3800+3800i 0.2822×10−16 α = 38000+38000i 0.2243×10−14

• The running result of GDFT based algorithm is stable and
reliable if the absolute value of parameter α is not large
enough. For example, for α = 1,3,5, · · · , 19, i,3i,5i, · · · ,19i,
1+i, 3+3i, 5+5i, 7+7i, the errors of GDFT based algorithms
are smaller than that of frequency domain algorithm.

• For GDFT based algorithms, if the modulus of the parameter
α is too large, the error will increase. For example, the errors
of GDFT based algorithm with parameter α = 38+38i, α =
380+380i, α = 3800+3800i, α = 38000+38000i are larger
than that of time domain algorithm.
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The running time of various algorithms is displayed in Ta-
ble 3 and Table 4. From Table 3 and Table 4, some information
can be drawn.

• GDFT based algorithms run faster than frequency domain al-
gorithm, while frequency domain algorithm runs faster than
time domain algorithm [12].

• GDFT based algorithm with parameter 1 or 1i runs faster.

Table 3
The running time of various algorithms, with Morlet wavelet parameters σ2 =
1, η = 5, running 500 times under the same conditions. The unit of running
time is second. The various algorithms are time domain algorithm [12, 23],
frequency domain algorithm [12, 23], GDFT based algorithm with parame-
ters α = 1,3,5, . . . ,19, i,3i,5i, . . ., 19i,1+i,3+3i,5+5i, . . ., 19+19i, 38+38i,

380+380i, 3800+3800i, 38000+38000i

Algorithms Time Algorithms Time

α = 1 0.7349 time-dom-algo 1.8491
fre-dom-algo 1.4809 α = 3 1.2911

α = 5 1.4006 α = 7 1.1428
α = 9 1.2184 α = 11 1.1773

α = 13 1.2366 α = 15 1.1947
α = 17 1.1478 α = 19 1.1621
α = 1i 0.8111 α = 3i 1.2327
α = 5i 1.1755 α = 7i 1.1623
α = 9i 1.1622 α = 11i 1.1641

α = 13i 1.1443 α = 15i 1.1649
α = 17i 1.1602 α = 19i 1.1749

α = 1+1i 1.1113 α = 3+3i 1.1702
α = 5+5i 1.1305 α = 7+7i 1.1430
α = 9+9i 1.1668 α = 11+11i 1.1427

α = 13+13i 1.1444 α = 15+15i 1.1661
α = 17+17i 1.1555 α = 19+19i 1.1426
α = 38+38i 1.1933 α = 380+380i 1.1746

α = (38+38i)×102 1.1573 α = (38+38i)×103 1.1864

Table 4
The same with Table 3, but the Morlet wavelet parameters are σ2 = 1,η = 6

Algorithms Time Algorithms Time

α = 1 0.7423 time-dom-algo 1.9305
fre-dom-algo 1.5221 α = 3 1.2587

α = 5 1.3006 α = 7 1.1485
α = 9 1.1341 α = 11 1.1380
α = 13 1.1246 α = 15 1.1411
α = 17 1.1389 α = 19 1.1202
α = 1i 0.7973 α = 3i 1.2441
α = 5i 1.1417 α = 7i 1.1332
α = 9i 1.1391 α = 11i 1.1376

α = 13i 1.1665 α = 15i 1.1438
α = 17i 1.1527 α = 19i 1.1714

α = 1+1i 1.1542 α = 3+3i 1.1320
α = 5+5i 1.1246 α = 7+7i 1.1439
α = 9+9i 1.1387 α = 11+11i 1.1221

α = 13+13i 1.1731 α = 15+15i 1.1391
α = 17+17i 1.1540 α = 19+19i 1.1299
α = 38+38i 1.1462 α = 380+380i 1.1584

α = (38+38i)×102 1.1507 α = (38+38i)×103 1.1854

6. CONCLUSION AND FUTURE WORK
In the generalized Fourier domain based on non causal signals,
we prove the time-domain shift property of GDFT. We define
the weighted circular convolution of non causal signals and give
the relationship between weighted circular convolution and lin-
ear convolution. The time invariant property of weighted circu-
lar convolution is proposed and proved. Using this property, the
computation of CWT is transformed into the computation of
weighted circular convolution with any complex parameter α .

Theoretically, GDFT based algorithm with any complex pa-
rameter α can be used to calculate CWT. However, if the mod-
ulus of the parameter α is too large, the error will increase. We
propose the following questions which would be answered in
the future.
• How to evaluate the stability and reliability of the algorithm;
• Whether there is some relationship between the error and the

modulus of the parameter;
• When the parameter α is in what interval, the result of GDFT

based algorithm is stable and reliable.
Therefore, theoretical error analysis [24] is our next research
goal.
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we prove the time-domain shift property of GDFT. We define
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rameter α can be used to calculate CWT. However, if the mod-
ulus of the parameter α is too large, the error will increase. We
propose the following questions which would be answered in
the future.
• How to evaluate the stability and reliability of the algorithm;
• Whether there is some relationship between the error and the
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we prove the time-domain shift property of GDFT. We define 
the weighted circular convolution of non causal signals and 
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convolution is proposed and proved. Using this property, the computa-
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Theoretically, GDFT based algorithm with any complex 
parameter a can be used to calculate CWT. However, if the modu-
lus of the parameter a is too large, the error will increase. We 
propose the following questions which would be answered in 
the future.
●	How to evaluate the stability and reliability of the algorithm;
●	Whether there is some relationship between the error and the 

modulus of the parameter;
●	When the parameter a is in what interval, the result of GDFT 

based algorithm is stable and reliable.
Therefore, theoretical error analysis [24] is our next research 
goal.

ACKNOWLEDGEMENTS
The work is supported by the natural science foundation of 
Jiangxi Province, China (No. 20161BAB201017) and the 
scientific research foundation of the education bureau of 
Jiangxi Province, China (No. GJJ201009, No. GJJ170643, No. 
GJJ190549).

REFERENCES
	 [1]	 N.	Holighaus,	G.	Koliander,	Z.	Průša,	and	L.D.	Abreu,	“Char-

acterization of Analytic Wavelet Transforms and a New Phase-
less Reconstruction Algorithm,” IEEE Trans. Signal Process., 
vol. 67, no. 15, pp. 3894–3908, 2019.

 [2] M. Rayeezuddin, B. Krishna Reddy, and D. Sudheer Reddy, 
“Performance	of	reconstruction	factors	for	a	class	of	new	com-
plex continuous wavelets,” Int. J. Wavelets Multiresolution 
Inf. Process., vol. 19, no. 02, p. 2050067, 2021, doi: 10.1142/
S0219691320500678.

	 [3]	 Y.	Guo,	B.-Z.	Li,	and	L.-D.	Yang,	“Novel	fractional	wavelet	
transform: Principles, MRA and application,” Digital Signal 
Process., vol. 110, p. 102937, 2021. [Online]. Available: doi: 
10.1016/j.dsp.2020.102937.

	 [4]	 V.K.	Patel,	S.	Singh,	and	V.K.	Singh,	“Numerical	wavelets	
scheme to complex partial differential equation arising from 
Morlet continuous wavelet transform,” Numer. Methods Par-
tial Differ. Equations, vol. 37, no. 2, pp. 1163–1199, mar 2021.

	 [5]	 C.K.	Chui,	Q.	Jiang,	L.	Li,	and	J.	Lu,	“Signal	separation	based	
on adaptive continuous wavelet-like transform and analysis,” 
Appl.	Comput.	Harmon.	Anal.,	vol.	53,	pp.	151‒179,	2021.

	 [6]	 O.	Erkaymaz,	I.S.	Yapici,	and	R.U.	Arslan,	“Effects	of	obesi-
ty on time-frequency components of electroretinogram signal 
using continuous wavelet transform,” Biomed. Signal Process. 
Control, vol. 66, p. 102398, 2021.

	 [7]	 Z.	Yan,	P.	Chao,	J.	Ma,	D.	Cheng,	and	C.	Liu,	“Discrete	convo-
lution wavelet transform of signal and its application on BEV 
accident data analysis,” Mech. Syst. Signal Process., vol. 159, 
2021.

The running time of various algorithms is displayed in 
Table 3 and Table 4. From Table 3 and Table 4, some informa-
tion can be drawn.
●	GDFT based algorithms run faster than frequency domain 

algorithm, while frequency domain algorithm runs faster 
than time domain algorithm [12].

●	GDFT based algorithm with parameter 1 or 1i runs faster.

Table 3
The running time of various algorithms, with Morlet wavelet 
parameters σ 2 = 1,	η = 5,	running	500	times	under	the	same	
conditions. The unit of running time is second. The various 

algorithms are time domain algorithm [12, 23], frequency domain 
algorithm [12, 23], GDFT based algorithm with parameters 
α = 1, 3, 5, …,	19;	i; 3i; 5i,	…,	19i,	1 + i,	3 + 3i,	5 + 5i, …,	

19 + 19i,	38 + 38i,	380 + 380i,	3800 + 3800i,	38000 + 38000i

Table 4
The same with Table 3, but the Morlet wavelet parameters are 

σ 2 = 1,	η = 6

https://doi.org/10.1142/S0219691320500678
https://doi.org/10.1142/S0219691320500678
https://doi.org/10.1016/j.dsp.2020.102937


9

Time invariant property of weighted circular convolution and its application to continuous wavelet transform

Bull. Pol. Acad. Sci. Tech. Sci. 69(4) 2021, e137726

	 [8]	 R.	Bardenet	and	A.	Hardy,	“Time-frequency	 transforms	of	
white noises and Gaussian analytic functions,” Appl. Com-
put. Harmon. Anal., vol. 50, pp. 73–104, 2021, doi: 10.1016/j.
acha.2019.07.003.

	 [9]	 M.X.	Cohen,	“A	better	way	to	define	and	describe	Morlet	
wavelets for time-frequency analysis,” NeuroImage, 
vol. 199, pp. 81–86, 2019. doi: 10.1016/j.neuroimage.2019.05. 
048.

	[10]	 H.	Yi	and	H.	Shu,	“The	improvement	of	the	Morlet	wavelet	for	
multi-period analysis of climate data,” C.R. Geosci., vol. 344, 
no. 10, pp. 483–497, 2012.

 [11] S.G. Mallat, A Wavelet Tour of Signal Processing: The Sparse 
Way. Academic Press, 2009.

	[12]	 H.	Yi,	P.	Ouyang,	T.	Yu,	and	T.	Zhang,	“An	algorithm	for	
Morlet wavelet transform based on generalized discrete 
Fourier transform,” Int. J. Wavelets Multiresolution Inf. 
Process., vol. 17, no. 05, p. 1950030, 2019, doi: 10.1142/
S0219691319500309.

	[13]	 R.	Tolimieri,	M.	An,	and	C.	Lu,	Algorithms for Discrete Fou-
rier Transform and Convolution. Springer, 1997.

	[14]	 J.-M.	Attendu	and	A.	Ross,	“Method	for	finding	optimal	ex-
ponential	decay	coefficient	in	numerical	Laplace	transform	for	
application to linear convolution,” Signal Process., vol. 130, 
pp. 47–56, 2017.

	[15]	 W.	Li	and	A.M.	Peterson,	“FIR	Filtering	by	the	Modified	Fer-
mat Number Transform,” IEEE Trans. Acoust. Speech Signal 
Process., vol. 38, no. 9, pp. 1641–1645, 1990.

	[16]	 M.J.	Narasimha,	“Linear	Convolution	Using	Skew-Cyclic	Con-
volutions,” Signal Process. Lett., vol. 14, no. 3, pp. 173–176,  
2007.

	[17]	 J.	Martinez,	R.	Heusdens,	and	R.C.	Hendriks,	“A	Generalized	
Poisson	Summation	Formula	and	its	Application	to	Fast	Lin-
ear Convolution,” IEEE Signal Process Lett., vol. 18, no. 9, 
pp. 501–504, 2011.

	[18]	 R.C.	Guido,	F.	Pedroso,	A.	Furlan,	R.C.	Contreras,	L.G.	Caobi-
anco,	and	J.S.	Neto,	“CWT£DWT£DTWT£SDTWT: Clarify-
ing terminologies and roles of different types of wavelet trans-
forms,” Int. J. Wavelets Multiresolution Inf. Process., vol. 18, 
no. 06, p. 2030001, 2020, doi: 10.1142/S0219691320300017.

	[19]	 P.	Kapler,	“An	application	of	continuous	wavelet	transform	and	
wavelet coherence for residential power consumer load pro-
files analysis,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 1, 
p. e136216, 2021, doi: 10.24425/bpasts.2020.136216.

	[20]	 J.	Martinez,	R.	Heusdens,	and	R.C.	Hendriks,	“A	generalized	
Fourier domain: Signal processing framework and applica-
tions,” Signal Process.,	vol.	93,	no.	5,	pp.	1259‒1267,	2013.

	[21]	 S.	Hui	and	S.H.	Żak,	“Discrete	Fourier	 transform	and	per-
mutations,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 6, 
pp. 995–1005, 2019.

	[22]	 Z.	Babic	and	D.P.	Mandic,	“A	fast	algorithm	for	linear	convo-
lution of discrete time signals,” in 5th International Confer-
ence on Telecommunications in Modern Satellite, Cable and 
Broadcasting Service. TELSIKS 2001. Proceedings of Papers 
(Cat. No.01EX517), vol. 2, 2001, pp. 595–598.

	[23]	 H.	Yi,	S.	Y.	Xin,	and	J.	F.	Yin,	“A	Class	of	Algorithms	for	
ContinuousWavelet Transform Based on the Circulant Matrix,” 
Algorithms, vol. 11, no. 3, p. 24, 2018.

	[24]	 D.	 Spałek,	 “Two	 relations	 for	 generalized	 discrete	 Fouri-
er transform coefficients,” Bull. Pol. Acad. Sci. Tech. Sci., 
vol. 66, no. 3, pp. 275–281, 2018, doi: 10.24425/123433.

https://doi.org/10.1016/j.acha.2019.07.003
https://doi.org/10.1016/j.acha.2019.07.003
https://doi.org/10.1016/j.neuroimage.2019.05.048
https://doi.org/10.1016/j.neuroimage.2019.05.048
https://doi.org/10.1142/S0219691319500309
https://doi.org/10.1142/S0219691319500309
https://doi.org/10.1142/S0219691320300017
https://doi.org/10.24425/bpasts.2020.136216
https://doi.org/

