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Sliding mode observers for fault identification
in linear systems not satisfying matching

and minimum phase conditions

Alexey ZHIRABOK, Alexander ZUEV, Vladimir FILARETOV and Alexey SHUMSKY

The paper studies the fault identification problem for linear control systems under the
unmatched disturbances. A novel approach to the construction of a sliding mode observer
is proposed for systems that do not satisfy common conditions required for fault estimation,
in particular matching condition, minimum phase condition, and detectability condition. The
suggested approach is based on the reduced order model of the original system. This allows to
reduce complexity of sliding mode observer and relax the limitations imposed on the original
system.
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1. Introduction

This work is devoted to the problem of fault diagnosis in engineering sys-
tems. The fault diagnosis problem was extensively investigated for the past 30
years (see, e.g., [5, 10, 20, 27]). A variety of tools for fault diagnosis have been
developed: diagnostic observers, parity relations, identification. There are many
methods of identification, one is based on sliding mode observers (SMO) and
uses peculiarities of sliding motion [23] which has many applications in control
and observation.

Sliding mode observers are used for fault identification (reconstruction) in
different systems: linear [11,12,21,22], nonlinear [6,9,17,25], and descriptor [7],
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for fault tolerant control [1, 8], in practical applications [13, 14, 31]. Sufficient
conditions for existence of SMO are that the invariant zeroes of the system must
be stable (minimum phase) and the matching condition is satisfied [9]; these
conditions could be stringent and limit the applicability of SMO technique.

Two methods have been developed to relax the matching condition. The first
method uses high-order sliding mode differentiator [4, 15–17, 26] to generate
the derivatives of the outputs which are added to the original system to form a
system satisfying the matching condition. The second one uses multiple SMOs in
cascade [22], where signals from an observer are used as the output of a fictitious
system whose input is the function describing fault; such a process is repeated
until the fictitious system satisfies thematching condition. Although bothmethods
are effective, the structure of the fault reconstruction scheme is complicated and
large errors could occur. In addition, the system must be minimum phase.

In [2] this condition was relaxed but at the cost of the fault estimate being
corrupted by the fault derivative or other dynamics, whereas in [19] the estimation
errors are only bounded and asymptotic convergence cannot be achieved. [3]
relaxed the minimum phase condition for systems where the fault occurs at the
output. In [18, 24] the minimum phase condition is relaxed to only requiring
detectability.

Note also that sliding mode observers in [12] and similar papers are con-
structed based on the original system. As a result, sliding mode observers are of
full order.

The novelty of the proposed approach is that SMO is constructed for systems
not satisfyingmatching, minimum phase, and detectability conditions. This arises
from the fact that SMO is not constructed for the original systembut for its reduced
order model. As a result, such a model can be free from some special properties
of the original system preventing SMO construction. Besides, the dimension of
the observer becomes less than that of the original system.

Consider system described by linear dynamic model

ẋ(t) = Fx(t) + Gu(t) + Dd(t) + Lρ(t),

y(t) = H x(t),
(1)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rl are vectors of state, control and output, F,
G, H , D, and L are known constant matrices, d(t) ∈ R is a function describing
faults: if there are no faults, d(t) = 0, if a fault occurs, d(t) becomes an unknown
function of time, ρ(t) ∈ Rp is the unmatched disturbance, it is assumed that ρ(t)
is an unknown bounded function of time.

The term Dd(t) may be caused by the change ∆F in the matrix F (or by
∆G in G) due to some failure in the system; in this case we may set D = 1 and
d(t) = ∆Fx(t) (or d(t) = ∆Gu(t)) and identify the function d(t). The term Lρ(t)
reflects the external disturbances and modeling errors.
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Recall that in [25] and similar papers it is assumed that system (1) satisfies the
following conditions: 1) rank (H[L D]) = rank ([L D]), 2) all invariant zeros of
(F, [L D], H) lie in the left half plane; the papers [18,24] require that the system
should be detectable. In the present paper, the problem of fault identification is
solved without these conditions. The suggested solution is based on the reduced
order model of the original system.

This paper is organized as follows. Section 2 present a solution of the problem
including reduced order model design, sliding mode observer design, and fault
identification under disturbances. Simulation example is considered is Section 3.
Section 4 concludes the paper.

2. Problem solution

2.1. Preliminaries

It is assumed that (F, H) is non-detectable therefore Ker (V (n)) , Ø, where

V (n) =
*...
,

H
HF
· · ·

HFn−1

+///
-

and unobservable part of the system is unstable.

Assumption 1 Im(D) ∩ Ker (V (n)) = Ø.

Let rd be minimal relative degree of the output vector y with respect to the
function d(t), y∗ be an output corresponding to rd , and the matrix R∗ be such that
R∗y(t) = y∗(t). It follows from Assumption 1 that rd < ∞.

Solution of the problem is based on the reduced order model of system (1)
generally described by the equations

ẋ∗(t) = F∗x∗(t) + G∗u(t) + J∗y(t) + D∗d(t) + L∗ρ(t),

y∗(t) = H∗x∗(t),
(2)

where x∗(t) ∈ Rk , k ­ rd , is the state vector, F∗, G∗, J∗, H∗, D∗, and L∗ are
matrices to be determined. We assume that x∗(t) = Φx(t) for some matrix Φ. It
is known [28,29] that matrices R∗ and Φ satisfy the conditions

ΦF = F∗Φ + J∗H, R∗H = H∗Φ,
ΦG = G∗, ΦD = D∗, ΦL = L∗ .

(3)



256 A. ZHIRABOK, A. ZUEV, V. FILARETOV, A. SHUMSKY

2.2. Reduced order model design

Consider the method to construct system (2) under ρ(t) = 0 which will be
used for sliding mode observer design. The matrices F∗ and H∗ are sought in the
canonical form

F∗ =
*...
,

0 0 . . . 0 0
1 0 . . . 0 0
· · · · · · · · · · · · · · ·

0 0 . . . 1 0

+///
-

, H∗ = ( 0 0 . . . 0 1 ).

Using these matrices, one obtains from (3) equations for rows of the matrices Φ
and J∗:

Φk = R∗H, ΦiF = Φi−1 + J∗i H, i = k, . . . , 2,
Φ1F = J∗1H,

(4)

whereΦi and J∗i are i-th rows of the matricesΦ and J∗, i = 1, . . . , k . As is shown
in [29], equations (4) can be transformed into the single equation

R∗HFk = J∗k HFk−1 + J∗k−1HFk−2 + . . . + J∗1H .

Rewrite it in the form

( 1 −J∗k . . . −J∗1 )W (k) = 0, (5)

where

W (k) =
*...
,

R∗HFk

HFk−1

· · ·

H

+///
-

.

One has to solve this equation for minimal k ­ rd . As a result, the model (2)
takes the form

ẋ∗(t) = F∗x∗(t) + G∗u(t) + J∗y(t) + D∗d(t),

y∗(t) = H∗x∗(t).
(6)

Similar to [24], we write down all matrices in (6) in the form

F∗ =
(

F1 F2
F3 F4

)
, H∗ = ( 0 0 . . . 0 1 ),

G∗ =
(

G∗1
G∗2

)
, J∗ =

(
J∗1
J∗2

)
, D∗ =

(
D∗1
D∗2

)
,

(7)
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where

F1 =
*...
,

0 0 . . . 0 0
1 0 . . . 0 0
· · · · · · · · · · · · · · ·

0 0 . . . 1 0

+///
-

∈ Rk−1×k−1, F2 =
*...
,

0
0
. . .
0

+///
-

∈ Rk−1×1,

F3 = (0 0 . . . 0 1) ∈ R1×k−1, F4 = 0;

the rest of the matrices in (7) have the appropriate dimensions. Introduce a

coordinate transformation z = T x∗ with T =
(

Ik−1 A
0 1

)
, where A ∈ Rk−1×1 is

selected to make F1 = F1 + AF3 stable. Since (F1, F3) is observable, this matrix
exists and is of the form A := (a1 a2 . . . ak−1)T .

As a result, we obtain the model in the following form:

ż1 = F1z1 + F2y∗ + G1u + J∗1y + D1d,

ż2 = F3z1 + F4y∗ + G2u + J∗2y + D2d,

y∗ = z2 ,

(8)

where

F1 =
*...
,

0 0 . . . 0 a1
1 0 . . . 0 a2
· · · · · · · · · · · · · · ·

0 0 . . . 1 ak−1

+///
-

, F2 = −
*...
,

a1ak−1
a2ak−1
. . .

a2
k−1

+///
-

,

F3 = (0 0 . . . 0 1), F4 = −ak−1,

G1 = G∗1 + AG∗2, G2 = G∗2,

J1 = J∗1 + AJ∗2, J2 = J∗2,

D1 = D∗1 + AD∗2, D2 = D∗2.

2.3. Sliding mode observer design

Since F1 is stable, symmetric positive definite matrices P and Q exist such
that F

T
1 P + PF1 = −Q. By analogy with [24], sliding mode observer is sought in

the form

˙̂z1 = F1 ẑ1 + F2y∗ + G1u + J∗1y + K1v,

˙̂z2 = F3 ẑ1 + F4y∗ + G2u + J∗2y + k2e2 + k3v,
(9)
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where e2 = y∗ − ẑ2, v = sign(e2), K1 = P−1F
T
3 k1, k1, k2, k3 ∈ R are positive

numbers:

k3 ­ δ‖F3‖ + β‖D2‖, k1 ­
δ β‖PD1‖

k3 − β‖D2‖
, (10)

β is such that β ­ ‖d(t)‖, δ is the value of the norm to which the estimation
error e1 will be bounded.

From (8) and (9) it follows

ė1 = F1e1 + D1d − K1v,

ė2 = F3e1 + D2d − k2e2 − k3v,
(11)

where e1 = z1 − ẑ1.

Lemma 1 Let the function e(t) satisfies the equation

ė(t) = Fe(t) + g(t), (12)

where F is p×p stablematrix, ‖g(t)‖ ¬ g∗ is a bounded function. Then ‖e(t)‖ ¬ γ
for some γ.

Proof. It is known that a solution of (12) is of the form

e(t) = exp
(
Ft

) *..
,

x(0) +

t∫
0

exp
(
F (t − τ)

)
g(τ)dτ

+//
-
. (13)

Assume for simplicity that F has different eigenvalues λ1, . . . , λp. It is known
that in this case

exp(Ft) =
p∑

k=1
Ck eλk t,

where

Ck =
(F − λ1E) . . . (F − λk−1E)(F − λk+1E) . . . (F − λpE)

(λk − λ1) . . . (λk − λk−1)(λk − λk+1) . . . (λk − λp)
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k = 1, . . . , p. Let maxk=1,...,p Reλk = −a, a > 0. Then

‖e(t)‖ ¬
p∑

k=1
‖Ck ‖eReλk t ‖e(0)‖ +

t∫
0

p∑
k=1
‖Ck ‖eReλk (t−τ)g∗dτ

¬
p∑

k=1
‖Ck ‖e−at ‖e(0)‖ +

p∑
k=1
‖Ck ‖g∗

t∫
0

e−a(t−τ) dτ

=

p∑
k=1
‖Ck ‖

(
e−at ‖e(0)‖ +

g∗

a
(1 − e−at )

)
¬

p∑
k=1
‖Ck ‖

(
‖e(0)‖ + g∗/a

)
= γ.

Theorem 1 The observer (9) estimates the function d(t) as follows:

d̂(t) = k3D+
∗2veq(t) (14)

if D∗1 = 0,
d̂(t) = K1D+

∗1veq(t) (15)

otherwise, where D+
∗1 = (D

T
∗1D∗1)−1D

T
∗1 and D+

∗2 = (D
T
∗2D∗2)−1D

T
∗2, veq(t) is the

so-called equivalent output injection signal representing the average behavior of
the discontinuous function v(t). According to [12], we use as veq(t) the continuous
approximation

veq(t) =
e2(t)

|e2(t) | + ε
,

where ε is a small positive scalar.
Proof. We prove firstly that ‖e1(t)‖ ¬ δ for some δ. Since d(t) is bounded
function and ‖v(t)‖ = 1, then ‖D1d(t) − K1v(t)‖ ¬ g0 for some g0. It follows
from (11) and Lemma 1 that the error e1(t) is bounded by ‖e1(t)‖ ¬ δ for some δ.

Secondly, we prove that by suitable choices of the observer gains e2 = 0 in
finite time and sliding motion is achieved. Consider Lyapunov function V2 = e2

2
and take its derivative using (11):

V̇2 = 2e2ė2 = 2e2
(
F3e1 + D2d − k2e2 − k3v

)
.

Since v = sign(e2), then 2e2k3v = 2k3 |e2 | and

V̇2 ¬ −2k2e2
2 + 2|e2 |

(
−k3 + ‖F3‖‖e1‖ + ‖D2‖‖d‖

)
¬ −2k2e2

2 + 2|e2 |
(
−k3 + δ‖F3‖ + β‖D2‖

)
.
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If k3 satisfies
k3 ­ δ‖F3‖ + β‖D2‖,

then V̇2 ¬ 0 and one can show by analogy with [24] that V̇2 ¬ −c2
√

V2 for some
c2 > 0, and sliding motion (e2 = ė2 = 0) happens in finite time.

Thirdly, to prove that by suitable choices of the observer gains e1 = 0 in finite
time and sliding motion is achieved, consider Lyapunov function V1 = eT

1 Pe1 and
take its derivative using (11):

V̇1 = eT
1

(
F

T
1 P + PF1

)
e1 + 2eT

1 P(D1d − K1v).

From the second equation of (11) and since sliding motion has occurred (e2 =

ė2 = 0) it follows that F3e1 = k3v − D2d. Using K1 = P−1F
T
3 k1, we obtain

V̇1 = −eT
1 Qe1+2eT

1 PD1d−2eT
1 F

T
3 k1v = −eT

1 Qe1+2eT
1 PD1d−2(k3v−D2d)T k1v.

Since ‖e1(t)‖ ¬ δ, it follows that

V̇1 ¬ −eT
1 Qe1 + 2βδ‖PD1‖ − 2k1k3 + 2k1 β‖D2‖.

If k3 and k1 are chosen as in (10), then V̇1 ¬ 0 and it can be shown by analogy
with [24] that V̇1 ¬ −c1

√
V1 for some c1 > 0, and finite convergence of e1 happens

as well. Theorem has been proved. 2

When sliding motion is achieved that is e1 = ė1 = 0 and e2 = ė2 = 0, it
follows from (11) that the function d(t) can be estimated by (14) or (15).

The parameters k1, k2, and k3 should be chosen as close as possible to
their lower bounds since simulation shows that the high magnification of these
parameters prevents to achieve sliding motion.

2.4. Fault identification under disturbances

When ρ(t) , 0, the reduced order model is constructed to be invariant with
respect to the disturbances. The conditionΦL = 0 of invariancewith respect to the
disturbances can be taken into account in the form ( 1 −J∗k . . . −J∗1 )L(k) = 0
[28, 29] where

L(k) =
*...
,

R∗HL R∗HFL . . . R∗HFk−1L
0 HL . . . HFk−2L
· · · · · · · · · · · ·

0 0 . . . 0

+///
-

.

The last equation and (5) result in single equation

( 1 −J∗k . . . −J∗1 )(W (k) L(k)) = 0. (16)
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Solve this equation for minimal k ­ rd and construct the model (6). The model
(8) and observer (9) are constructed by analogy with Subsections 2.2 and 2.3,
and the fault can be identified precisely.

In some cases, invariance with respect to the disturbances cannot be achieved,
and only the problem of approximate fault identification can be solved here [30].

3. Simulation example

Consider linear control system

ẋ1(t) = −x1(t) + x2(t) + u(t),

ẋ2(t) = −x2(t) + x4(t) + d(t),

ẋ3(t) = +x3(t) + x4(t) + ρ(t),

ẋ4(t) = −x4(t) + ρ(t),

y1(t) = x1(t), y2(t) = x4(t).

(17)

The matrices describing this system are as follows:

F =
*...
,

−1 1 0 0
0 −1 0 1
0 0 1 1
0 0 0 −1

+///
-

, G =
*...
,

1
0
0
0

+///
-

, D =
*...
,

0
1
0
0

+///
-

,

H =
(

1 0 0 0
0 0 0 1

)
, L =

(
0 0 1 1

)T
.

It can be shown that Ker (V (4)) = {(0 0 1 0)T } and the system is non-
detectable. Clearly, Im(D) ∩ Ker (V (4)) = Ø, rd = 2, y∗ = y1, and R∗ = (1 0).

One obtains

W (2) =

*.....
,

1 −2 0 1
−1 1 0 0
0 0 0 −1
1 0 0 0
0 0 0 1

+/////
-

, L(2) =

*.....
,

0 0
0 0
0 −1
0 0
0 0

+/////
-

.

It can be shown that (16) has a solution with J∗1 = (−1 1) and J∗2 = (−2 0);
then Φ1 = (1 1 0 0), Φ2 = (1 0 0 0), D∗ = (1 0)T , and G∗ = (1 1)T .

As a result, the model (6) takes the form

ẋ∗1(t) = −y1(t) + y2(t) + u(t) + d(t),
ẋ∗2(t) = x∗1(t) − 2y1(t) + u(t),
y∗(t) = x∗2(t) = y1(t),
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where x∗1 = x1 + x2 and x∗2 = x1. Choosing A = −1 and taking T =
(

1 −1
0 1

)
,

we obtain the model (8) in the form

ż1(t) = −z1(t) − y∗(t) + y1(t) + y2(t) + d(t),

ż2(t) = z1(t) + y∗(t) − 2y1(t) + u(t),

y∗(t) = z2(t) = y1(t),

where z1 = x∗1 − x∗2 and z2 = x∗2. It follows from this model that F3 = 1,
D1 = 1, D2 = 0; since F1 = −1, we may set P := 1, then Q = 2.

Sliding mode observer is described by equations

˙̂z1(t) = −ẑ1(t) − y∗(t) + y1(t) + y2(t) + K1veq(t),
˙̂z2(t) = ẑ1(t) + y∗(t) − 2y1(t) + u(t) + k2veq(t) + k3e2(t),

(18)

where e2 = y1 − ẑ2, v = sign(e2), K1 = P−1F
T
3 k1 = k1, k1 ­ β, k2 > 0, k3 ­ δ,

δ = β + k1, β is such that β ­ ‖d(t)‖. Since D+1 , 0, the function d(t) can be
estimated as

d̂(t) = D+
∗1k1veq(t) = k1veq(t).

For simulation, consider system (17) and the observer (18) with the control
u(t) = sin(t), ρ(t) = 20sin(2t), k1 = 1.5, k2 = 0.01, k3 = 3, and |e1(0) | = 0.
Simulation results are presented in Figs. 1 and 2 showing behavior of the function
d(t), its estimation d̂(t) and the estimation error ∆(t) = d̂(t) − d(t) for two types
of function d(t) – sinusoidal and step-shaped, respectively.

(a) (b)

Figure 1: Behavior of the step-shaped function d(t) (a,1), its estimation d̂(t) (a,2), and
the fault estimation error ∆(t) = d̂(t) − d(t) (b)
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(a) (b)

Figure 2: Behavior of the sinusoidal function d(t) (a,1), its estimation d̂(t) (a,2), and the
fault estimation error ∆(t) = d̂(t) − d(t) (b)

4. Concluding remarks

In this paper, the problem of fault identification for systems under the dis-
turbance that do not satisfy the matching, minimum phase, and detectability
conditions is studied. These conditions were reduced to less restrictive one. The
suggested method is based on the reduced order model of the original system.
A simulation example shows the effectiveness of the proposed method.

The possibility of construction of the observer estimating the fault for systems,
in which the unobservable part is not stable, is more theoretical result than
practical one. But the suggested method based on the reduced order model is
useful per se and can be used for fault identification in different systems.
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