
10.24425/acs.2021.137426
Archives of Control Sciences

Volume 31(LXVII), 2021
No. 2, pages 331–346

Power-aware scheduling of data-flow hardware circuits
with symbolic control

Mete ÖZBALTAN and Nicolas BERTHIER

We devise a tool-supported framework for achieving power-efficiency of data-flow hardware
circuits. Our approach relies on formal control techniques, where the goal is to compute a strategy
that can be used to drive a given model so that it satisfies a set of control objectives. More
specifically, we give an algorithm that derives abstract behavioral models directly in a symbolic
form from original designs described at Register-transfer Level using a Hardware Description
Language, and for formulating suitable scheduling constraints and power-efficiency objectives.
We show how a resulting strategy can be translated into a piece of synchronous circuit that,
when paired with the original design, ensures the aforementioned objectives. We illustrate and
validate our approach experimentally using various hardware designs and objectives.

Key words: symbolic discrete controller synthesis, digital synchronous circuits, power-
efficiency

1. Introduction

High-level models are often required to reason on synchronous circuits de-
signs, and apply scalable techniques to translate them into new designs that meet
various performance goals such as power-efficiency [9]. Among these models, the
data-flow family see circuits as actors that communicate through communication
channels, and Kahn Process Networks (KPN) [8] are a sub-class of such models
where each actor (aka process) feeds from one or more queue of jobs stored
in bounded channels (FIFOs). KPNs can be used to describe systems where the
amount of data produced and consumed by an process is not statically determined.

We consider designs that implement KPNs, and where each process imple-
mentation is described at Register-Transfer Level in a Hardware Description

Copyright © 2021. The Author(s). This is an open-access article distributed under the terms of the Creative Com-
mons Attribution-NonCommercial-NoDerivatives License (CC BY-NC-ND 4.0 https://creativecommons.org/licenses/
by-nc-nd/4.0/), which permits use, distribution, and reproduction in any medium, provided that the article is properly
cited, the use is non-commercial, and no modifications or adaptations are made

M. Özbaltan (corresponding author, e-mail: mozbaltan@hotmail.com) is with Erzurum Technical Uni-
versity, Erzurum, Turkey.

N. Berthier is with University of Liverpool, Liverpool, England.
Received 02.02.2020. Revised 27.04.2021.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:mozbaltan@hotmail.com

332 M. ÖZBALTAN, N. BERTHIER

Language (HDL) such as Verilog. We advance a (mostly-)automated procedure
that translates such designs into functionally equivalent ones that in addition enjoy
power-awareness guarantees, in a bid to reduce their dynamic power dissipation.
To this end, we compute a strategy that implements a power-aware scheduling
policy by selectively clock-gating [4] each process. Notice we do not seek to re-
duce the total energy consumed (i.e., power integrated over the total computation
time). Rather, we seek to reduce the instantaneous power (possibly integrated
over a small time window), as this kind of power-efficiency policy usually has a
positive impact on the lifetime of battery-powered devices [16], and also provides
a means to limit chip temperature. In effect, we allow ourselves to degrade timing
performance to achieve such goals.

Our approach relies on the construction of abstract symbolic models of the
designs, and employs discrete control techniques to compute a piece of hardware
circuit that implements some power-aware scheduling policies specified in a
declarative way. This piece of circuit can eventually be used to selectively filter
the clocks of the processes involved.

Outline. The remainder of the paper is organized as follows: Section 2 gives
necessary background on symbolic models and control. Section 3 presents our
approach, which is experimentally evaluated in Section 4. At last, Sections 5
and 6 review related works and conclude.

2. Background on symbolic models and discrete control

Our symbolic models are built upon a finite set of symbols, each associated
with finite domains such as Booleans

{
true, false

}
, (signed) fixed-width Integers

Symbolic expressions are constructed using classical operators from proposi-
tional logic (¬,∧,∨,⇒), linear arithmetic with (in)equalities, and logical oper-
ators for fixed-width Integers, possibly guarded with the conditional construct
“if pred then expr1 else expr2 ”. All expressions must be well typed; in particular
the two rightmost expressions in conditional constructs must have the same type.

Models are made of state and input symbols. The values associated to state
symbols are initialized with constants, and evolve according to a discrete step
(lock-step) semantics very similar to that of synchronous circuits: discrete evo-
lutions are defined using one assignment s := es per state symbol s, where es is
a (well-typed) symbolic expression that determines the valuation memorized in
s based on the current valuations for state and input symbols, at each tick of an
implicit basic clock1.

1Throughout the paper, and unlike :=, s , e denotes the classical formal definition of a left-hand side
symbol s with a right-hand side expression e.

POWER-AWARE SCHEDULING OF DATA-FLOW HARDWARE CIRCUITS
WITH SYMBOLIC CONTROL 333

Solving symbolic control problems on such models can be seen as solving
a game where, at each tick, one player (the environment) gives a value for a
fixed portion of the input symbols, then the other player (the controller) assigns
values to every other input symbol, and then the game evolves into a subsequent
state according to the discrete evolutions and the inputs given by the players. The
control objectives assigned to the second player are expressed as logic formulas
that involve state and/or input symbols, and the solution of the control problem
consists in a strategy that this player can follow to win the game by fulfilling all
its objectives. The input symbols assigned by the first (resp. second) player are
said non-controllable (resp. controllable).

The control objectives that we use in this work are twofold: First, satisfying
safety control objectives consists in enforcing a safety property. Such properties
can be expressed using some temporal logic like LTL [6]. In our case however,
we use the same symbolic constructs as for the model to build stateful observers
that represent the temporal aspects of the properties we need (e.g., sequence,
iteration), and can therefore restrict the safety objective formulas to propositional
logic. Second, satisfying optimization control objectives consists in minimizing a
cost function (summed) over a sliding window of a given number of ticks. A cost
function is typically a total mapping from state and input valuations into some
(partially-)ordered set such as the Rationals.

Observe that there does not always exist a strategy that fulfills the desired
safety control objectives, and in this case safety control algorithms terminate
but produce no output. We shall see that in this work, the absence of a strategy
specifically reveals unrealizable objectives regarding the limitation of dynamic
power consumption (w.r.t. modeling abstractions).

Tooling. Few works have addressed the problems of enforcing safety control and
optimization objectives on the kind of symbolic models we construct; they mostly
derive from the seminal work of [18]. [11] and [12] implemented tools that are
suitable for enforcing safety objectives. In turn [10] and [7] implemented solutions
for optimization objectives, that essentially consist in symbolic adaptations of
Bellman’s algorithm for the computation of optimal strategies using dynamic
programming [2].

Strategies as hardware circuits. Strategies that are computed by algorithms dedi-
cated to operate on symbolic models usually take the form of a predicate on state
and input symbols. Then, given a valuation for state and non-controllable inputs,
a constraint solver needs to be used to find a suitable valuation for controllable
inputs that satisfies the strategy. The existence of such a solution is guaranteed by
the control algorithm.When this solution is always unique, moreover, the strategy
can be translated into a mapping from valuations for state and non-controllable
input symbols into valuations for controllable input symbols, which is basically
a combinatorial circuit. Strategies suitable for this translation can be obtained by

334 M. ÖZBALTAN, N. BERTHIER

refinement with the help of a total order on solutions (e.g., with a total order on
both the controllable input symbols and their respective domains of definition).

3. Models and objectives for power-aware scheduling

3.1. Overview of the approach and contributions

We describe in Fig. 1 the work-flows offered by our approach: our goal is to
automatically construct the Clock-gating Logic (CGL) that implements a power-
aware scheduler for all processes involved. A Design Model M is first built
from the original design. M is made of the synchronous parallel composition
of, for each process in the design: (i) a process model, which is a symbolic
behavioral abstraction of the process, constructed from the HDL description of
its implementation; (ii) an idleness predicate idlep thatmust not hold if the value of
any register within pis not strictly equivalent before and after the edge of the clock
(i.e., it is an under-approximation); and (iii) a symbolic power expression Pp that
gives an estimated measure of the instantaneous dynamic power consumption of
the modeled process based on the state and input symbols of p. Each process pis
associated with a clock-inhibition signal, inhibitp , which is a controllable input
symbol that shall hold when the computations of pcan be suspended, i.e., its clock
can be inhibited.

Figure 1: Overview of the possible work-flows for computing the power-aware CGL

Then, a safety objective ϕ is built, in the form of a conjunction of propositional
formulas involving state symbols of both M plus, possibly, supporting stateful
observers specified using additional state symbols. These objectives fall into
three categories: clock-gating constraints relate each clock-inhibition signal with
the model of its process within M; scheduling constraints restrict the set of
eligible control strategies to those that ensure progress, fairness, and absence of
starvation; lastly, peak power constraints can be used to specify an upper-bound
on the sum of all power expressions upon any tick.

At this stage, a symbolic safety control algorithm is used to compute a strategy
σϕ, which is guaranteed to select values for the controllable inputs that ensure
that the safety objective ϕ are fulfilled. Since clock-inhibition signals belong to
the set of controllable inputs, σϕ and M can be used in combination to form a
piece of circuit that filters the individual clock signals for the respective processes.
Alternatively, the strategy σϕ can be improved by using our new symbolic control

POWER-AWARE SCHEDULING OF DATA-FLOW HARDWARE CIRCUITS
WITH SYMBOLIC CONTROL 335

algorithm that ensures an additional optimization objective O. The cost function
that we use to define O basically consists of the sum of power expressions Pp for
all processes. The resulting refined strategy σϕ+O can be used in the same way
as σϕ to filter the clocks of each process.

Other contributions. We have implemented a set of open-source tools that helps
putting our approach into practice2. These tools allow designers to: (1) construct
the model M and the associated safety and optimization objectives from an HDL
description of the original design; (2) compute suitable strategies, and (3) translate
them into an HDL description of the CGL (the sought after strategies for clock-
inhibition are given in a symbolic form, so their translation into a description
of synchronous circuit in an HDL is essentially syntactical); (4) construct a
new design that integrates this CGL. Note that only step (3.1) above requires
some insight from designers about the design, and all the other stages are fully
automated.

We further detail the process abstraction procedure and associated definition
of control objectives to obtain a power-awareCGL in the remainder of this section.

3.2. Abstracting process implementation behaviors

Our translation and modeling algorithm takes as inputs the set Pof all pro-
cesses in the original design, and produces a model M along with objectives
suitable for computing an implementable CGL by means of symbolic control.
The computations within each individual process is described using a module in
an HDL, that accepts a dedicated @clk@ signal used to drive the updates of its
registers.

3.2.1. Selected HDL variables

Our abstraction algorithm is parametrizedwith a set of selectedHDLvariables
that make up the portion of state and input spaces that is precisely represented
in the constructed model of each process. This key aspect allows designers to
exploit the knowledge they have on their designs, in particular the usual distinction
between command parts and operational parts. Every wire and register that is not
explicitly selected is abstracted away and replaced by oracles:

3.2.2. Oracle symbols

Indeed, while translating HDL expressions into their symbolic counterpart,
our algorithm abstracts away sub-expressions by creating a set of oracles to
replace them in the models. From the point of view of the constructed models,
oracles are non-controllable input symbols, which means that the sought after
strategy must be computed by assuming they can take any value at any tick.

2Each available at https://github.com/mozbaltan/dcs4cgl, https://scm.gforge.inria.fr/anonscm/git/reatk/
reatk.git/, and https://gforge.inria.fr/anonscm/git/reatk/ctrl2hdl.git.

https://github.com/mozbaltan/dcs4cgl
https://scm.gforge.inria.fr/anonscm/git/reatk/reatk.git/
https://scm.gforge.inria.fr/anonscm/git/reatk/reatk.git/
https://gforge.inria.fr/anonscm/git/reatk/ctrl2hdl.git

336 M. ÖZBALTAN, N. BERTHIER

From the point of view of the resulting CGL, however, the actual values of the
expressions abstracted away with oracles need to be known so as to evaluate the
strategy it encodes. To this end, we also produce an “open” HDL implementation
of every process, that features additional output wires carrying the values of the
oracles (i.e., the value of the expressions they represent). These additional wires
are then used to feed the CGL when building up the new design.

Given an HDL expression e on any set of variables, the oracle symbol ωe is
an unknown input whose value is that of e at every tick. we can thus be used
to model behaviors where e itself is abstracted away and can take any value in
its domain. Every knowledge about the modeled behaviors is not lost however.
Indeed, assuming that e and e′ admit the same canonical representation e′′, every
occurrence of e and e′ can be replaced with the same oracleωe′′, and the equality
of valuations for e and e′ can still be represented. Then, every expression e that
involves a non-selected HDL variable is first translated into a canonical form e′,
and replaced with ωe′. An efficient way to compute canonical representations
consists in using (multi-terminal) binary decision diagrams [5].

3.2.3. HDL traversal procedure

Listing 1: A simple process in Verilog

Our process behavior abstraction algorithm operates on a representation of
the module implementation of each process pwhere occurrences of local wires
have all been substituted with their respective expression. The algorithm first
associates a guard with every clock-triggered assignment to selected registers by
traversing every conditional/case constructs of the implementation. Then, for each
selected register, it generates a series of cascading conditional constructs, whose
leave expressions and predicate conditions are respectively built from values
and guards by substituting any expression from the module implementation that
involves non-selected HDL variables with oracles. In turn, the idleness predicate

POWER-AWARE SCHEDULING OF DATA-FLOW HARDWARE CIRCUITS
WITH SYMBOLIC CONTROL 337

idlep corresponds to the conjunction of the negation of all guards from the above
mapping.

A similar process as for selected registers is used to construct the power
expression Pp , where leaves of cascading conditional constructs denote the
amount of potential register bit-flips (i.e., the sum of the width of assigned
registers) instead of assigned values or symbols. We claim that this measure
gives us cost functions that are suitable for demonstrating the effectiveness of our
approach.

Figure 2: Extracts of symbolic model built from the example process of Listing 1

Let us exemplify our translation procedure by examining the result we obtain
from the toy process of Listing 1. Assuming @start@, @r1@, and @done@
constitute the set of selected HDL variables (as they all carry control-flow within
@p@), we give in Fig. 2 the discrete evolution that corresponds to @done@, the
idleness predicate, and the power expression (the result for @r1@ is similar to
that of@done@). State symbol done is the counterpart of@done@ in the model.
Notice it does not evolve when the computations of pare inhibited. Also, observe
that there is a one-to-one correspondence between every portion of guards of
conditional constructs and conditions in the HDL code. Further, Pp states that,
e.g., 33 bits may flip whenever the HDL expression

~(start & ~done) & (r1 & ~done) & ~r2

holds, which manifests in the model as a guard involving the oracle ωr2 since
@r2@ is abstracted away (@r2@ is not selected).

3.3. Abstract process observers and control means

We now describe in this section the additional parts of the constructed model,
i.e., observers and control objectives, that allow us to compute a strategy suitable
to obtain a power-aware CGL. All these parts are automatically derived from the

338 M. ÖZBALTAN, N. BERTHIER

original design. For each process p, our construction assumes the availability of
the following additional non-controllable input symbols: (i) one FIFO emptiness
symbol emptyp , that holds whenever all FIFOs pfeeds from are empty; and
(ii) one termination symbol donep , that holds for one tick whenever pterminates
a job. A “slow” global clock slow-clk non-controllable input symbol may be used
to enforce a preemptive model of concurrency among all processes.

3.3.1. Abstract process observer

The operational status of each process is modeled using a symbolic encoding
of a two-state Mealy machine that transitions whenever its input holds. For a
process p, this symbolic model is defined as

suspendedp := if suspendedp then ¬cp else cp . (1)

The suspendedp symbol is a Boolean component of the state space that holds
whenever the operations of pare suspended, whereas the symbol cp denotes the
Boolean input that drives suspendedp . cp is controllable, meaning that it serves
as a leaver for the control strategy to suspend or activate pso as to fulfill its
objectives. For readability, we additionally define activatep , suspendedp ∧ cp
as a symbol that holds iff the process resumes its computations; we also define
activate ,

∨
p∈M activatep that holds iff at least one process of the design is

being activated at the current tick.
Observe that the design objectives that we are aiming for (e.g., power-

optimization), can straightforwardly be fulfilled by preventing every process in-
volved from computing at all. A very simple strategy that induces such a behavior
consists in ensuring that every suspendedp state variable holds at any tick; one
can observe in Eq. (1) that such a strategy always exists. To restrict the set of
eligible strategies to those that ensure progress and fairness, we devise a set of
additional safety objectives that the target design must satisfy.

3.3.2. Enforcing strict progress

The most basic progress objective states that at least one process must be
active at every clock tick unless all FIFOs are empty. It is ensured by means of
the predicate ϕstrict-progress ,

∨
p∈P ¬suspendedp ∨

∧
p∈P emptyp .

3.3.3. Enforcing fairness

In order to express the fairness objective, we symbolically encode scheduling
constraints as part of safety objectives. To this end, we first augment the set of
state components of the model by introducing one bounded inactivity counter qp
per process p: qp is reset whenever pis activated, and increases if any process

POWER-AWARE SCHEDULING OF DATA-FLOW HARDWARE CIRCUITS
WITH SYMBOLIC CONTROL 339

except pis activated:

qp :=

0 if activatep
qp + 1 if activate ∧ ¬activatep ∧ qp + 1 < |P|
qp otherwise.

Remark that every counter qp takes its values in the domain Q , {0, . . . , |P| −1}.
We further declare a priority list by using an additional set of symbols pi , for
i ∈ {1, . . . , |P| }. The pi ’s also take their values inQ, and are constrained according
to the invariant ϕprios defined as:

ϕprios ,
∧

i∈{1,...,|P| −1}
pi pi+1 ∧ [p-sorted]∧

i∈{1,...,|P| }

∨
p∈P

pi = qp ∧
∑

i∈{1,...,|P| }
pi =

∑
p∈P

qp. [p-values]

The above constraint basically states that the list of values associated to the
sequence (pi)i∈{1,...,|P| } is decreasing [p-sorted], and only contains values that
belong to the set of all inactivity counters qp’s [p-values]. The pi ’s belong to the
controllable input space of the model: this means that the actual computation of
the priority list that these symbols denote (i.e., sorting the values of all activity
counters) is encoded as part of the target control strategy, and thus eventually
within the piece of circuit that computes the CGL.

We eventually express the fairness constraint in terms of the above symbols
as the conjunction

ϕfairness , ϕprios ∧
∧
p∈P

(activatep ⇒ qp ∈
{
p1, . . . , p|Pact |

}
)

where |Pact | , ��{p ∈ P|activatep }�� denotes the number of processes that are
being activated. ϕfairness states that if a process pis activated (activatep), then the
value of its inactivity counter must belong to the |Pact | highest ones. Put another
way, ϕfairness imposes that if a process is activated, then every other process whose
inactivity counter is strictly higher is also activated.

3.3.4. Avoiding starvation by enforcing concurrency

Onemust also ensure the absence of starvation, which in our case may happen
if a process is never suspended. A model of concurrency is therefore declared
to ensure that processes are forcibly suspended upon certain circumstances. To
clarify the definitions below, we define stalledp , suspendedp ∧¬idlep to hold
whenever the computations of some process pare suspended while its idleness
condition does not hold. We give below two invariants that each correspond to a

340 M. ÖZBALTAN, N. BERTHIER

model of concurrency: Forcing cooperation between processes makes use of the
job termination symbol donep of each process p:

ϕcoop ,
∧
p∈P

*.
,
termp ⇒

∨
p′ ∈P\{p}

stalledp′ ⇒
∨

p′ ∈P\{p}

activatep′ +/
-
,

where termp , ¬suspendedp ∧ (donep ∨ idlep), holds iff at least one stalled
process distinct from pis activated whenever pterminates its current job or be-
comes idle. Alternatively, one can implement periodic preemption of processes.
This is achieved with the help of the additional non-controllable input symbol
slow-clk that acts as a “slow” clock, with

ϕpreempt , slow-clk ⇒
∨
p∈P

stalledp ⇒
∨
p∈P

activatep ,

which states that at least one process be activated whenever slow-clk holds while
some process is stalled.

ϕconcurrency can be defined so as to hold whenever either or both ϕcoop and/or
ϕpreempt hold, according to the desired model of concurrency.

3.3.5. Putting it all together with clock-inhibition signals

We finally relate the controllable input symbols inhibitp with the model using
the invariant

ϕinhib-suspended-only , ∧p∈P
(
inhibitp ⇒ suspendedp

)
,

which states that a process must be suspended for its clock to be gated. Overall,
the global safety objective that the strategy must ensure by choosing values for
all controllable signals (i.e., for each process p, cm and inhibitp , and the pi ’s)
corresponds to the conjunction

ϕstrict-progress ∧ ϕfairness ∧ ϕconcurrency ∧ ϕinhib-suspended-only . (2)

Besides enforcing that clock-inhibition signals hold at appropriate clock cycles,
this objective also enforces progress, fairness, and a suitable model of concur-
rency, by virtue of the encoded scheduling constraints.

3.4. Achieving power-efficiency by control

Wedefine the estimatedmeasure of the total instantaneous power consumption
(in number of register flips) of all process from the original design asPP ,

∑
p∈P

Pp .

POWER-AWARE SCHEDULING OF DATA-FLOW HARDWARE CIRCUITS
WITH SYMBOLIC CONTROL 341

Optional peak power constraint The first means of using our derived models to
achieve objectives related to power efficiency is to specify that the sought after
strategy should ensure a given upper-bound Pmax on the value of PP : one can
achieve this with the help of the additional safety objective ϕPmax , PP ¬ Pmax ,
to be appended with a conjunction to Eq. (2).

Energyminimization. Further, ourmodels offer an alternativemeans for enforcing
some level of power-awareness of the scheduling induced by the CGL. They can
indeed be used to refine a strategy towards minimizing the value of PP (i.e., some
measure of instantaneous power consumption) summed over a time window, i.e.,
minimizing the energy consumed.

3.5. Enabling dynamic CGL reconfiguration

The invariant of the model as defined above can optionally be refined to sup-
port the dynamic reconfiguration of power-awareness policies. For instance, intro-
ducing a user-accessible register that switches to/from a clock-gating logic based
on idleness conditions only boils down to: (i) add a non-controllable Boolean
input symbol cfgidle to the model; and (ii) replace ϕinhib-suspended-only in Eq. (2)
with ϕinhib-configurable ,

∧p∈P
(
inhibitp ⇒ (if cfgidle then idlep else suspendedp)

)
.

This way, the power-aware scheduling policy can be turned off by setting the
input wire of the resulting CGL that corresponds to cfgidle to @1@, thereby
inducing a CGL behavior that corresponds to a classical clock-gating based on
idle conditions only.

4. Experimental evaluation

We have applied our approach on a series of various designs built from
three RTL implementations of widespread signal coding or decoding algorithms:
we use a Run-Length Encoder (RLE), a Huffman decoder, and a serial Reed-
Solomon (RS) decoder3: (a) our first design consists of a pipeline made of the
RS decoder followed by the RLE, and then the Huffman decoder; (b) remaining
designs comprise a variable number N of RLEs put in parallel (i.e., they receive
and output jobs from external ports). Due to the size of the RS decoder, and
its internal structure divided into many sub-modules, for this particular process
we have applied our implementation abstraction procedure (cf. Section 3.2) on
a clearly identifiable sub-module that encodes its control-flow. In addition, in all

3Each available at https://github.com/peterqt95/rle, https://github.com/rahuldhameja/Huffman-Decoder,
and https://opencores.org/project,reed_solomon_decoder.

https://github.com/peterqt95/rle
https://github.com/rahuldhameja/Huffman-Decoder
https://opencores.org/project,reed_solomon_decoder

342 M. ÖZBALTAN, N. BERTHIER

cases selected registers were easy to identify, as most control-flow related HDL
variables were named “state”, “done”, etc. Overall, each resulting abstract process
implementation model features around 7 Boolean state symbols, and 15 Boolean
non-controllable input symbols (oracles).

To experimentally assess the functional correctness and compare the respec-
tive dynamic power dissipation of each of the designs at hand (the originals and
all the power-aware ones), we first carried out logic synthesis on all of them using
the Altera Quartus synthesizer. We then used the Altera ModelSim simulation
tool to perform functional simulations using the same benchmark for all circuits
originating from the same designs, and checked that the resulting output traces
were strictly equivalent.

Table 1: Evaluation results for the original and power-aware designs; the “Cycles” column
denotes the total number of clock cycles required for processing the considered test-bench
(Device: Cyclone IV, Frequency: 100 Mhz)

Design
Strategy Computation Total Size (bits) Power Consumption

of Resulting Design

Objective Time (s)
Max

Memory
(MB)

Logic Registers Cycles
Cycle
Average
(mW)

Saving
(%)

Original n/a n/a 30914 23835 5969 353.68 –
Idleness 0.08 45.56 30924 23837 5969 344.81 2.51
Pmax ¬ 200 0.40 48.12 31270 23857 11935 231.49 34.55
Pmax ¬ 199 0.25 47.27 n/a n/a n/a n/a n/a
Optim. 3.96 262.87 31224 23857 11932 223.20 36.89
Cfg.-Idleness 5.69 235.68 31305 23858 5969 363.97 –2.91
Cfg.-Optim. 5.69 235.68 31305 23858 11932 226.60 35.93

The original design (4) was subject to various objectives and configurations,
the corresponding results of which we report in Table 1. The “Idleness” objective
corresponds to a design where the CGL operates based on idleness conditions
only. “Pmax ¬ 200 ” and “Pmax ¬ 199 ” both seek to impose a strict upper-
limit to instantaneous power consumption based on some maximum amount of
register flips. “Optim.” results from a CGL that achieves a minimization of energy
over a sliding window of 3 ticks. Lastly, lines where objectives are prefixed with
“Cfg.-” correspond to a single design that incorporates a reconfigurable CGL, as
described in Section 3.5.

We first observe that there does not exist a strategy that is able to impose
the safety objective Pmax ¬ 199 ; this actually reveals that it is not possible to
meet both this objective and the scheduling constraints for this particular design.
Further, even using a small time window of 3 ticks for the optimization objective,

POWER-AWARE SCHEDULING OF DATA-FLOW HARDWARE CIRCUITS
WITH SYMBOLIC CONTROL 343

we can compute a CGL that reduces the (simulated) average power consumption
per cycle by about 37%. We have further evaluated the efficiency of the strategy

Table 2: Performance of the strategy computation tool for N RLE instances

N Design Objective Time (s) Memory (MB) Feasibility

2

Pmax ¬ 70 0.08 45676 X

Pmax ¬ 69 0.10 45676 ×

Pmax ¬ 70 +Optim. 0.22 46844 X

Pmax ¬ 69 +Optim. 0.09 47328 ×

3

Pmax ¬ 70 0.47 48148 X

Pmax ¬ 69 0.64 50760 ×

Pmax ¬ 70 +Optim. 3.54 126504 X

Pmax ¬ 69 +Optim. 0.66 50840 ×

4

Pmax ¬ 70 3.54 78980 X

Pmax ¬ 69 23.18 225616 ×

Pmax ¬ 70 +Optim. 250.62 3249848 X

Pmax ¬ 69 +Optim. 23.08 225784 ×

computation tool by applying our approach on original designs (4). We report
the results in Table 2, where objectives suffixed with “+Optim.” correspond to
designs where both an upper-limit on power consumption and a minimization of
energy over a sliding window of 3 ticks is desired.

5. Related works

Several commercial and academic tools already target automated clock-gating
from RTL code. [17] developed an algorithm that automatically introduce the
some clock-gating logic into RTL descriptions of circuits, although they focus on
the exact computation of idleness conditions for each individual registers. In turn,
[1, 13, 14] suggest an algorithm that automatically tries to approximate idleness
conditions. [3] detect idleness conditions by using explicit finite-state machines
in an approach that targets the conditional activation of individual hardware
components using their “enable” signal (an approach similar to clock-gating).
At last, [17] exploited conditional statements and case structures within blocks
of clock-triggered assignments in HDL languages to determine such conditions.
Our approach draws from the latter since it also works based on module-level
HDL descriptions, and we build our symbolic models based on the conditional
clock-triggered assignments.

344 M. ÖZBALTAN, N. BERTHIER

[19] develop a formal framework based on data-flow models to analyze
hardware circuits, and derive some control logic to drive them towards various
performance objectives; our technique operates on similar models, and rely on
abstracted versions of the circuits to tackle the state-space explosion problem.
More practically, [4, 15] also focus on system-level to suggest a clock gating
technique that operates on whole modules.

6. Conclusions and future works

Wehave advanced a tool-supported framework for producing power-aware de-
signs from RTL implementations of KPNs. Our technique permits the automated
construction of an abstract symbolic model of the design, as well as associated
control objectives. The automatically computed strategy is then translated into
a piece of circuit that encodes a clock-gating logic for the design, and guaran-
tees that the specified objectives are met. We plan to design guidelines for using
our approach on black-box IPs with user-provided symbolic models. As stated
in Section 2, the strategies are usually computed under the assumption that the
environment of the model behaves as an adversary: in a sense the strategy is
pessimistic. A natural extension of our work is to take some stochastic models of
the environment (e.g., inferred from simulation traces) into account to compute
strategies that achieve better power efficiency on average.

References

[1] P. Babighian, L. Benini, and E. Macii: A scalable algorithm for RTL
insertion of gated clocks based onODCs computation. IEEETransactions on
Computer-Aided Design of Integrated Circuits and Systems, 24(1), (2005),
29–42, DOI: 10.1109/TCAD.2004.839489.

[2] R. Bellman: Dynamic programming and stochastic control processes.
Information and Control, 1(3), (1958), 228–239, DOI: 10.1016/S0019-
9958(58)80003-0.

[3] L. Benini, P. Siegel, and G. De Micheli: Saving power by synthesizing
gated clocks for sequential circuits. IEEE Design & Test of Computers,
11(4), (1994), 32–41, DOI: 10.1109/54.329451.

[4] R. Bhutada and Y. Manoli: Complex clock gating with integrated clock
gating logic cell. In 2007 International Conference on Design Technol-
ogy of Integrated Systems in Nanoscale Era, (2007), 164–169, DOI:
10.1109/DTIS.2007.4449512.

https://doi.org/10.1109/TCAD.2004.839489
https://doi.org/10.1016/S0019-9958(58)80003-0
https://doi.org/10.1016/S0019-9958(58)80003-0
https://doi.org/10.1109/54.329451
https://doi.org/10.1109/DTIS.2007.4449512

POWER-AWARE SCHEDULING OF DATA-FLOW HARDWARE CIRCUITS
WITH SYMBOLIC CONTROL 345

[5] J. Billon: Perfect normal forms for discrete programs. Technical report,
Bull, 1987.

[6] E.M. Clarke, E.A. Emerson, and A.P. Sistla: Automatic verification of
finite-state concurrent systems using temporal logic specifications. ACM
Transactions on Programming Languages and Systems, 8(2), (1986), 244–
263, DOI: 10.1145/5397.5399.

[7] E. Dumitrescu, A. Girault, H. Marchand, and E. Rutten: Multicriteria
optimal reconfiguration of fault-tolerant real-time tasks. IFAC Proceed-
ings Volumes, 43(12), (2010), 356–363, DOI: 10.3182/20100830-3-DE-
4013.00059.

[8] K. Gilles: The semantics of a simple language for parallel programming.
Information Processing, 74 (1974), 471–475.

[9] E.A. Lee and T.M. Parks: Dataflow process networks. Proceedings of the
IEEE, 83(5), (1995), 773–801, DOI: 10.1109/5.381846.

[10] H. Marchand and M.L. Borgne: On the optimal control of polynomial
dynamical systems over z/pz. In 4th International Workshop on Discrete
Event Systems, (1998), 385–390.

[11] H. Marchand, P. Bournai, M.L. Borgne, and P.L. Guernic: Synthesis of
discrete-event controllers based on the signal environment. Discrete Event
Dynamic System: Theory and Applications, 10(4), (2000), 325–346, DOI:
10.1023/A:1008311720696.

[12] S. Miremadi, B. Lennartson, and K. Akesson: A BDD-based approach
for modeling plant and supervisor by extended finite automata. IEEE Trans-
actions on Control Systems Technology, 20(6), (2012), 1421–1435, DOI:
10.1109/TCST.2011.2167150.

[13] M. Özbaltan: Achieving Power Efficiency in Hardware Circuits with Sym-
bolic Discrete Control. PhD thesis, University of Liverpool, 2020.

[14] M. Özbaltan andN. Berthier: Exercising symbolic discrete control for de-
signing low-power hardware circuits: an application to clock-gating. IFAC-
PapersOnLine, 51(7), (2018), 120–126, DOI: 10.1016/j.ifacol.2018.06.289.

[15] M. Özbaltan and N. Berthier: A case for symbolic limited opti-
mal discrete control: Energy management in reactive data-flow circuits.
IFAC-PapersOnLine, 53(2), (2020), 10688–10694, DOI: 10.1016/j.ifacol.
2020.12.2842.

https://doi.org/10.1145/5397.5399
https://doi.org/10.3182/20100830-3-DE-4013.00059
https://doi.org/10.3182/20100830-3-DE-4013.00059
https://doi.org/10.1109/5.381846
https://doi.org/10.1023/A:1008311720696
https://doi.org/10.1109/TCST.2011.2167150
https://doi.org/10.1016/j.ifacol.2018.06.289
https://doi.org/10.1016/j.ifacol.2020.12.2842
https://doi.org/10.1016/j.ifacol.2020.12.2842

346 M. ÖZBALTAN, N. BERTHIER

[16] M. Pedram andQ. Wu: Design considerations for battery-powered electron-
ics. In Proceedings 1999 Design Automation Conference, (1999), 861–866,
DOI: 10.1109/DAC.1999.782166.

[17] N. Raghavan, V. Akella, and S. Bakshi: Automatic insertion of gated
clocks at register transfer level. InProceedings of the 12th InternationalCon-
ference on VLSI Design, (1999), 48–54, DOI: 10.1109/ICVD.1999.745123.

[18] P. Ramadge and W. Wonham: The control of discrete event systems. Pro-
ceedings of the IEEE, 77(1), (1989), 81–98, DOI: 10.1109/5.21072.

[19] S. Tripakis, R. Limaye, K. Ravindran, G. Wang, H. Andrade, and
A. Ghosal: Tokens vs. signals: On conformance between formal mod-
els of dataflow and hardware. Journal of Signal Processing Systems, 85(1),
(2016), 23–43, DOI: 10.1007/s11265-015-0971-y.

https://doi.org/10.1109/DAC.1999.782166
https://doi.org/10.1109/ICVD.1999.745123
https://doi.org/10.1109/5.21072
https://doi.org/10.1007/s11265-015-0971-y

	Mete Özbaltan, Nicolas Berthier: Power-aware scheduling of data-flow hardware circuits with symbolic control

