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1. INTRODUCTION
A satellite attitude is vital information for satellite navigation,
stabilization, and control. In this paper, only determination of
attitude is considered, by combining data from visual sensors
available on-board. Sensors used for satellite attitude measure-
ments differ by the principle of operation, measurands, and out-
put data, so various methods of data fusion may be implemented
for improving the accuracy and reliability of the attitude infor-
mation. In Table 1 commonly used sensors for satellite attitude
and position measurements are listed, indicating their principle
of operation. The number of sensors and their mass and vol-
ume are constrained by satellite weight and size. Limited com-
putational resources available on-board spacecraft require high
efficiency of attitude calculation algorithms.

Table 1
Satellite attitude and position sensors

Sensor Sensor type Measured quantity
Sun sensor visual direction vector to the Sun
Earth sensor visual direction vector to the Earth
Star tracker visual orientation relative to stars
Magnetometer magnetic field components of local magnetic field

GNSS receiver radio signal position – single antenna, attitude –
multi-antenna

The integration of visual sensors for nanosatellites was pre-
sented in several papers. In [1], the method for combining data
from solar cells and a three-axis magnetometer is considered to
estimate an attitude of a CubeSat by implementing an extended

∗∗∗e-mail: janusz.narkiewicz@pw.edu.pl

Manuscript submitted 2020-04-14, revised 2021-05-25, initially
accepted for publication 2021-06-14, published in August 2021.

Kalman filter. Attitude determination, with the use of only mag-
netometers and a linear Kalman filter, is described in [2]. In [3],
an analytical method is presented for calculating the nadir di-
rection vector from measurements of two earth (horizon) sen-
sors; the nadir vector is combined with the sun vector by the
TRIAD method to determine the satellite attitude. In [4], data
from a star tracker, GNSS and gyroscopes are integrated, using
Kalman filter. In [5], data from a star tracker and an earth sensor
are combined to estimate satellite position in the orbit. Visual
sensor fusion is also used in fault detection algorithms. In [6],
a fault diagnosis method is considered for an attitude system,
based on redundant information from the sun sensor, the earth
sensor, and the star tracker.

These few examples of research show the important role of
visual sensors in satellite systems.

The research presented here stems from the long-term goal
of developing efficient control and navigation algorithms for a
nanosatellite, in which attitude calculation plays a crucial role.
The study is focused on the integration of visual sensors data.
The objective of the study was to combine measurements from
three visual sensors: sun sensor, earth sensor, and star tracker
to estimate spacecraft attitude. This was done as the step to an
attitude system design, in which data available also from other
sensors may be integrated in the future.

The paper provides a comparison of selected algorithms for
data fusion from visual sensors to calculate satellite attitude.
Such a comparison of the efficiency of various methods may
be a useful indication for the selection of algorithms for the
hardware.

2. ATTITUDE CALCULATION ALGORITHM
The attitude of a satellite is described here by a rotation quater-
nion and/or associated transformation matrix. The attitude cal-
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culation (see the flowchart in Fig. 1) consists of two major parts:
attitude calculation using sun and earth sensors, and fusion of
attitude data from the star tracker and sun/earth sensors.

Fig. 1. Attitude calculation methodology

Such a hierarchical structure of sensor data fusion provides
the flexibility of expansion for more than single sensors and
the prospective implementation of sensor faults detection and
elimination procedures in the future.

The sun and earth sensors alone do not provide complete data
for attitude determination. The output from sun and earth sen-
sors are direction unit vectors: gS to the Sun and gE to the Earth,
which are combined in “attitude estimation block” to calculate
a satellite attitude matrix CI

F (qSE) and an attitude quaternion
qSE . Four methods were investigated for combining data from
sun and earth sensors: the direct numerical solution, analytical
and numerical solution of the Wahba problem, and the TRIAD
method. The analytical solution of the Wahba problem is avail-
able only for measurements of two vectors [7], which is a case
for the sensor configuration of one earth and one sun sensor
here. But as the analytical solution does not allow the fusion
of data from multiple sensors, so the numerical solution of the
Wahba problem was included in the analysis.

A star tracker provides full information on a satellite attitude
denoted here as a quaternion qST F .

The final satellite attitude quaternion is q̂ estimated by com-
bining quaternions qSR and qST F in “data fusion” block, which
is research here for prospective fault detection and elimination
subsystem. Two methods of data fusion were investigated here:
weighted average and Kalman filter. Having the estimation of
final attitude quaternion q̂, final satellite attitude matrix ĈI

F (q̂)
may also be calculated.

3. SENSOR OUTPUT DATA
The coordinates systems used in this research are presented in
Figs. 2, 3, and 4 illustrating sensor modelling. The OIxIyIzI is
the Earth-Centered Inertial (ECI) coordinates system, in which
satellite attitude is determined. The OF xF yF zF is the Body

Frame Fixed (BFF) system of coordinates fixed to a satellite.
The satellite attitude is calculated as the transformation matrix
CI

F (q) or respective quaternion q describing the rotation of the
BFF relative to the ECI. Each sensor delivers data in its own
OSxSySzS Sensor Coordinate System (SCS), matrices of trans-
formation from the sensor to a satellite coordinates system are
known, as determined during the design of satellite systems.
The sensor models provide data of direction vectors (sun and
earth sensors) or attitude quaternion (star tracker). The data
noise is not included in the measurement description but is im-
plemented in simulations.

The Sun position vector rSI in the Earth-Centered Inertial
(ECI) coordinate system is calculated as:

rSI = rFI +CI
F(q)

(
rSS +CF

S rS
)
, (1)

where:
rSI , rS – Sun position vector in ECI and SCS, respectively,
rFI – satellite position vector in ECI,
rSS – sun sensor position vector in BFF,
q – satellite attitude quaternion (transformation from

ECI to BFF),
CF

S – transformation matrix from SCS to BFF,
CI

F(q) – satellite attitude matrix (transformation matrix from
BFF to ECI).

Fig. 2. Sun sensor direction vectors

The transformation matrices used in this paper are defined by
the relation to quaternions and have the general form:

CI
F(q) =


q2

0 +q2
1 −q2

2 −q2
3 2(q1q2 −q3q0) 2(q1q3 +q2q0)

2(q1q2 +q3q0) q2
0 −q2

1 +q2
2 −q2

3 2(q2q3 −q1q0)

2(q1q3 −q2q0) 2(q2q3 +q1q0) q2
0 −q2

1 −q2
2 +q2

3


. (2)

The vectors rSS and rFI are much smaller than rSI and rS , there-
fore Eq. (1) is simplified to:

rSI = CI
F(q)C

F
S rS . (3)

Equation (3) is valid also for direction unit vectors, so:

gSI = CI
F(q)C

F
S gS = CI

F(q)gSF , (4)

where:
gS – measured direction versor to the Sun in SCS,
gSF – Sun direction versor in BFF, gSF = CF

S gS,
gSI – direction versor to the Sun in ECI.
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F (q̂)
may also be calculated.

3. SENSOR OUTPUT DATA
The coordinates systems used in this research are presented in
Figs. 2, 3, and 4 illustrating sensor modelling. The OIxIyIzI is
the Earth-Centered Inertial (ECI) coordinates system, in which
satellite attitude is determined. The OF xF yF zF is the Body

Frame Fixed (BFF) system of coordinates fixed to a satellite.
The satellite attitude is calculated as the transformation matrix
CI

F (q) or respective quaternion q describing the rotation of the
BFF relative to the ECI. Each sensor delivers data in its own
OSxSySzS Sensor Coordinate System (SCS), matrices of trans-
formation from the sensor to a satellite coordinates system are
known, as determined during the design of satellite systems.
The sensor models provide data of direction vectors (sun and
earth sensors) or attitude quaternion (star tracker). The data
noise is not included in the measurement description but is im-
plemented in simulations.

The Sun position vector rSI in the Earth-Centered Inertial
(ECI) coordinate system is calculated as:

rSI = rFI +CI
F(q)

(
rSS +CF

S rS
)
, (1)

where:
rSI , rS – Sun position vector in ECI and SCS, respectively,
rFI – satellite position vector in ECI,
rSS – sun sensor position vector in BFF,
q – satellite attitude quaternion (transformation from

ECI to BFF),
CF

S – transformation matrix from SCS to BFF,
CI

F(q) – satellite attitude matrix (transformation matrix from
BFF to ECI).

Fig. 2. Sun sensor direction vectors

The transformation matrices used in this paper are defined by
the relation to quaternions and have the general form:

CI
F(q) =


q2

0 +q2
1 −q2

2 −q2
3 2(q1q2 −q3q0) 2(q1q3 +q2q0)

2(q1q2 +q3q0) q2
0 −q2

1 +q2
2 −q2

3 2(q2q3 −q1q0)

2(q1q3 −q2q0) 2(q2q3 +q1q0) q2
0 −q2

1 −q2
2 +q2

3


. (2)

The vectors rSS and rFI are much smaller than rSI and rS , there-
fore Eq. (1) is simplified to:

rSI = CI
F(q)C

F
S rS . (3)

Equation (3) is valid also for direction unit vectors, so:

gSI = CI
F(q)C

F
S gS = CI

F(q)gSF , (4)

where:
gS – measured direction versor to the Sun in SCS,
gSF – Sun direction versor in BFF, gSF = CF

S gS,
gSI – direction versor to the Sun in ECI.

2 Bull. Pol. Acad. Sci. Tech. Sci. 69(4) 2021, e137935

J. Narkiewicz, M. Sochacki, A. Rodacki, and D. Grabowski

culation (see the flowchart in Fig. 1) consists of two major parts:
attitude calculation using sun and earth sensors, and fusion of
attitude data from the star tracker and sun/earth sensors.

Fig. 1. Attitude calculation methodology

Such a hierarchical structure of sensor data fusion provides
the flexibility of expansion for more than single sensors and
the prospective implementation of sensor faults detection and
elimination procedures in the future.

The sun and earth sensors alone do not provide complete data
for attitude determination. The output from sun and earth sen-
sors are direction unit vectors: gS to the Sun and gE to the Earth,
which are combined in “attitude estimation block” to calculate
a satellite attitude matrix CI

F (qSE) and an attitude quaternion
qSE . Four methods were investigated for combining data from
sun and earth sensors: the direct numerical solution, analytical
and numerical solution of the Wahba problem, and the TRIAD
method. The analytical solution of the Wahba problem is avail-
able only for measurements of two vectors [7], which is a case
for the sensor configuration of one earth and one sun sensor
here. But as the analytical solution does not allow the fusion
of data from multiple sensors, so the numerical solution of the
Wahba problem was included in the analysis.

A star tracker provides full information on a satellite attitude
denoted here as a quaternion qST F .

The final satellite attitude quaternion is q̂ estimated by com-
bining quaternions qSR and qST F in “data fusion” block, which
is research here for prospective fault detection and elimination
subsystem. Two methods of data fusion were investigated here:
weighted average and Kalman filter. Having the estimation of
final attitude quaternion q̂, final satellite attitude matrix ĈI
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The unit vectors gSI and gSF are calculated for the actual date
and satellite position.

A similar approach is applied to the description of the earth
sensor, which measures a direction unit vector to the Earth in
its own Earth Sensor Coordinate System (ESCS).

The Earth Sensor Coordinate System (ESCS) location and
orientation relative to the BFF may be calculated (Fig. 3) as:

rFI =−CI
F(q)

(
rES +CF

ESrEE
)
, (5)

where:
rFI – satellite position vector in ECI,
rES – earth sensor position vector in BFF,
rEE – Earth position vector in ESCS,
CF

ES – transformation matrix from ESCS to BFF.

Fig. 3. Earth sensor direction vectors

The distance rES (sensor placement in the satellite) is much
smaller than the rEE , therefore equation (5) is simplified to:

rFI =−CI
F(q)C

F
ESrEE , (6)

which, as in the sun sensor case, is also applied to direction unit
vectors:

gEI = CI
F(q)C

F
ESgE = CI

F(q)gEF , (7)

where:
gE – measured direction versor to the Earth in ESCS,
gEF – Earth direction unit vector in BFF, gEF = CF

ESgE ,
gEI – direction versor to the Earth in ECI.

The unit vectors gEF and gEI are calculated from known
satellite position.

The detailed structure of data processing inside a star tracker
is not considered in this study. A star tracker output is a mea-
sured satellite attitude quaternion qST in the Star Tracker Coor-
dinate System (STCS) (Fig. 4).

Fig. 4. Star tracker direction vectors

The STCS location and orientation relative to the BFF is de-
scribed by the star tracker position vector rST and the transfor-
mation matrix CF

ST from STCS to the BFF coordinate system.

The transformation from STCS to the ECI coordinate system
has the form:

rStarI = rFI +CI
F(q)

(
rST +CF

ST rStarST
)
, (8)

where:
rStarI , rStarST – vector towards a star expressed in ECI and

STCS respectively,
rFI – satellite position vector in ECI,
rST – vector of star tracker position in BFF,
CF

ST – transformation matrix from STCS to BFF.
The vectors rST and rFI are relatively small, so equation (8)

is simplified to:

rStarI = CI
F(q)C

F
ST rStarST . (9)

Equation (9) is applied for versors pointing at selected star
gStarST – in STCS and gStarI – in ECI:

gStarI = CI
F(q)C

F
ST gStarST . (10)

The satellite attitude quaternion qST is calculated from the rela-
tion between transformation matrices:

CI
ST (qST ) = CI

F(q)C
F
ST , (11)

using the quaternion measured by the star tracker qST (which
describes the rotation from ECI to STCS).

In the sensor models matrices CF
ST , CF

ES, CF
ST describe sensor

attitude with respect to spacecraft body. The most convenient is
to define them by angles of rotations for instance Euler angles
as used in aeronautics. In such a case providing yaw Ψ, pitch
Θ, and roll Φ rotations sequence, the matrices will have the
general form:

CF
() =




cΨcΘ sΨcΘ −sΘ
cΨsΘsΦ−sΨcΦ sΨsΘsΦ+cΨcΦ cΘsΦ
cΨsΘcΦ+sΨsΦ sΨsΘcΦ−cΨsΦ cΘcΦ


, (12)

where s denotes sine and c denotes cosine functions and yaw Ψ,
pitch Θ, and roll Φ rotations are defined for each specific sensor
placement.

4. METHODS OF DATA FUSION
A single direction unit vector measured either by a sun sensor
equation (4) or by an earth sensor equation (7) provides infor-
mation only on two quantities (for instance, two angles) [7].
The satellite attitude matrix CI

F(q) depends on three indepen-
dent quantities, like three rotation angles. Therefore, at least
two non-collinear direction unit vectors must be used.

The unit vectors to the Sun gSI and to the Earth gEI in the ECI
are known for current satellite position and date. Two direction
unit vectors measured in BFF by a sun sensor gSF and by an
earth sensor gEF facilitate creating a system of equations:{

gSI = CI
F gSF ,

gEI = CI
F gEF ,

(13)

in which the satellite attitude matrix CI
F is unknown. The atti-

tude matrix is orthonormal, i.e.{
CI

F
(
CI

F
)T

= I ,

det
(
CI

F
)
= 1.

(14)
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A similar approach is applied to the description of the earth
sensor, which measures a direction unit vector to the Earth in
its own Earth Sensor Coordinate System (ESCS).

The Earth Sensor Coordinate System (ESCS) location and
orientation relative to the BFF may be calculated (Fig. 3) as:

rFI =−CI
F(q)

(
rES +CF

ESrEE
)
, (5)

where:
rFI – satellite position vector in ECI,
rES – earth sensor position vector in BFF,
rEE – Earth position vector in ESCS,
CF

ES – transformation matrix from ESCS to BFF.

Fig. 3. Earth sensor direction vectors

The distance rES (sensor placement in the satellite) is much
smaller than the rEE , therefore equation (5) is simplified to:

rFI =−CI
F(q)C

F
ESrEE , (6)

which, as in the sun sensor case, is also applied to direction unit
vectors:

gEI = CI
F(q)C

F
ESgE = CI

F(q)gEF , (7)

where:
gE – measured direction versor to the Earth in ESCS,
gEF – Earth direction unit vector in BFF, gEF = CF

ESgE ,
gEI – direction versor to the Earth in ECI.

The unit vectors gEF and gEI are calculated from known
satellite position.

The detailed structure of data processing inside a star tracker
is not considered in this study. A star tracker output is a mea-
sured satellite attitude quaternion qST in the Star Tracker Coor-
dinate System (STCS) (Fig. 4).

Fig. 4. Star tracker direction vectors

The STCS location and orientation relative to the BFF is de-
scribed by the star tracker position vector rST and the transfor-
mation matrix CF

ST from STCS to the BFF coordinate system.

The transformation from STCS to the ECI coordinate system
has the form:

rStarI = rFI +CI
F(q)

(
rST +CF

ST rStarST
)
, (8)

where:
rStarI , rStarST – vector towards a star expressed in ECI and

STCS respectively,
rFI – satellite position vector in ECI,
rST – vector of star tracker position in BFF,
CF

ST – transformation matrix from STCS to BFF.
The vectors rST and rFI are relatively small, so equation (8)

is simplified to:

rStarI = CI
F(q)C

F
ST rStarST . (9)

Equation (9) is applied for versors pointing at selected star
gStarST – in STCS and gStarI – in ECI:

gStarI = CI
F(q)C

F
ST gStarST . (10)

The satellite attitude quaternion qST is calculated from the rela-
tion between transformation matrices:

CI
ST (qST ) = CI

F(q)C
F
ST , (11)

using the quaternion measured by the star tracker qST (which
describes the rotation from ECI to STCS).

In the sensor models matrices CF
ST , CF

ES, CF
ST describe sensor

attitude with respect to spacecraft body. The most convenient is
to define them by angles of rotations for instance Euler angles
as used in aeronautics. In such a case providing yaw Ψ, pitch
Θ, and roll Φ rotations sequence, the matrices will have the
general form:

CF
() =




cΨcΘ sΨcΘ −sΘ
cΨsΘsΦ−sΨcΦ sΨsΘsΦ+cΨcΦ cΘsΦ
cΨsΘcΦ+sΨsΦ sΨsΘcΦ−cΨsΦ cΘcΦ


, (12)

where s denotes sine and c denotes cosine functions and yaw Ψ,
pitch Θ, and roll Φ rotations are defined for each specific sensor
placement.

4. METHODS OF DATA FUSION
A single direction unit vector measured either by a sun sensor
equation (4) or by an earth sensor equation (7) provides infor-
mation only on two quantities (for instance, two angles) [7].
The satellite attitude matrix CI

F(q) depends on three indepen-
dent quantities, like three rotation angles. Therefore, at least
two non-collinear direction unit vectors must be used.

The unit vectors to the Sun gSI and to the Earth gEI in the ECI
are known for current satellite position and date. Two direction
unit vectors measured in BFF by a sun sensor gSF and by an
earth sensor gEF facilitate creating a system of equations:{

gSI = CI
F gSF ,

gEI = CI
F gEF ,

(13)

in which the satellite attitude matrix CI
F is unknown. The atti-

tude matrix is orthonormal, i.e.{
CI

F
(
CI

F
)T

= I ,

det
(
CI

F
)
= 1.

(14)
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To solve equation (13) fulfilling conditions equation (14), four
methods are investigated:
• The direct numerical solution,
• solutions to Wahba problem:

– analytical,
– numerical,

• TRIAD method.

4.1. Direct numerical solution
The system of equations (13) and orthogonality conditions (14)
form an overdetermined system of 16 equations with nine un-
known elements of the matrix CI

F . They are calculated by solv-
ing a system of equations in the form:

f(x) = 0, (15)

where for description brevity vector x denotes here elements of
the matrix CI

F . The subsequent components of vector f(x) are
defined as:





f [1:3]
(
CI

F
)
= CI

F gSF −gSI ,

f [4:6]
(
CI

F
)
= CI

F gEF −gEI ,

f [7]
(
CI

F
)
= det

(
CI

F
)
−1,

f [8:16]
(
CI

F
)
= CI

F
(
CI

F
)T − I .

(16)

The MATLAB function fsolve was used to obtain the solution
(15). The function uses the Levenberg-Marquardt method [8]
to calculate the approximate solution of equation (16) by min-
imizing the objective function in the form of (15). To start the
calculations an initial value CI

F is needed, which may be the last
known attitude.

4.2. Solution to the Wahba problem
The rotation matrix CI

F may be calculated as a solution to the
Wahba problem to find the matrix which when given several
measurements minimizes the functional J

(
CI

F
)
:

J
(
CI

F
)
=

1
2

N

∑
i=1

ai
∥∥CI

F giF −giI
∥∥ , (17)

where:
N – number of measurements,
ai – positive weight for i-th measured vector,
giF , giI – i-th direction versor in BFF and ECI respectively,
‖ . . .‖ – the Euclidean norm.

For two-direction versors obtained from the sun sensor gSF
and the earth sensor gEF equation (17) has the form:

J
(
CI

F
)
=

1
2

aS
∥∥CI

F gSF −gSI
∥∥+ 1

2
aE

∥∥CI
F gEF −gEI

∥∥ , (18)

where aS and aE are positive weights for the measured direc-
tions the Sun and to the Earth, respectively.

The Wahba problem has an analytical solution for two vec-
tors [7] based on equation (18) transformed to the form:

J
(
CI

F
)
= aS +aE − tr

(
CI

F BT ) , (19)

B = aSgSIg
T
SF +aEgFIg

T
EF . (20)

The direct Wahba problem solution is reformulated to maxi-
mizing trace of CI

F BT , which is achieved using singular value
decomposition of matrix B.

The numerical solution to the Wahba problem was also con-
sidered here, as in prospective applications of the attitude algo-
rithm also other sensors (for instance, magnetic field) may be
implemented.

The minimum of the J
(
CI

F
)

defined by equation (18) sub-
jected to constraints of (14) is calculated using the MATLAB
function fmincon, which uses the Interior-Point Algorithm [9]
to solve the problem.

4.3. TRIAD method
The TRIAD (TRIaxial Attitude Determination) is an analytical
method to calculate satellite attitude using two-direction mea-
surements. The attitude matrix CI

F is calculated in two steps: as
the rotation CT

F from BFF to the new TRIAD coordinate system
OT t1t2t3 and then rotation CI

T from OT t1t2t3 to ECI:

CI
F = CI

T CT
F . (21)

The rotation matrices CT
F and CI

T are defined as:

CI
T =

[
t1I t2I t3I

]
, (22)

CT
F =

[
t1F t2F t3F

]T
, (23)

where the columns of matrices are unit vectors t1I , t2I and t3I
are calculated in ECI and t1F , t2F and t3F are measured in BFF.

The TRIAD coordinate system OT t1t2t3 is defined by three
orthonormal unit vectors t1, t2 and t3. The vector t1 is one of
the measured unit direction vectors. As it is used for defining
axes directly, it is recommended to select the vector for which
the most accurate measurements are available. The vector t2 is
perpendicular to the two measured unit directions versors and
vector t3 completes the orthonormal triad. t3 is calculated as the
vector product of t1 and t2.

For earth and sun sensors, the direction vectors are measured
in the BFF coordinate system and respective unit vectors in the
ECI coordinate system are known for given satellite position
and time. The direction versors in BFF are g1F and g2F , and
corresponding versors in ECI are g1I and g2I . The axes of the
OT t1t2t3 coordinate system in BFF and ECI are equal to:




t1F = g1F

t2F =
g1F ×g2F

‖g1F ×g2F‖
,

t3F = t1F × t2F





t1I = g1I

t2I =
g1I ×g2I

‖g1I ×g2I‖
.

t3I = t1I × t2I

(24)

The TRIAD method is limited to two-direction measurements,
and it does not profit from all measured data.

5. DATA FUSION OF STAR TRACKER AND EARTH-SUN
SENSORS

Star tracker measurements are fused with quaternions from
other sensors. First an attitude star tracker measurements
quaternion qST F is calculated from equation (11) by replacing
the transformation matrix CI

F(q) with CI
F (qST F).
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The integrated value of satellite attitude quaternion q̂ is ob-
tained by combining quaternion qSE calculated from the sun
and earth sensor measurements with the star tracker measure-
ment qST F . Two methods of data fusion were explored in this
study: weighted average and Kalman filter. Both methods facil-
itate prospective extension to more attitude quaternions to be
fussed.

5.1. Weighted average method
To calculate the weighted quaternion, the spherical linear in-
terpolation [10] method was used. The combined quaternion is
calculated as:

q̂ =
qSE sin(wSEΩ)+qST F sin(wST F Ω)

sinΩ
, (25)

where wSE +wST F = 1.
The weights wSE , wST F may be selected arbitrarily, but the

accuracy of measurements may be some hint for the selection.
The angle Ω is calculated from the dot product of two quater-
nions as:

Ω = acos(qSE ·qST F) . (26)

For qSE = ±qST F equation (25) is singular, which was consid-
ered in the final attitude algorithm structure.

5.2. Kalman filter application
The Kalman filter was used for recursive quaternion estimation
using subsequent measurements. Two model processes were in-
vestigated, one estimating the attitude quaternion directly, and
the other one estimating the attitude quaternion error. It was
done for comparison of the efficiency of two different process
models, as in attitude systems the errors are estimated more of-
ten.

In the first approach (Fig. 5), the estimated state vector was
a satellite attitude quaternion q̂ describing transformation from
ECI to BFF; the state equation was:

qk+1 = qk , (27)

where k and k+1 are indices of subsequent measurements (in
subsequent time steps).

Fig. 5. Linear Kalman filter estimating attitude quaternion

The measurement vector was composed of both measure-
ments: qSEk and qST Fk:

zk =
[

qSEk qST Fk

]T
. (28)

The covariance matrix Q of the state noise was:

Q = σI4×4 , (29)

where σ is the assumed variance of state disturbances.

The covariance matrix R of observation noise was diagonal
in the form:

R =

[
RSE 0

0 RST F

]
, (30)

where RSE and RST F are covariance matrices of an attitude
quaternion error from sun and earth sensors and star tracker,
respectively.

In the second Kalman filter implementation (Fig. 6) the state
variable was the quaternion error δδδ q given by:

δδδ q = qSE −qST F . (31)

Fig. 6. Linear Kalman filter estimating quaternion difference

The state equations had the form:

δδδ q(k+1) = δδδ q(k) , (32)

and observation vector zk was assumed as:

zk = δδδ q(k) . (33)

The state Q and observation R noise covariance matrices were
described as:

Q = ωI4×4 , R = ρI4×4 . (34)

The values ω and ρ were variations of the state and observation
disturbances.

To obtain the final attitude quaternion was calculated as:

q̂ = qST F + δ̂δδ q . (35)

The covariance matrices of states and observer noises are usu-
ally selected as specific for cases of applied sensors and envi-
ronment stochastic properties.

6. SIMULATION STUDY
The validation of the algorithm was done using simulated data.
The error of attitude quaternion was defined as rotation from
estimated q̂ to the true q attitude quaternion using the θER angle
calculated as:

θER = 2acos |qe0| , (36)

where qe0 is the first component (scalar component) of an at-
titude error quaternion corresponding to the rotation from q̂ to
the true q.

The simulations were performed for a satellite 600 km
above the Earth, in equatorial plane at the ECI position rFI =[

4.9292 4.9292 0
]T [106m]. The satellite attitude quaternion

in ECI was q =
[

1 0 0 0
]T and the direction the Sun in ECI

was gSI =
[

1 0 0
]T .

The simulated sensor measurands data were calculated using
“inverse relations” to the formulae of sensor models with added
random noise. The random noise added to the sun sensor error

Bull. Pol. Acad. Sci. Tech. Sci. 69(4) 2021, e137935 5
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vestigated, one estimating the attitude quaternion directly, and
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ten.
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was within 1◦ and to the earth sensor error – within 2◦. The
noise was generated once and used for all simulations to facili-
tate a comparison of results of various algorithms for the same
set of input data.

The results of fusing data from sun and earth sensors for 100
simulation points (steps) are illustrated in Fig. 7 and detailed
numbers are given in Table 2.

Fig. 7. Errors for sun and earth sensor integration

Table 2
Simulation results of sun and earth sensor integration

Direct
numerical

Wahba
numerical

Wahba
analytical TRIAD

Average error [deg] 1.1378 1.1272 1.1272 1.1672

Maximum error [deg] 3.3001 3.3089 3.3089 3.3425

Average iterations [–] 7 17
non-

iterative
non-

iterative

Maximum iterations [–] 7 42
non-

iterative
non-

iterative

Total calculation time [s] 1.3906 7.9241 0.0389 0.0247

The number of simulation points reflects the number of static
experiments performed so it seems sufficient to compare the
efficiency of the methods.

The attitude was estimated with similar error values for all
algorithms integrating data from direction sensors. The lowest
average error was obtained for both numerical and analytical
solution of Wahba problem, and the lowest maximum error was
obtained by direct numerical solution. The TRIAD method took
the shortest computation time. The numerical solution of the
Wahba problem required the largest number of iterations and
the longest computation time to converge comparing to the di-
rect numerical solution. But its analytical counterpart provided
a similar result in a much shorter time.

Simulations of the weighted average method were performed
for biased quaternions qSE and qST F . The quaternion qSE de-
scribes an attitude expressed in Euler angles (yaw, pitch, and

roll) as 45◦+0.9δ , 45◦, 45◦ with weight wSE = 0.1 and quater-
nion qST F describes an attitude reflecting Euler angles 45◦ −
0.1δ , 45◦, 45◦ with weight wST F = 0.9, where δ is a simulated
bias angle. The quaternion errors for selected bias angles are
given in Table 3. The error of the weighted average method in-
creases with the growing bias value but is substantially less than
the assumed bias in input data.

Table 3
The error of the weighted average method

Bias Error

δ = 2◦ 1.3◦ ·10−7

δ = 5◦ 2.0◦ ·10−6

δ = 15◦ 5.4◦ ·10−5

In two implementations of the Kalman filter denoted here as
(KF1) and (KF2), simulations were performed for parameters
given in Table 4. The quaternion qSE of sun and earth sensor
measurement was calculated using the TRIAD method with the
Sun direction as a base vector, and the star tracker quaternion
qST F was calculated from noisy star tracker measurements. The
assumed maximum sensor errors were sun sensor – 1◦, earth
sensor – 2◦, star tracker pointing – 0.002◦, star tracker rolling –
0.02◦. The values of observer covariance matrices were based
on real sensor data given in specifications.

Table 4
Parameters of Kalman filters

KF1 KF2

process covariance Q = 10−9I4×4 Q = 10−7I4×4

observation covariance star tracker RST F = 10−6I4×4

observation covariance earth/sun
sensors

RSE = 10−2I4×4

observation covariance quaternion
difference

R = 10−2I4×4

initial state vector: q̂0 =
[

1 0 0 0
]T

initial states covariance P = 10−6I4×4 P = 10−6I4×4

The results of the simulation are presented in Fig. 8 and the
final error values in Table 5. In the cases considered, the average

Fig. 8. Kalman filtering results
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average and maximum error higher than the error of input from 
the star tracker.

The results presented show guidelines for practical imple-
mentation of the investigated methods.
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7. CONCLUSIONS
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solution, numerical and analytical solutions of Wahba problem 
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measurements and data from a star tracker. The efficiency of 
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vidual measurements. The TRIAD method required the lowest 
and the numerical solution of the Wahba problem – the high-
est computational time. Two applications of the Kalman filter 
were compared for integration sensor data corrupted by random 
noise. The Kalman filter, based on state vector which directly 
reflected satellite attitude quaternion, estimated satellite attitude 
with the average error about 11 times less than the error of the 
input from the star tracker. The Kalman filter, where the state 
vector was the measurement error, estimated attitude with the 
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