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1. INTRODUCTION
Rotating machines build the foundation of our modern world.
They can be found in many different applications such as DC-
motors, wind turbines and jet engines. The used rotors are al-
ways subject to unbalances which lead to an excitation of the
rotor and the surrounding structure. The resulting vibrations
cause audible noise and reduce the life span. Lightweight struc-
tures are especially sensitive to these vibrations and can show
large displacements in resonances, which can cause a total fail-
ure of the system. Rotors are balanced in order to reduce the
unbalance excitation and thus the vibration. This is achieved
by adding or removing rotor mass. If the precision of the pas-
sive balancing is not sufficient or the unbalance changes dur-
ing the operation, for example due to dust, active systems can
be used to enhance the vibration reduction. Furthermore, active
systems can stabilize the rotor allowing to extend the safe op-
erating range. While active magnetic bearings are mainly used
to support a rotor with minimal friction, active piezoelectric el-
ements can be used to support the bearings of heavy rotors due
to their high stiffness. Piezo supported bearings allow a fail-
safe support in case of a blackout. The actuators can manip-
ulate the rotational axis of the rotor dynamically and change
its dynamic behaviour. The first to implement such an active
piezo supported bearing was Palazzolo [1]. He used a simple
PD-controller to verify functionality of the novel bearing con-
cept over a 30 hour endurance-test. Different research groups
picked up the idea and implemented different controllers to en-
hance the vibration reduction. Model-free feedback controllers
such as PDT1 [2] and integral force feedback (IFF) [3] mainly
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reduce vibrations in the resonances because they increase the
damping of the system. The implemented model-based control
approaches such as LQR [4], µ-synthesis [5] and gain sched-
uled H∞-control [6] show a better performance but require more
effort for implementation. However, there will always be re-
maining vibrations since the feedback loop needs a controller
input in order to eliminate vibrations. The use of a feedfor-
ward or an adaptive feedforward control can overcome this
problem. Li [7] implements the filtered-x least mean squares
algorithm (FxLMS) to eliminate gear vibrations. The FxLMS
is suited well for this task because of the narrow-banded na-
ture of the disturbance which is also the case for unbalance
excitation. Suzuki [8] combines a H∞-controller with a feed-
back controller to enhance the vibration reduction. The com-
bination of a feedback controller which takes care of transient
vibrations and an adaptive feedforward controller for eliminat-
ing the unbalance excitation yields the best vibration reduction
results which can be concluded from the work of Lindeborn
[9] and Schittenhelm [10]. While Lindeborn combines IFF and
the FxLM, Schittenhelm compares the combination of a PD-
controller and the FxLMS with a combination of LQG and
FxLMS where both combinations show nearly the same perfor-
mance concluding that a simple model-free feedback controller
is sufficient. Finally, Heindel [11] presents a model-free con-
trol approach which is based on a combination of IFF and an
adaptive feedforward controller. He proofs the stability of the
controller in the continuous time domain where the controller
is always stable.

The approach in this paper leads to an extension of the al-
gorithm presented by Heindel, showing its limitations for im-
plementation on a real system. The system is modelled in a first
step. While most publications rely on finite element models, the
presented model is identified using experimental modal analy-
sis. A model-free control approach is derived after the system
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identification and the limitations are discussed. After compar-
ing the experimental results of the model-free control to the cor-
responding model-based control, a conclusion is presented.

2. MODAL MODEL
Subject of this paper is the system identification and control of
the rotor system depicted in Fig. 1. The test-rig has one active
bearing plane (Bearing 1) with two actuators allowing to shift
the rotor in the spanned y,z-plane. The rotor rotates with the
rotor speed Ω into the negative x-direction.

Figure 2 shows the signal flow of the test-rig. The bear-
ing forces F̃L,y and F̃L,z of Bearing 1 are measured in the y-
and z direction respectively. After filtering the signals with a
first order Butterworth high-pass filter, which has the cut-on
frequency 1Hz, the signals are combined to a complex signal
FL(t) = FL,y(t)+ iFL,y(t) which hereinafter is referred to as the
bearing force. This step is crucial for the later presented control
approach since we can easily distinguish the forward and back-
ward whirl and correct the phase of the complex signal through-
out a multiplication with a complex number. Analogously, the

displacements r̃w,y and r̃w,z of Disc 1 are measured and com-
bined. An incremental encoder is used to measure the instan-
taneous angle of the rotor ϕ . The angle is used to subtract the
runout of the rotor from the measured displacement so that in
theory rw,y(Ω =Ua = 0,∀ϕ) = rw,z(Ω =Ua = 0,∀ϕ) = 0 is ful-
filled. The piezo actuators in y- and z-direction are supplied by
the voltages Ua,y and Ua,z respectively. Both voltages are com-
bined to the complex signal Ua = Ua,y + iUa,z which equals the
sum of the complex controller output voltage Uc and the sepa-
rate voltage Un which is later used for the system identification.

In this paper we aim to eliminate the bearing force FL. Thus,
we require the transfer function HF = F{FL}/F{Ua} for ac-
tive control of the system where the operator F{} represents
the Fourier-transformation. This relation needs more explana-
tion since our time signals are complex, as well as the signal in
the frequency domain. Under the assumption of a linear system,
the relation in the frequency domain is given by

(
F{FL,y}

F{FL,z}

)
=

[
Hyy Hyz

Hzy Hzz

](
F{Ua,y}

F{Ua,z}

)
, (1)

Fig. 1. The test-rig comprises two discs mounted on the shaft with clamping-sets. The test-rig has one active plane (Bearing 1) with piezo
actuators prestressed with springs
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Fig. 2. Signal flow of the test-rig. The bearing forces F̃L,y and F̃L,z of Bearing 1 and the displacements r̃w,y and r̃w,z of Disc 1 are measured. Ω
is the rotor speed and ϕ the instantaneous rotor angle. Uc is the complex time signal of the control voltage, Un the voltage from white noise. Ua,y

is the real valued voltage of the actuator pointing in y-direction and Ua,z from the one pointing in z-direction
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where Ω represents the excitation frequency. This relation does
not allow a complex combination as mentioned above in gen-
eral. However, if the bearings and the rotor are isotropic, the
relations Hyy = Hzz and Hyz =−Hzy apply, where the latter one
represents the skew-symmetric coupling caused by gyroscopic
effects. We can rearrange Eq. (1) under the assumption that the
rotor and its bearings are isotropic to

F{FL,y}+ iF{FL,z}= (Hyy − iHyz)(F{Ua,y}+ iF{Ua,z})
F{FL} = HF F{Ua}

(2)

since the Fourier-transform is a linear operator. The transfer
function HF = Hyy − iHyz links the Fourier-transformations of
the complex time signals FL(t) and Ua(t) showing that we
can use the same identification process as for real time sig-
nals. The transfer function is in general not point symmetrical
HF(Ω,Ω �= 0) �= H∗

F(−Ω,Ω �= 0) due to the presence of gy-
roscopic effects yielding different transfer functions for nega-
tive and positive frequencies. This makes it simple to separate
forward whirl and backward whirl vibrations. However, the as-
sumptions imply that a forward whirl excitation causes a for-
ward whirl response only and the other way around for a back-
ward whirl excitation. This approach is not suited if a forward
whirl excitation causes a forward and backward whirl response
as it is the case for non-isotropic bearings.

We need to define the structure of the transfer function for
the later identification process. We take the usual approach by
separating the function into modes based on the eigenvalues λn
of the systems. The challenging part here is that the eigenvalues
are a function of the rotor speed Ω. The eigenvalues can be
separated into forward and backward whirl modes since we are
using complex time signals and they do no longer appear as
conjugate complex pairs because of gyroscopic effects.

We separate the eigenvalues into imaginary and real part
which allows for a simpler numerical identification of the pa-
rameters. Analogous to the structure of the roots of the char-
acteristic equation presented by Vervisch [12], we approximate
the imaginary part using the function

ℑ{λn}= ωn ≈ wn0 +wn1Ω±
√

w2
n2 +wn3Ω+w2

n1Ω2 (3)

with ωn, wni ∈ R, which represents an undamped eigenfre-
quency ωn of the system. Note that ± indicates two possibilities
of which only one is true for each eigenvalue. The real part is
approximated using

ℜ{λn}=−Dnωn ≈−ωn
(
dn0 +dn1Ω

)
, Dn,dni ∈ R (4)

where Dn represents the modal damping. The parameters dni
and wni have to be identified and are not directly related to me-
chanical system properties. Equation (4) has a structure which
is analogous to a Jeffcott-rotor with internal damping.

We chose the trial function

HF(Ω,Ω) =

{
HF0 +

nM

∑
n=1

Vn
iΩ

iΩ− (iωn −Dnωn)

}
e−iΩτ (5)

to model the transfer function for a base excitation of the piezo
actuator where HF0 represents the static response, which is
mainly caused by the prestressing springs and the bellow cou-
pling, Vn the modal residual and nm the number of considered
modes. A delay-time τ is used to cover the delay caused by
the power electronics, sensors and the time-discrete real-time
system.

3. SYSTEM IDENTIFICATION
The first step of the system identification is the estimation of
the frequency transfer function HF which will then be used for
fitting. The rotor was operated at nine constant speeds Ω (0,
1000, 2500, 4000, 5000, 7000, 8000, 9000, 10 000 rpm) while
exciting it with a noise-burst with an 80% duty cycle for 20
seconds. The noise wn was applied throughout two white noise
blocks in MATLAB SIMULINK with the same seed, meaning
that Wy(t) =Wz(t) = wn. Each measurement was performed 25
times. Additionally, IFF was used during the entire operation of
the system because of the presence of internal damping which
could lead to an exponential rise of the vibrations as can be seen
in Fig. 5. This yields the advantage that the closed-loop transfer
function

HFc =
F{FL}
F{Ua}

(6)

can be estimated which is more relevant for the later control
approach than the open-loop transfer function HF . No adap-
tive feedforward control is used during the identification pro-
cess. The open-loop transfer function can be computed from
the closed-loop transfer function using Eq. (8) since the trans-
fer function of the IFF-controller is known.

Figure 3 shows the estimated closed-loop transfer function
HFc together with the fit. Negative frequencies correspond to
the forward whirl and positive frequencies to the backward
whirl. Even-orders of the rotor speed have been cut out. The
coherence is very poor at zeros due to the low response but ac-
ceptable at the other frequencies.

In the second step, the eigenfrequencies Eq. (3) are fitted
with non-linear regression using the Levenberg-Marquardt al-
gorithm. The modal residuals VF are computed afterwards by
applying a weighting for different frequency ranges, with a fo-
cus on the operating range between −170 and 170Hz, guess-
ing an initial value for the modal damping and performing a
linear regression. Finally, the damping and the modal residual
are optimized together by using the Levenberg-Marquardt al-
gorithm for non-linear regression of the weighted least-mean-
square problem.

The fit is in good agreement with the estimated transfer func-
tion excepted for the phase at the zeros of the second forward
and backward resonances. The real part of the zero at around
130Hz at a rotor speed of 10 000 rpm is positive while the zero
of the fit remains a negative real part. This causes the phase to
fall in the estimation but to rise for the fit. The backward whirl
resonance here originates at 230 Hz for Ω = 0 where the phase
increases in the zero before the resonance. The phase decreases
in the zero before the resonance starting at Ω ≈ 9000 rpm.
The presented model cannot represent such a behaviour because
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of the simple numerator of the trial function (5). The fit can be
improved significantly by using a linear function for the modal
residual VF1 = v0 + v1Ω which can compensate some simplifi-
cations as shown in Fig. 4. However, since there is no reason-
ing for this approach, it will be discarded and not applied in

this paper due to possible overfitting. Experimental results of
the FxLMS using a model with constant or linear modal resid-
ual show no significant differences since a phase mismatch of
±40◦ has no significant influence on the performance of the
FxLMS [13].
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4. CONTROLLER DESIGN
In accordance with the literature review, the control approach
which yields the best results for unbalance vibration elimina-
tion is a combination of a feedback controller and an adaptive
feedforward controller. An IFF-controller

HIFF =
F{Uc}
F{FL}

=− kIFF

iΩ+ γIFF kIFF
(7)

can be used to increase the damping of the system where kIFF is
the amplification factor and γIFF the forgetting factor. The con-
troller integrates the force over time resulting in active damp-
ing. At this point it is crucial that a high-pass filter is used to
filter out the static forces which cannot be eliminated and cause
the closed-loop system to be unstable for γIFF = 0. For γIFF > 0
the system is in theory stable but the controller still produces
a useless controller output which might hinder the feedback at
other frequencies. The closed-loop transfer function of the sys-
tem with an IFF controller is given by

HFc =
HF

1−HF HIFF
(8)

and has been identified throughout the experimental modal
analysis in the section before.

Of more importance is the choice of the adaptive feedfor-
ward control which will be explained more in detail. A well-
researched control algorithm of this class is the least-mean-
squares (LMS) algorithm [14, 13]. The algorithm explained in
the following is for a single-input-single-output system but can
be extended to a multi-input-multi-output system without loss
of generality. The objective is to eliminate the bearing force
FL of Bearing 1 with the actuator voltage Ua. The algorithm is
based on minimizing the squared control error [13]. In this pa-
per we chose to minimize the bearing force by using the com-
plex amplitude of the actuator voltage Ûa in the fashion

min
Ûa

(F∗
L FL) with FL = F̂Leiϕ ,Ua = Ûaeiϕ (9)

where the operator ∗ represents the complex conjugate, ϕ the
reference angle, which is in our case equal to the instantaneous
rotor angle, and F̂L the complex amplitude of the bearing force.
Note that we use the closed-loop transfer function assuming
that IFF is used. The minimum is given when the first derivative
of the squared control error in respect to the actuator voltage
amplitude equals zero

∇U =
d

dÛa
(F∗

L FL) = F∗
L HFceiϕ !

= 0

with ∇U =
1
2

d
dℜ{Ûa}

− 1
2

i
d

dℑ{Ûa}
.

(10)

The optimal voltage amplitudes cannot be directly computed
since F∗

L is a function of the unknown unbalance. However, the
minimum can be reached by following the gradient ∇U step by
step in the negative conjugate complex direction yielding the
discrete update equation

Ûa[n+1] = (1− γ∆t) Ûa[n]−α∆t H∗
Fc[n] FL[n] e−iϕ[n],

Ua[n+1] = Ûa[n+1] eiϕ[n],
(11)

where α is the real valued step size and ∆t the sample time.
Note that this approach automatically yields the update equa-
tion of the FxLMS since the time signals are complex. Thus,
we will refer to it as the FxLMS instead of just LMS. Further-
more, we can filter the complex time signal directly with the
transfer function. A forgetting factor γ is introduced, analogous
to IFF, to increase the stability [13] since a practical application
will always have remaining vibrations.

The convergence of the algorithm is depending on the quality
of the model H̃Fc of the closed-loop transfer function HFc and
the step-size α . The FxLMS will converge for limited step sizes
if the maximum phase error of the model H̃Fc is less than ±90◦

[13]. A phase error less than ±40◦ does not cause a significant
slower convergence [13]. The maximum step size α depends on
the magnitude of the transfer function |HF | at the current oper-
ating point and is proportional to 1/|HFc|2 [15]. For practical
applications, a safety margin δ is used in the form

α =
α0

δ + |HFc|2
with δ > 0, α0 ∈ (0, 2) (12)

which avoids a too large step size in zeros of HFc [15]. The con-
verges of the algorithm is also strongly depending on the pres-
ence of other uncorrelated frequencies [16]. For example, if we
want to eliminate the unbalance forces which frequency is pro-
portional to the rotor speed Ω, a present disturbance with twice
the frequency will reduce the convergence speed. Using an ad-
ditional transformation can remedy this, yielding the transform-
domain LMS [16]. However, since approximately only one fre-
quency is present at a time, it is unnecessary to take such mea-
sures. Thus, the overall discrete update equation for a combina-
tion of IFF and the FxLMS, which we refer to as model-based
controller, is given by

uIFF[n+1] = (1− γIFF kIFF∆t) uIFF[n]− kIFF ∆t FL[n],

u+FxLMS[n+1] = (1− γ∆t) u+FxLMS[n]

− α0 ∆t
H∗

Fc(Ω[n])
δ + |HFc(Ω[n])|2

FL[n] e−iϕ[n],

u−FxLMS[n+1] = (1− γ∆t) u−FxLMS[n]

− α0 ∆t
H∗

Fc(−Ω[n])
δ + |HFc(−Ω[n])|2

FL[n] e+iϕ[n],

Ua[n+1] = uIFF[n+1]+u+FxLMS[n+1] e+iϕ[n]

+ u−FxLMS[n+1] e−iϕ[n]. (13)

A model-free control approach can now be designed using
the prior mentioned convergences and stability criteria. The ac-
tuator and force sensor of the identified system are approxi-
mately collocated which means that zeros and poles always ap-
pear in according pairs. This causes the phase within the op-
erating range to be approximately between 0 and 180◦ for the
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dÛa
(F∗

L FL) = F∗
L HFceiϕ !

= 0

with ∇U =
1
2

d
dℜ{Ûa}
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dℑ{Ûa}
.

(10)

The optimal voltage amplitudes cannot be directly computed
since F∗

L is a function of the unknown unbalance. However, the
minimum can be reached by following the gradient ∇U step by
step in the negative conjugate complex direction yielding the
discrete update equation
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backward whirl (Ω > 0) and between 0 and −180◦ for the for-
ward whirl (Ω < 0). This would always be true if the system
comprises only poles and zeros with a negative real-part and
has no delay time. Assuming this to be true, we can define a
model of the secondary path H̃F which fulfills the convergence
criteria of the FxLMS. Choosing the models

H̃+
Fc = i and H̃−

Fc =−i (14)

for the backward whirl, indicated by plus, and the forward
whirl, indicated by minus, respectively, results in a phase mis-
match which is no bigger than ±90◦ since the phase of the
secondary path model is constant +90◦ for positive frequen-
cies corresponding to the backward whirl and −90◦ for nega-
tive frequencies corresponding to the forward whirl. The max-
imum step size α is depending on the maximum value of the
transfer function HFc within the operating range as described
in Eq. (12). Thus, an undamped system can never be controlled
in resonances using the FxLMS only since HFc → ∞ and thus
α → 0. Damping is required to control such a system which
can be provided by using IFF since the system is approximately
collocated. The presence of damping also causes the phase to
never actually reach the values −180◦, 0◦ and 180◦ for either
backward or forward whirl respectively for Ω �= 0. This allows
a convergences of the FxLMS since the phase mismatch never
equals either ±90◦ because the algorithm will never converge
for a phase mismatch of exactly ±90◦. Thus, damping is neces-
sary for the implementation even aside the resonances. The dis-
crete update equation for a combination of IFF and the model-
free FxLMS based on Eq. (11), which we will refer to as model-
free controller, is given by

uIFF[n+1] = (1− γIFF kIFF∆t) uIFF[n]− kIFF ∆t FL[n],

u+FxLMS[n+1] = (1− γ∆t) u+FxLMS[n]+ iα0 ∆t FL[n] e−iϕ[n],

u−FxLMS[n+1] = (1− γ∆t) u−FxLMS[n]− iα0 ∆t FL[n] e+iϕ[n],

Ua[n+1] = uIFF[n+1]+u+FxLMS[n+1] e+iϕ[n]

+ u−FxLMS[n+1] e−iϕ[n]. (15)

Note that this algorithm is the same algorithm as the one Hein-
del proposed in [11]. The delay-time can and will destabilize
the proposed controller if the delay-time or the excitation fre-
quency is too high since the phase will leave the assumed ±90◦

window as can be seen in Fig. 3. This can be remedied by using
the models

H̃+
Fc = ie−iΩτ and H̃−

Fc =−ieiΩτ (16)

which require the knowledge of the delay-time τ making the
controller not completely model-free anymore. An extension to
further harmonics is possible by using different reference an-
gles and adding them to the controller output respectively for
forward and backward whirl. Only the rotor synchronous un-
balance excitation for forward and backward whirl will be con-
sidered in this paper.

The controller has a limited step size α which has to be iden-
tified by trial and error for a practical implementation. The step
size is limited by the maximum value of the closed-loop trans-
fer function and is constant for the whole operating range. This
causes a relative small step size aside the resonances causing
a slower convergence than the model-based controller which
uses the models H̃+

Fc = H+
Fc and H̃−

Fc = H−
Fc. The phase error

in most areas aside the resonances and zeros is greater than
±40◦ causing the algorithm to converge even slower. Thus,
we can expect a fast convergence in the resonances but a slow
one aside from them. Furthermore, a delay time will cause the
controller to be unstable for too high frequencies which can
be remedied by consideration of the delay-time. An operation
in a zero can lead to high output voltages Ua which need to
be limited by the forgetting factor γ . If the closed-loop system
without adaptive feedforward shows zeros with a positive real-
part, which is the case for the zero at 120Hz at a rotor speed
of 10 000 rpm in Fig. 3, the controller will become unstable in
this region if the forgetting factor γ is too small. Since there is
a limit for the maximum amplification factor kIFF for practical
implementation, which also limits the active damping, the sys-
tem will become unstable for too high rotor speeds if internal
damping is present. Thus, a model-free control which always
converges is not possible because of delay-time and internal
damping.

5. EXPERIMENTAL RESULTS
The test-rig in Fig. 1 is used for a comparison of the model-
free controller from Eq. (15) and the model-based algorithm
from Eq. (13). The model-free controller comprises IFF and
the FxLMS which uses the ±90◦ model from Eq. (14). Thus,
it does not consider the delay time. The model-based controller
is also combination of IFF and the FxLMS but uses the prior
identified modal model comprising delay time and the system
dynamics including internal damping. Furthermore, the model-
based controller uses a normalized step-size.

The rotor is elastically balanced for the first and second for-
ward whirl resonance with a remaining rigid rotor unbalance of
ca. 125gmm on Disc 1 and 242gmm on Disc 2 at 1000 rpm.
The unbalance is mainly caused by the shaft runout of the ro-
tor which has a radius of ca. 0.05mm at both discs measured
at 100 rpm. Rotor run-ups are used for comparison of the con-
troller performances. However, since the rotor shows internal
damping and becomes unstable after the second forward whirl
resonance at 110Hz, a passive run-up cannot be used. Figure 5
shows a passive run-up with 400 rpm/s where the bearing force
increases exponentially. This instability was not predictable by
the modal model, probably because of the simple approach or
non-linearities. The rotor has been stopped and IFF was ac-
tivated causing the vibrations to decrease in order to prevent
damage. The envelop of the signal is used in the following
for comparison of the controller performances. The envelop is
computed by using order-tracking adding the absolute value of
the amplitudes of the orders −2, −1, 1 and 2 together, which are
the multiples of the rotor speed. The sliding discrete Fourier-
transformation with a changing window length which always

6 Bull. Pol. Acad. Sci. Tech. Sci. 69(6) 2021, e138090

Active vibration control of a gyroscopic rotor using experimental modal analysis

0 20 40 60 80 100 120
0

200

400

600

800

1000

Rotor speed (Hz)

Fo
rc

e
(N

)

Passive run-up 400 rpm/s
Envelop

Fig. 5. Absolute force of Bearing 1 from a passive run-up of the rotor with 400 rpm/s. The rotor was stopped at ca. 130 Hz
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Fig. 6. Active control results for three different controllers for rotor run-ups and a passive rotor run-out for comparison. The control objective
was to reduce the force of Bearing 1. Depicted are the envelops of the force of Bearing 1, the displacement of Disc 1 and the voltage of the active
plane. The legend is shared among all plots. The model-free controller uses the update equation Eq. (15) and the model-based controller Eq. (13)

covers a full rotor rotation was used to extract the amplitudes as
described in [17].

Figure 6 shows the results of IFF alone and in combination
with the model-free and model-based controller. The reference
angle ϕ was extracted with an incremental encoder. The con-
trol parameters were kIFF = 800, γIFF = γ = δ = 0.1 and α0 = 1
with a sampling rate of 6000Hz. IFF is reducing the amplitudes
of the second resonance significantly but still keeps remain-
ing vibrations. Using the derived model-free controller or the
model-based controller allows a nearly complete elimination of
the second resonance at 110Hz where both controllers show the
same performance. However, it can be seen that the model-free

control approach has a significant higher control output when
the rotor speed is not close to a resonance, for example in the
range between 50 and 90Hz as well as above 120Hz. This is
caused by a phase mismatch of the model H̃+

Fc which is bigger
than 90◦ because the phase of the transfer function is above 0◦

which can be seen in Fig. 3. This causes the model-free con-
troller to diverge causing the displacements to increase. The
divergence is slow since the phase mismatch is close to 90◦

where an exact phase mismatch of 90◦ has no influence on the
bearing forces but can increase the displacements of the rotor.
The divergence is also limited by the forgetting factor γ . The
model-based controller keeps a nearly constant actuator voltage

Bull. Pol. Acad. Sci. Tech. Sci. 69(6) 2021, e138090 7



7

Active vibration control of a gyroscopic rotor using experimental modal analysis

Bull. Pol. Acad. Sci. Tech. Sci. 69(6) 2021, e138090

Active vibration control of a gyroscopic rotor using experimental modal analysis

0 20 40 60 80 100 120
0

200

400

600

800

1000

Rotor speed (Hz)

Fo
rc

e
(N

)

Passive run-up 400 rpm/s
Envelop

Fig. 5. Absolute force of Bearing 1 from a passive run-up of the rotor with 400 rpm/s. The rotor was stopped at ca. 130 Hz
and IFF was activated. Shown is also the envelop of the signal

0 20 40 60 80 100 120 140 160
0

200

400

600

E
nv

el
op

Fo
rc

e
(N

)

Passive run-out 200 rpm/s
IFF, 50 rpm/s
Model-based, 50 rpm/s
Model-free, 50 rpm/s

0 20 40 60 80 100 120 140 160
0

0.1
0.2
0.3
0.4
0.5

E
nv

el
op

D
is

pl
ac

em
en

t(
m

m
)

0 20 40 60 80 100 120 140 160
0

100

200

300

Rotor speed (Hz)

E
nv

el
op

Vo
lta

ge
(V

)

Fig. 6. Active control results for three different controllers for rotor run-ups and a passive rotor run-out for comparison. The control objective
was to reduce the force of Bearing 1. Depicted are the envelops of the force of Bearing 1, the displacement of Disc 1 and the voltage of the active
plane. The legend is shared among all plots. The model-free controller uses the update equation Eq. (15) and the model-based controller Eq. (13)

covers a full rotor rotation was used to extract the amplitudes as
described in [17].

Figure 6 shows the results of IFF alone and in combination
with the model-free and model-based controller. The reference
angle ϕ was extracted with an incremental encoder. The con-
trol parameters were kIFF = 800, γIFF = γ = δ = 0.1 and α0 = 1
with a sampling rate of 6000Hz. IFF is reducing the amplitudes
of the second resonance significantly but still keeps remain-
ing vibrations. Using the derived model-free controller or the
model-based controller allows a nearly complete elimination of
the second resonance at 110Hz where both controllers show the
same performance. However, it can be seen that the model-free

control approach has a significant higher control output when
the rotor speed is not close to a resonance, for example in the
range between 50 and 90Hz as well as above 120Hz. This is
caused by a phase mismatch of the model H̃+

Fc which is bigger
than 90◦ because the phase of the transfer function is above 0◦

which can be seen in Fig. 3. This causes the model-free con-
troller to diverge causing the displacements to increase. The
divergence is slow since the phase mismatch is close to 90◦

where an exact phase mismatch of 90◦ has no influence on the
bearing forces but can increase the displacements of the rotor.
The divergence is also limited by the forgetting factor γ . The
model-based controller keeps a nearly constant actuator voltage
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in the area between 50 and 90Hz suggesting that the increasing
voltage of the model-free controller is caused by the not suf-
ficient model H̃+

Fc. Furthermore, the presence of a zero in this
area causes the voltage to increase. This is prevented in case of
the model-based controller throughout the use of a normalized
step-size with a sufficiently high safety margin in combination
with the forgetting factor γ .

The first three peaks at 22Hz, 35Hz and 49Hz belong to the
first forward whirl resonance excited by the second order, the
first backward whirl resonance excited by the negative first or-
der and first forward whirl resonance excited by the first order,
which corresponds to the unbalance excitation, respectively.
Thus, the test-rig has non-isotropic bearings which excite the
backward whirl. However, the assumption of an isotropic and
isotropic bearing made in Section 2 are still sufficient for the
model of the controller since the model-based controller did
converge at all rotor speeds. These resonances are not signifi-
cantly reduced by the control. The reason therefore is that res-
onances nearly only excite the disc displacements but not the
bearing forces. Since the controllers only use the bearing forces,
they cannot generate a sufficient controller output to eliminate
the resonances. Furthermore, the rotor centres itself after pass-
ing the second forward whirl resonance as can be seen at rotor
speeds higher than 120Hz. The remaining displacement is ca.
0.04mm which is close to the runout of 0.05mm and not in
conflict with the control objective either.

6. CONCLUSION
A gyroscopic rotor system with active piezoelectric bearings
has been modelled and identified throughout experimental
modal analysis. A simple trial function has been deployed
which yields good results. The trial function is based on the
separation of the eigenvalues into a real and imaginary part,
yielding the poles of the system, in order to fit the model to
experimental data. A model-free control based on the FxLMS
in combination with IFF has been designed for a collocated ac-
tuator sensor pair. The stability and convergence of the con-
troller is limited by internal damping and the delay-time which
causes the phase mismatch to increase with rising excitation
frequency. The delay-time has to be included into the algorithm
for improving the stability making the controller no longer com-
pletely model-free. The model-free controller shows a similar
performance as the model-based controller near the resonances
but diverges aside the resonances which can be limited with a
forgetting factor. Both controllers were able to stabilize the un-
stable system which was induced by internal damping. Thus, a
model-free control approach which can theoretically eliminate
the bearing forces at all rotor speeds is not feasible in a real
system because of the delay-time.
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