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Abstract
Geographic trajectory of a pipeline is important information for pipeline maintenance and leak detection.
Although accurate trajectory of a ground pipeline usually can be directly measured by using global posi-
tioning system technology, it is much difficult to determine trajectory for an underground pipeline where
global positioning system signal cannot be received. In this paper, a new method to determine trajectory
for an underground pipeline by using a pipeline inspection robot is proposed. The robot is equipped with
a low-cost inertial measurement unit and odometers. The kinematic model, measurement model and error
propagation model are established for estimating position, velocity and attitude of the robot. The path re-
construction algorithm for the robot is proposed to improve accuracy of trajectory determination based on
pipeline features. The experiment is given to illustrate that the position errors of the proposed method are
less than 40% of that of the standard extended Kalman filter.
Keywords: trajectory determination, pipeline inspection robot, pipeline feature, path reconstruction algo-
rithm.
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1. Introduction

Pipeline system is the highest-efficient tool for gas and oil transportation compared to vehicular
and/or railway transportation, ship and/or plane transportation. As pipelines must be free from the
risk of degradation which could cause environmental hazards and potential threats to life, pipeline
inspection is a crucial aspect of pipeline operations [1, 2]. For example, improper maintenance
of a gas pipeline threatens property and life from explosion and fire resulting from pipeline
leaks. Therefore, it is important to have a pipeline inspection system for reducing the likelihood
and consequences of incidents where the geographic trajectory of the pipeline is the primary
information for pipeline inspection [3, 4]. Pipeline inspection is completed by assessing and
mitigating pipeline risks following the geographic trajectory of the pipeline. However, accurate
geographic trajectories of some pipelines are unknown and have to be reconstructed for pipeline
inspection.
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Although the trajectory for above -ground pipelines can be directly reconstructed by global
positioning system (GPS) technology, it is much difficult to determine the trajectory for an
underground pipeline since GPS signal is blocked by the soil and/or the metal pipeline. A pipeline
inspection gauge (PIG) travels inside the pipeline and can be used to obtain the trajectory for
an underground pipeline using a carried location system [5–7]. The location system on a PIG is
usually composed of an inertial measurement unit (IMU) and odometers to sense motion of the
PIG [8,9]. Strapdown inertial navigation technology is applied to obtain the geographic trajectory
of the pipeline where the odometers are applied for the velocity updates and above -ground marks
(AGMs) located at every few kilometers are used for location coordinate updates [10–13]. In
order to obtain accurate trajectory of a pipeline, a high-precision IMU, like a fiber optic gyro
(FOG) based IMU, is usually used for the location system on the PIG [14–16]. However, the size
of a high-precision IMU makes it difficult to use in a small-diameter pipeline and the price of a
high-precision IMU extremely increases the cost for trajectory determination for a pipeline.

A micro electro mechanical system (MEMS) based IMU has a much smaller size and lower
cost than a FOG based IMU and is tried to be used for trajectory determination for pipelines.
Usually, a MEMS based IMU cannot provide high-precision inertial measurements and position
errors are accumulated rapidly with travel distance of a PIG in a pipeline [18]. AGMs must
be applied to timely correct the position of the PIG and make the accuracy of the position
satisfy the requirement for trajectory determination [18–20]. Buildings, roads and rivers in a city
usually make deployment of AMGs impossible and consequently, the accuracy of the position
cannot fully meet the requirements without enough AGMs. In [21,22], pipeline junction detection
using accelerometer measurements is proposed to improve the accuracy of the pipeline trajectory
determination. However, in the case when the PIG moves slowly in the pipeline and there are
no gaps on the inner surface of pipeline junctions, it is difficult to detect pipeline junctions by
accelerometer measurements because there is almost no vibration happening when the PIG goes
through the pipeline junctions.

In this paper, the pipeline inspection robot moves in a pipeline for reconstructing the trajectory
of the pipeline. The pipeline inspection robot is equipped with a MEMS based IMU which is
low cost and suitable for small-diameter pipelines. Sensor data from the IMU and the odometers
are recorded. A new trajectory determination method for pipelines is proposed by using the
data from the IMU and the odometers on the pipeline inspection robot. The kinematic model and
measurementmodel of the robot are created. The error propagationmodel is derived for correcting
position, velocity and attitude errors of the robot. Pipeline features are utilized to improve the
accuracy of trajectory determination. The trajectory determination algorithm is given to obtain
accurate pipeline trajectory. The main contributions of this paper are listed as follows: 1) the
kinematic model, measurement model and error propagation model of the pipeline inspection
robot are created; 2) the pipeline feature extractionmethod is proposed to determine the constraints
on the attitude of the robot; 3) the new trajectory reconstruction algorithm is given to improve the
accuracy of a trajectory based on pipeline features; 4) the experiment is conducted to show the
advantage of the proposed trajectory determination method.

2. System modelling for the pipeline inspection robot

2.1. Pipeline inspection robot

The robot used for pipeline trajectory determination is shown in Fig. 1. The pipeline inspec-
tion robot is driven by motors. The odometers are used to measure velocity of the robot. The
pipeline inspection robot can fit in pipelines with different diameters by adjusting the springs.
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The minimum diameter for a pipeline in which the robot can be applied is 6 inches. The electronic
system of the pipeline inspection robot is mainly composed of an IMU, a microcontroller, a
memory card and batteries. Limited by the cost of a high-precision IMU, a MEMS based IMU
(MPU6050) is used on the robot. The IMU with a three-axis accelerometer and a three-axis gy-
roscope provides inertial measurements of the robot. A magnetometer is not applied on the robot
because magnetic field can be affected in underground metal pipelines. Sensor data are stored in
the memory card. After the robot completes pipeline inspection, sensor data are uploaded to a
computer and processed offline for trajectory determination.

Fig. 1. Pipeline inspection robot.

2.2. Kinematic model and measurement model of the robot

The pipeline inspection robot travels in a gas pipeline and the path of the robot coincides with
the pipeline trajectory. Therefore, the pipeline trajectory can be determined by reconstructing the
path of the robot. Since, the robot is equipped with an IMU, the kinematic model of the pipeline
inspection robot is created based on inertial navigation technique, where the differential equations
are used to represent the position, velocity and attitude of the robot.

The frames used in the model are defined as follows:
The inertial frame (i-frame) is stationary with the origin at the center of mass of the Earth,

z-axis pointing to the north pole and x-axis pointing to the vernal equinox.
The earth frame (e-frame) rotates along with the Earth with the origin at the center of mass of

the Earth, z-axis pointing to the north pole and x-axis pointing to the intersection of the equatorial
plan and the Greenwich meridian.

The navigation frame (n-frame) is on the surface of the Earth with the z-axis pointing
downwards and the x-axis pointing to north.

The body fame (b-frame) is attached to the robot with the origin at the center of mass of
the robot, the x-axis pointing forward and the z-axis pointing upwards. The frame of the IMU
coincides with the body frame.

The position of the pipeline inspection robot is expressed by the latitude , the longitude and
altitude . The velocity of the robot in the n-frame with respect to the e-frame is expressed by
vn =

[
vN vE vD

]T
where vN , vE and vD are the velocity components in the north, east and
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down directions, respectively. The rate of change of the position is

φ̇ =
vN

Rφ + h
,

λ̇ =
vE

(Rλ + h) cos φ
,

ḣ = −vD ,

(1)

where Rφ is the meridian radius of the Earth, Rλ is the normal radius of the Earth.
The rate of change of the velocity is given by [23]

v̇N = −

[
vE

(Rλ + h) cos φ
+ 2ωe

]
vE sin φ +

vN vD

Rφ + h
+ fN ,

v̇E =

[
vE

(Rλ + h) cos φ
+ 2ωe

]
vN sin φ +

vN vD

Rλ + h
+ 2ωevD cos φ + fE ,

v̇D = −
v2
E

Rλ + h
−

v2
D

Rφ + h
− 2ωevE cos φ + g + fD ,

(2)

where ωe is the angular rate of the Earth, g is the gravitational acceleration. The output
of the three-axis accelerometer is called specific force f b in the b-frame. The specific force
f n =

[
fN fE fD

]T
is the specific force f b expressed in the n-frame obtained by coordinate

transformation as follow:
f n = Rn

b f b, (3)

where Rn
b is the rotation matrix.

The attitude quaternion is used to represent the attitude of the pipeline inspection robot. The
attitude quaternion q is a four-parameter vector defined as q =

[
ρT q4

]T
with ρ =

[
q1 q2 q3

]T
.

The attitude quaternion q relates to the rotation matrix Rb
n by

Rb
n (q) =

(
q2

4 − ‖ρ‖
2
)

I3 + 2ρρT − 2q4[ρ×] , (4)

where [ρ×] is a skew symmetric matrix given by

[
ρ×
]
=



0 −q3 q2

q3 0 −q1

−q2 q1 0



. (5)

The rate of change of the attitude is given by

q̇ = 1
2
Ξ (q)ωb

bn (6)

with

Ξ (q) =


q4I3 +
[
ρ×
]

−ρT


, (7)
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where ωb
bn

is the angular rate of the b-frame with respect to the n-frame expressed in the b-frame
calculated as

ωb
bn = ω

b
bi − Rb

n (q)



ωe cos φ +
vE

Rλ + h

−
vN

Rφ + h

−ωe sin φ −
vE tan φ
Rλ + h



. (8)

Combining (1), (2) and (6), the kinematic model of the pipeline inspection robot is established.
The odometer measures the velocity of the robot in the b-frame, which is related to the velocity

in the n-frame by the rotation matrix Rb
n . The measurement model of the robot is given by

ṽbod =


ṽod

0
0


= Rb

n



vN

vE

vD


+ v , (9)

where ṽod is the velocity measured by the odometer, v is zero-mean Gaussian white noise with
the covariance R = σ2

od
I3.

2.3. Error propagation model

If true values of the angular rate and specific force are exactly known, the accurate position,
velocity and attitude can be obtained based on the kinematic model, and then high-precision path
reconstruction is achieved. Unfortunately, it is inevitable that there are measurement errors in
the data of angular rate and specific force, especially for a low-cost IMU [24]. Position, velocity
and attitude errors of the robot are rapidly accumulated with error propagation in the kinematic
model. The error propagation model is introduced in this section for correcting position, velocity
and attitude of the robot.

Considering measurement errors, the three-axis gyroscope measurement model is given by

ω̃b
bi = ω

b
bi + βg + ηgv ,

β̇g = ηgu ,
(10)

where βg is the gyroscope bias, ηgv and ηgu are zero-mean Gaussian white noises with the
covariance matrices given by σ2

gvI3 and σ2
guI3, respectively.

The accelerometer measurement model is given by

f̃
b
= f b + βa + ηav ,

β̇a = ηau ,
(11)

where βa is the accelerometer bias, ηav and ηau are zero-mean Gaussian white noises with the
covariance matrices given by σ2

avI3 and σ2
auI3, respectively.

Since the kinematicmodel of the robot is nonlinear, linearization is required for deriving the er-
ror propagationmodel. First, we define state error vector δx =

[
δαT δpT (δvn)T δ βT

g δβT
a

]T
and

the process noise vector w=
[
ηT
gv η

T
gu η

T
av η

T
au

]T
, where p=

[
φ λ h

]T
, vn=

[
vN vE vD

]T
, δα rep-

resents the attitude error. The process noise covariance isQ = diag
(
σ2
gvI3, σ

2
guI3, σ

2
avI3, σ

2
auI3
)
.
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Substituting (10) and (11) into (2) and (6), the error propagation model is obtained by using the
Taylor expansion.

δẋ = Fδx + G w ,
δvbod = Hδx + v ,

(12)

where

F ≈



−
[(
ω̃b

bi − β̂g
)
×

]
F12 F13 −I3 03

03 F22 F23 03 03

−Rn
b (q̂)

[ (̃
f − β̂a

)
×

]
F32 F33 03 −Rn

b (q̂)

03 03 03 03 03

03 03 03 03 03



, (13)

F12 ≈ −Rb
n (q̂)



−ωe sin φ 0 0
0 0 0

−ωe cos φ−
vE sec2 φ

Rλ
0 0



, F13 = −Rb
n (q̂)



0
1

Rλ+h
0

−
1

Rφ+h
0 0

0 −
tan φ
Rλ+h

0



, (14)

F22 ≈



0 0 0
vE sec φ tan φ

Rλ + h
0 0

0 0 0



, F23 =



1
Rφ+h

0 0

0
sec φ
Rλ+h

0

0 0 −1



, (15)

F32 ≈



−
v2
E sec2 φ

Rλ + h
− 2ωevE cos φ 0 0

vEvN sec2 φ

Rλ + h
+ 2ωe (vN cos φ − vD sin φ) 0 0

2ωevE sin φ + 0.103718 sin φ cos φ 0 −3.0877 × 10−6



, (16)

F33 =



vD

Rφ+h
−

2vE tan φ
Rλ+h

+ 2ωe sin φ
vN

Rφ+h
2vE tan φ

Rλ+h
+ 2ωe sin φ

vD+vN tan φ
Rλ+h

vE

Rλ+h
+ 2ωe cos φ

−
2vN

Rφ+h
−

2vE
Rλ+h

− 2ωe cos φ 0



, (17)

G =



−I3 03 03 03

03 03 03 03

03 03 −Rn
b (q̂) 03

03 I3 03 03

03 03 03 I3



, (18)

H =
[ [(

Rb
n (q̂) v̂n

)
×

]
03 Rb

n (q̂) 03×6
]
, (19)
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δvbod = ṽbod − Rb
n (q̂) v̂n. (20)

There are some terms in (13) containing expressions where velocities are divided by the square
of the Earth’s radius. Since the pipeline inspection robot moves with low velocity, these terms are
relatively minor and can be safely ignored.

Based on (12), the discrete-time error propagation model is given by

δxk+1 = Akδxk + Gkwk ,

δvbod,k = Hkδxk + vk ,
(21)

where Ak = I15 + FkTs and Ts is the sampling time. The covariance of the process noise wk

is QTs .
It can be seen in (21) that the state error is caused by process noise wk which contains the

characteristics of the measurement errors from the gyroscope and the accelerometer. The biases
and noises of the gyroscope and the accelerometer in (10) and (11) are considered to establish
the error propagation model. Since sensor outputs ω̃b

bi and f̃
b
are parameters in the kinematic

model of the pipeline inspection robot, the biases and noises of the sensors are introduced
into the kinematic model. The error propagation model (21) describes the way that the sensor
errors propagate in the kinematic model. The velocities read from the odometers are used as
the observation and the measurement error vk of the odometer is in the error model of the
measurement equation in (21). The state error increases due to the errors of the gyroscope and
the accelerometer. Therefore, the filtering algorithm is applied to correct the state estimate.

3. Path reconstruction for the pipeline inspection robot

Pipeline trajectory determination is achieved by reconstructing the path of the pipeline inspec-
tion robot. Based on the kinematic model, measurement model and error propagation model, the
extended Kalman filter (EKF) can be applied to estimate the system state including the position,
velocity and attitude of the robot. However, since the low-cost IMU cannot provide high-precision
inertial measurements, the accuracy of the state estimation deteriorates even though the odometer
measurement is used in the EKF for state error correction. In this section, features of pipelines are
introduced as additional information for improving accuracy of path reconstruction for the robot.

3.1. Attitude constraints based on the pipeline features

The following pipeline features are considered in this paper: a) the pipeline system is composed
of several sections of straight pipelines; b) most pipelines are in horizontal planes; c) pipe elbows
have standard angles. The method based on a sliding window is proposed to extract the pipeline
features above using inaccurate attitude estimates obtained by the EKF. The size L of the sliding
window {k−L+1, k} represents a short time interval and is chosen based on the sampling time
and the velocity of the robot.

Given the inaccurate attitude quaternion estimate q̂ obtained by the EKF, the attitude matrix
can be calculated by (4) and the Euler angle α̂ =

[
α̂1 α̂2 α̂3

]T
is given by

α̂1 = a tan 2
(
Rb
n (2, 3) , Rb

n (3, 3)
)
,

α̂2 = −a sin
(
Rb
n (1, 3)

)
,

α̂3 = a tan 2
(
Rb
n (1, 2) , Rb

n (1, 1)
)
,

(22)
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where Rb
n (i, j) is the (i, j) element of Rb

n (q̂), α̂1, α̂2 and α̂3 are the roll, pitch and yaw angles,
respectively. Based on the Euler angle estimates α̂k−L+1 and α̂k at the time k−L+1 and k, the
pipeline features are extracted and, accordingly, the constraints on the attitude of the robot caused
by the pipeline features are determined as follows:

If ��α̂2,k �� < ε with ε being positive, the robot is in a horizontal pipeline at the time k and the
constraint for the pitch angle of the robot satisfies

α2,k = 0 . (23)

Similarly, if ����α̂2,k �� − π/2�� < ε, the robot is in a vertical pipeline at that moment and we have

α2,k = sgn
(
α̂2,k
)
π/2 , (24)

where sgn is the sign function.
If ��α̂2,k − α̂2,k−L+1�� < ε and ��α̂3,k − α̂3,k−L+1�� < ε, the robot is in a straight pipeline during the

time in the sliding window {k−L+1, k}. Since the pitch and yaw angles of the robot are constant
in a straight pipeline, we have the following constraints:

α2,i = α2,k−L+1 ,

α3,i = α3,k−L+1 , i = k−L+2, . . . , k .
(25)

If ����α̂3,k − α̂3,k−L+1�� − θ∗�� < ε for k ∈ [k1, k1+M], where M is a positive integer chosen
based on the sampling time and the velocity of the robot, it indicates that the path of the robot
becomes a straight line again at the time k1 after a turning through θ∗ at a pipe elbow and θ∗ is
the standard angle of the pipe elbow. We have the following constraints:

α3,k1 = α3,k1−L+1 + sgn
(
α̂3,k1 − α̂3,k1−L+1

)
θ∗,

α3,i = α3,k1 , i = k1+1, . . . , k1+M .
(26)

Based on the pipeline features, the constraints on the attitude of the robot in the pipeline are
determined. The constrained Euler angles of the robot are additional information for improving
the accuracy of path reconstruction. Specifically, if the pipeline is built in horizontal planes with
the standard pipe elbows except for a couple of pipes going up and down to avoid the obstacles,
the above constraints on the Euler angles give the accurate attitude constraints for the robot in the
pipeline, which can largely reduce the attitude and position errors of the robot.

3.2. Path reconstruction algorithm for the robot

The accurate path reconstruction for the robot can be completed by the technique of state
estimation with state constraints [25]. The constraints on the Euler angles are regarded as the
attitude measurements and the additional measurement equations for attitude can be established.
Based on the constrained Euler angles (23)–(26), the corresponding attitude quaternion can be
obtained by

qk =



cos
(α3,k

2

)
cos
(α2,k

2

)
sin
(α1,k

2

)
− sin

(α3,k

2

)
sin
(α2,k

2

)
cos
(α1,k

2

)
cos
(α3,k

2

)
sin
(α2,k

2

)
cos
(α1,k

2

)
+ sin

(α3,k

2

)
cos
(α2,k

2

)
sin
(α1,k

2

)
sin
(α3,k

2

)
cos
(α2,k

2

)
cos
(α1,k

2

)
− cos

(α3,k

2

)
sin
(α2,k

2

)
sin
(α1,k

2

)
cos
(α3,k

2

)
cos
(α2,k

2

)
cos
(α1,k

2

)
+ sin

(α3,k

2

)
sin
(α2,k

2

)
sin
(α1,k

2

)



, (27)
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The measurement of attitude error is given by

δα̃k =



2I3 03×1

01×3 0



(
qk ⊗ q̂−1

k

)
, (28)

where ⊗ is quaternion multiplication. Then the additional measurement equation for the attitude
error is given by

δα̃k = δαk + vck , (29)

where vc
k
is zero-mean Gaussian white noise with the covariance Rc

k which avoids singular
measurement noise covariance. Then, we obtain a new measurement matrix

H̆k =



[(
Rb
n

(q̂k ) v̂nk ) ×]
03 Rb

n

(q̂k ) 03×6

I3 03 03 03×6


, (30)

and the measurement noise covariance

R̆k = diag
(
R, Rc

k

)
. (31)

Based on the pipeline features, the path reconstruction algorithm for the pipeline inspection
robot is as follows:

a) State estimation for the system (1), (2), (6) and (9) using the EKF:

Kk = P−kHT
k

(
HkP−kHT

k + R
)−1

, (32)

Pk = (I − KkHk ) P−k , (33)

δx̂k = Kkδvbod,k , (34)

q̂k = q̂−k +
1
2
Ξ
(
q̂−k
)
δα̂k , (35)

p̂k = p̂−k + δp̂k , (36)
v̂nk = v̂n−k + δv̂

n
k , (37)

β̂g,k = β̂
−

g,k + δβ̂g,k , (38)

β̂a,k = β̂
−

a,k + δβ̂a,k . (39)

The state prediction x̂−k+1 is calculated based on (1), (2) and (6). The prediction error covariance
is given by

P−k+1 = AkPkAT
k + GkQ GT

kTs . (40)

The quaternion estimate q̂k is obtained from (35).
b) Pipeline feature extraction and attitude constraint determination: with the quaternion es-

timate q̂k , the pipeline features can be extracted based on the sliding window {k−L+1, k}.
Accordingly, the attitude constraints at a certain time are determined by (23)–(26).

c) Path reconstruction for the robot: The EKF (32)–(40) is used again where Hk and R are
replaced by H̆k and R̆k , respectively. The position estimates p̄k from the obtained new state
estimate x̄k for all k are the reconstructed path for the robot and, consequently, the pipeline
trajectory is determined.

447

https://doi.org/10.24425/mms.2021.137134


S. Zhang, S. Dubljevic: TRAJECTORY DETERMINATION FOR PIPELINES USING AN INSPECTION ROBOT . . .

The flowchart of the proposed trajectory determination method for pipelines using the inspec-
tion robot is shown in Fig. 2. The robot is put in the pipeline and the initial position, velocity and
attitude of the robot are recorded. The robot moves through the pipeline and the data from the
sensors on the robot are uploaded to a computer. The path reconstruction algorithm mentioned
above is used to process the sensor data to estimate the motion of the robot. The trajectory of the
pipeline is obtained based on the accurate position estimates of the robot.

Fig. 2. Flowchart of the proposed method.

4. Experiment

The accuracy of the proposedmethod should be evaluated in order to illustrate the advantage of
the newmethod. Since the translation and rotation of the robot are constrained by the pipeline, it is
difficult to accurately simulate the outputs of the accelerometer, the gyroscope and the odometers
which reflect the motion of the robot in the pipeline, especially at its corners. Therefore, it is
reasonable to evaluate the proposed method through an experimental study. First, a pipeline is
built in the lab for the experiment, and, next, the robot runs in the pipeline. The data collected by
the IMU and the odometers are used to determine the trajectory of the pipeline. The sensor data
are shown in Fig. 3.
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a) b) c)

Fig. 3. Accelerometer data (a), gyroscope data (b) and odometer velocity (c).

Since GPS signal cannot be received in the lab, the four reference positions are set along
the pipeline for analyzing the performance of the proposed method, as shown in Fig. 4(a). The
grey rectangle represents the true trajectory of the pipeline. The time when the robot passes the
reference positions are recorded. The position errors can be obtained by comparing the positions
of the reconstructed path for the robot at the recorded time to the reference positions.

a) b) c)

Fig. 4. Reference positions (a), trajectory determination using the standard EKF (b) and the proposed method (c).

Since it is inconvenient to represent the pipeline trajectory by latitudes and longitudes for
the indoor experiment, the pipeline trajectory is obtained by integrating the velocity estimates.
The pipeline trajectory determined by using a standard EKF with the IMU and odometer data
is shown in Fig. 4(b). The black trajectory is the reconstructed path for the robot. The robot
starts moving from the origin (reference position 1) toward right (1 → 2 → 3 → 4). The
travel distance of the reconstructed path is close to the length of the pipeline, meaning that the
odometer measurements were used in the EKF to reduce the travel distance error caused by
accumulation of the accelerometer errors. Since the low-cost gyroscope cannot provide high-
precision measurements of angular rate, the reconstructed path has relatively big orientation
errors. Based on the reference positions in Fig. 4(a), the position errors of the reconstructed path
for the robot are listed in Table 1.

The reconstructed path obtained by using the proposed method based on the pipeline features
is shown in Fig. 4(c). The features of straight pipes are used to constrain the trajectory following
a straight line, and the angles of the pipe elbows are used in the algorithm to make the trajectory
turn 90 degrees at each corner. Compared to the trajectory in Fig. 4(b), the proposed method
has much better performance than the standard EKF. The reconstructed path in Fig. 4(c) almost
coincides with the true trajectory of the pipeline. The position errors of the reconstructed path

449

https://doi.org/10.24425/mms.2021.137134


S. Zhang, S. Dubljevic: TRAJECTORY DETERMINATION FOR PIPELINES USING AN INSPECTION ROBOT . . .

Table 1. Position error of using the standard EKF.

Reference position ∆X [m] ∆Y [m]
√
∆X2 + ∆Y2 [m]

1 0 0 0

2 0.0775 0.1015 0.1277

3 0.2268 0.1299 0.2614

4 0.0793 –0.3886 0.3966

are listed in Table 2. It can be seen in Tables 1 and 2 that the position errors significantly reduce
by using the proposed method because the pipeline features provide constraints on the attitude
of the robot, which is used to correct the attitude and position errors of the robot caused by the
measurement errors of the low-cost IMU. The position errors in Table 2 are less than 40% of the
corresponding position errors in Table 1.

Table 2. Position error of using the proposed method.

Reference position ∆X [m] ∆Y [m]
√
∆X2 + ∆Y2 [m]

1 0 0 0

2 0.0424 0.0272 0.0504

3 0.0259 –0.0214 0.0336

4 0.0233 0.0343 0.0415

The experiment results show the effectiveness and advantage of the proposed pipeline tra-
jectory determination method. By introducing the pipeline features, the accurate trajectory can
be obtain by using the new path reconstruction algorithm even if a low-cost chip based IMU is
used on the pipeline inspection robot, which significantly improves the performance of pipeline
trajectory determination.

Although the proposed method has much better performance compared to the standard EKF,
there still are slowly accumulating position errors if the number of turns and travel distance
increases, especially in a long-distance application. Standard angles of the pipe elbows are used
as additional measurements to improve the accuracy of the reconstructed trajectory. However, in
practice, the actual turn angle of the pipeline is a little different from the standard angle of the
elbow because of machining errors and installation errors. On the other hand, the wheels of the
odometers slip if there is dust or oil on the wall of the pipeline, leading to increased travel distance
error of the reconstructed trajectory in a long-distance application. In order to improve accuracy
in a long-distance application, the above ground marks are used to correct the position errors.
With the advantage of the proposed method, fewer above ground marks are needed to reach a
good performance of trajectory determination for a long-distance pipeline.

5. Conclusions

In this paper, a new trajectory determination method is proposed for pipelines using an
inspection robot. The low-cost MEMS based IMU and odometers are applied on the robot for
collecting motion information when the robot runs in a pipeline. The kinematic model and
measurement model are created for estimating the position, velocity and attitude of the robot. The
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error propagation model is derived for compensating estimate errors. The path reconstruction
algorithm is proposed to obtain pipeline features and complete trajectory determination based on
sensor data from the IMUandodometers.An experiment is conducted to illustrate the effectiveness
and advantage of the proposedmethod. In the future, the proposed trajectory determinationmethod
will be applied in outdoor experiments.
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