
Introduction

The increase in use of renewable energy resources in Poland 
is crucial due to the poor performance of the Polish energy 
system, based on the supply of high carbon content fossil 
fuels: coal and brown coal. In consequence Poland was 
responsible for 9.3% of annual European Union carbon 
dioxide (CO2) emission in 2019 (Poland – 292.9 Mt CO2, 
EU28 – 3150.9 Mt CO2). According to the International 
Energy Agency (IEA) reports the annual ratio of carbon 
dioxide emission to the annual fossil fuels primary energy 
use in Poland is one of the largest in Europe and in 2019 
reached the value of 2.85 Mt CO2/Mtoe (for France it is 1.23 
and for Germany 2.17) [1]. 

The weakest part of the Polish energy system is 
electricity production which basically takes place in 
traditional condensing power stations fired with hard 
and brown coal. The average annual energy efficiency of 
electricity production is only 0.33 [2], thus the generation 
of 1 kWh of electricity causes the unacceptable emission of 
more than 1 kg of CO2. In order to improve this situation 
two actions have to be undertaken: (i) the increase of energy 

efficiency of electricity production, and (ii) the substitution 
of high carbon content fossil fuels by renewable energy 
resources. The utilization of renewable energy resources in 
electricity production in Poland has significantly increased 
within last years, which is mainly linked to the installation of 
wind turbines and PV solar panels [3]. Unfortunately, those 
electricity production systems are not stable and strongly 
depend on climatic conditions, solar irradiation and wind 
conditions. Despite of relatively high installed capacity in 
2019 the electricity production from wind turbines (installed 
capacity 5800 MW) was 15006 GWh and from PV solar 
panels (installed capacity over 300 MW) 712 GWh only. At 
the same time period the coal based electricity production 
was more than 120000 GWh [3].

In order to provide stable production of usable energy 
forms, including electricity, the geothermal energy supply 
is taken into consideration [4]. The intensity of heat flow in 
the earth shell in Poland is relatively low, thus geologically 
confirmed geothermal energy resources in Poland are limited 
to low and medium temperature geothermal water [4, 5]. 
Average heat flux of those resources varies between 25 mW/m2  
and 90 mW/m2 [6]. They are located in West European tectonic 
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plate and are formed by underground water pools of the 
Carpathian Mountains, the Sudety Mountains, and Western 
Pomerania and Podhale regions – Figure 1 [5]. 

The utilization of geothermal energy in Poland is limited 
to: (i) low temperature heat production in heating station, (ii) 
heating the pools in water recreation centers, (iii) balneotherapy, 
and (iv) aquaculture – Atlantic salmon’s farms. In 2018 there 
were six medium scale district heating (DH) geothermal 
systems under operation – Fig 1. The total geothermal heating 
capacity of those systems in 2018 was 74.6 MW and it is 
expected that the growth of that capacity till 2025 will be 
by the factor of two [5]. There are neither geothermal power 
plants nor co-generated heat and power plants under operation 
for now in Poland.

In general, the temperature of geothermal water in Poland 
does not exceed 70–80°C, what makes the power production 
or co-generated heat and power (CHP) production in the direct 
solutions inefficient from the economical point of view [7]. 
It may be changed by the application of Organic Rankine 
Cycle (ORC) which enables utilization of low grade heat for 
the production of different usable energy forms. The use of 
low grade geothermal resources for co-generated heat and 
power production can help to improve the energy efficiency of 
energy systems and in consequence reduce the carbon dioxide 
emission. 

The principle of Organic Rankine Cycle (ORC) operation 
is similar to the operation of Rankine Cycle (RC) based on 
water as working fluid [8]. The main difference lays in working 
fluids which in the case of ORC are organic substances 
characterized by high molecular weight, lower temperature 
of evaporation and higher pressure of steam phase. It allows 

for the utilization of low temperature heat as driving energy, 
operation in lower pressure and application of turbines with 
lower rotation speed [9]. From the technological point of view 
ORC is less complicated in comparison to traditional RC, it 
can use only one heat exchanger for heating, evaporating and 
overheating of working fluid. The additional heat regenerator 
is sometimes used for preheating liquid phase of working 
fluid [10]. Depending on the low temperature heat source 
characteristics the working fluid has to be precisely selected. 
The cost, market availability and thermal stability of working 
fluid have to be considered [8, 11, 12, 13, 14]. The Organic 
Rankine Cycle attracted a lot of attention. This may be due to 
its contribution to mitigating the degradation of the ecosystem 
[15, 16]. One of the main topics of investigations related to 
ORC is energy efficiency evaluation. It is not an easy task due to 
the lack of adequate instrumentation, inaccurate measurements 
and uncertainty related to the thermodynamic properties of 
working fluids. This can have a significant impact on the final 
results of calculations, especially for complex fluids, with 
a small temperature drop in expansion [17, 18]. 

The use of waste heat as the driving force for ORC in 
power production is well documented [19]. Less attention 
has been paid to the application of that technology in the case 
of geothermal heat sources, due to the limited temperature 
of those sources [20, 21, 22]. ORC supplied by geothermal 
water is rather seldom used for co-generated heat and power 
production [22]. 

The existing low temperature geothermal energy source 
located in the city of Konin, Poland has been the basis for 
conceptual design of ORC based co-generated heat and power 
plant. In order to evaluate the energy and environmental 

Fig. 1. Location of geothermal energy resources and its direct utilization in Poland [5],  
1 – Carpatia Mountains, 2 – Podhale, 3 – Sudety Mountains, 4 – Western Pomerania,  – existing DH geothermal systems
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performance of that plant, two criteria have been proposed. The 
non-renewable primary energy consumption has been chosen 
as energy performance criterion. In the case of environmental 
performance carbon dioxide emission has been taken into 
account. The analysis has been performed for different 
operating conditions and three working fluids.

Materials and methods 
The conceptual design of geothermal CHP plant has been 
settled on the existing geothermal well located in the city 
of Konin in Greater Poland (Wielkopolska) voivodship, 
central part of Poland. The basic data of the source are listed 
in Table 1. 

The flow diagram of the proposed geothermal CHP 
plant based on ORC is shown in Fig. 2. It consists of ORC 
part responsible for electricity production and heat exchanger 
located downstream from evaporator responsible for useable 
heat production.

In order to evaluate the energy and ecological performance 
for the proposed ORC based CHP plant the set of energy 
balance equations for the system components has been 
formulated. It allowed for the calculation of heat and net power 

production and finally the reduction of non-renewable energy 
consumption and carbon dioxide emission reduction.

Energy balance analysis
The calculations performed were settled on the First Law of 
Thermodynamics and energy balance equations derived for 
control volumes (CVs) covering main system elements. 

Energy balance calculations for evaporator (CV1):
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Table 1. Basic data of geothermal heat source in the town of Konin [26]

Depth of geothermal well [m] 2660
Temperature of geothermal water in the layer [°C] 97,5
Temperature of geothermal water on the surface [°C] 92,0
Mineralization of geothermal water (Cl-Na) [%] 15,04
Mineralization of geothermal water (Cl-Na) [g/kg] 150,4
Specific heat of geothermal water [kJ/kg K] 3,549
Geothermal water flow [m3/h] 114,0

Fig. 2. Flow diagram of geothermal CHP plant based on ORC 
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Where: 
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The set of energy balance equations listed above has been 
solved and used as energy analysis tool for the proposed ORC 
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The analysis has been performed for different operating 
conditions and three working fluids.

Results and discussion
Energy balance analysis
The calculations have been performed using the Excel based 
calculation tool [24]. It has been assumed that the temperatures 
of geothermal water entering and leaving evaporator (CV-1) 
are tG1 = 90°C and tG2 = 75°C. It has been also assumed that the 
overall efficiency of turbine and generator is 80% as for radial 
inflow turbines [25, 26] and overall efficiency of working fluid 
and geothermal water pumps is 70%. The calculations have 
been performed for three working fluids: R123, R134a, and 
R227, which have been chosen on the basis of former findings 
published by Saleh et al. [27] and Wang et al. [28]. 

In order to evaluate the production capability of the 
system the following operational parameters have been 
changed in calculations: evaporation temperature t1 = 75°C 
and t1 = 70°C, condensation temperature t2ʺ = 25°C and  
t2ʺ = 30°C temperature of geothermal water leaving the heat 
exchanger tG3 = 30°C and tG3 = 40°C .The thermodynamic 
properties of working fluids in characteristic points of ORC 
have been imported from Solkane 8.0 selection software. 
Figure 3 presents the example of energy balance analysis for 
working fluid R123 and the following thermal parameters 
t1=75°C, t2ʺ = 25°C, tG3 = 30°C. 

Figure 4 presents the example of energy balance analysis 
for working fluid R134a and the following thermal parameters 
t1=75°C, t2ʺ = 30°C, tG3 = 35°C. 

Figure 5 presents the example of energy balance analysis 
for working fluid R227 and the following thermal parameters 
t1=70°C, t2ʺ = 25°C, tG3 = 40°C. 

Table 2 summarizes the energy balance calculation results 
for all working fluids and operating parameters.

The influence of the temperature of geothermal water 
leaving heat exchanger (CV-5) on the heating capacity of 
district heating heat exchanger is shown in Table 3. 

The calculation results show that for all three working 
fluids the highest production of electrical power refers to 
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the evaporation temperature and condensation temperature 
t1=75°C and condensation t2ʺ = 25°C. The differences are rather 
small, for R123 and R134a the electricity production is a little 
bit higher comparing with R227 working fluid. It is worth to 
emphasize that significant part of electricity production would 
be used for covering self-energy requirements of district 
heating system and ORC CHP plant.

In the case of heat the increase of temperature of geothermal 
water leaving heat exchanger  significantly decreases the 
production of that form of useable energy. It has been assumed 

that geothermal CHP plant is capable to cover full requirements 
of heat end users. 

Energy and environmental evaluation
Performing energy and environmental evaluation of ORC 
based geothermal CHP plant it has been assumed that the ORC 
circulating pump is supplied from electricity produced in ORC 
cycle – net electricity production has been used in order to 
calculate the avoided primary energy consumption and avoided 
CO2 emission. In the case of other devices (geothermal water 

Fig. 4. Print screen of Excel calculation tool for working fluid R134a and thermal parameters: t1=75°C, t2’’=30°C, tG3=35°C 

Fig. 3. Print screen of Excel calculation tool for working fluid R123 and thermal parameters: t1=75°C, t2’’=25°C, tG3=30°C 
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Fig. 5. Print screen of Excel calculation tool for working fluid R227 and thermal parameters: t1=70°C, t2’’=25°C, tG3=40°C 

Table 2. Energy performance of ORC for different working fluids

Working fluid
t1 t2’’ m. Ni Nel Qskr Ncp

[°C] [°C] [kg/s] [kW] [kW] [kW] [kW]

R123

75 25 9,07 183,3 146,7 1631,1 3,15
75 30 9,32 166,8 133,5 1647,7 3,14
70 25 9,20 169,3 135,5 1644,7 2,71
70 30 9,46 152,2 121,8 1661,7 2,59

R134a

75 25 9,41 182,7 146,2 1647,7 19,92
75 30 9,77 167,1 133,7 1663,1 19,75
70 25 9,42 169,4 135,5 1658,3 17,05
70 30 9,78 153,1 122,5 1674,2 16,68

R227

75 25 13,21 172,3 137,8 1655,5 17,24
75 30 13,80 158,0 126,4 1669,8 17,14
70 25 13,38 160,2 128,1 1665,5 14,93
70 30 14,00 145,2 116,2 1680,2 14,73

Table 3. Calculation results for heat exchanger (CV5) for different temperatures of water leaving HEx

tG2 tG3 m.geo cw Q·HEX

[°C] [°C] [kg/s] [kJ/(kg K)] [kW]
75 30 34,03 3,549 5434,5
75 35 34,03 3,549 4830,7
75 40 34,03 3,549 4226,8

pump, control systems) it has been assumed that the reference 
energy system (hard coal fired cogenerated heat and power 
plant) has the congenial energy consumption for the supply of 
internal circuit pumps and control systems.

The gross energy efficiency for reference energy system 
– cogenerated steam heat and power plant fired with hard coal 
has been taken equal to ηCHP = 80% [29]. Electrical net power 

production and heat flux production have been the same as 
for geothermal CHP plant. The emission of carbon dioxide 
has been derived for hourly and annual conditions. It has been 
assumed that energy system has to operate for τEL = 8760/a in 
the case of electrical power production (whole year operation) 
and for τauHEX = 2000 h/a in the case of heat production (typical 
value for climatic condition in the city of Konin location). The 
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carbon dioxide emission factor for hard coal has been taken as 
eCO2,HC = 0.35 MgCO2/MWh. The calculation results have been 
presented below.

It can be seen (Tables 4 and 5) that construction of 
geothermal CHP plant can significantly reduce the chemical 
enthalpy of fossil fuels use and emission of carbon dioxide what 
is of greatest importance concerning poor performance of energy 
systems in Poland. The calculations have been performed for 

all three working fluids and 12 discrete temperature conditions 
listed in Table 6. Discrete temperature conditions (DTC) refer to 
different operating temperatures of main geothermal CHP plant 
components: evaporator, turbine, condenser and district heating 
heat exchanger. The change of those parameters allowed for the 
calculation of the range of avoided fossil fuels chemical enthalpy 
consumption and avoided CO2 emission joined with geothermal 
CHP plant operation.

Table 4. Avoided chemical enthalpy of hard coal use and carbon dioxide emission  
in production of electrical power for reference energy system

Working  
fluid

Nel Ncp Nel,net H·ch,El E·CO2,El Hch,El ECO2,El

[kW] [kW] [kW] [kW] [kgCO2/h] [MWh/a] [MgCO2/a]

R123

146,7 3,15 143,5 434,9 152,2 1571,5 550,0
133,5 3,14 130,3 395,0 138,2 1427,3 499,6
135,5 2,71 132,8 402,3 140,8 1453,7 508,8
121,8 2,59 119,2 361,1 126,4 1304,8 456,7

R134a

146,2 19,92 126,2 382,6 133,9 1382,5 483,9
133,7 19,75 113,9 345,2 120,8 1247,4 436,6
135,5 17,05 118,5 359,0 125,6 1297,2 454,0
122,5 16,68 105,8 320,6 112,2 1158,5 405,5

R227

137,8 17,24 120,6 365,5 127,9 1320,7 462,3
126,4 17,14 109,3 331,1 115,9 1196,4 418,7
128,1 14,93 113,2 343,1 120,1 1239,8 433,9
116,2 14,73 101,4 307,4 107,6 1110,8 388,8

Table 5. Avoided chemical enthalpy of hard coal use and carbon dioxide emission  
in production of heat in reference energy system

tG2 tG3 Q·HEX H·ch,Heat E·CO2,Heat Hch,Heat ECO2,Heat

[oC] [oC] [kW] [kW] [kgCO2/h] [MWh/a] [MgCO2/a]
75 30 5434,5 5434,5 1086,9 13586,3 4755,2
75 35 4830,7 4830,7 966,1 12076,8 4226,9
75 40 4226,8 4226,8 845,4 10567,0 3698,5

Table 6. Discrete temperature conditions (DTC) for energy and ecological analysis of ORC CHP plant operation

DTC t1 t2’’ tG2 tG3

[–] [°C] [°C] [oC] [oC]
1 75 25 75 30
2 75 25 75 35
3 75 25 75 40
4 75 30 75 30
5 75 30 75 35
6 75 30 75 40
7 70 25 75 30
8 70 25 75 35
9 70 25 75 40

10 70 30 75 30
11 70 30 75 35
12 70 30 75 40
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The results of calculations have been plotted in Fig. 6 and 
Fig. 7.

As shown in Fig. 6, the application of ORC based 
geothermal CHP plant can significantly reduce annual 
consumption of chemical enthalpy of fossil fuels. The best 
energy performance can be spotted for working fluid R123, for 
which the reduction varies between 15200 and 11900 MWh/a.  
The working fluid R134a has a worse energy performance, 
which allows for the reduction of fossil fuels energy 
consumption in the range of 15000 and 11700 MWh/a. The 
worst performance has been noted for working fluid R227 
– the reduction between 14800 and 11600 MWh/a. The same 
relation concerning ecological performance, i.e., the reduction 
of carbon dioxide emission, can be found, see Fig. 7. The total 
reduction of CO2 emission is the highest for working fluid 
R123: 5300 to 4150 MgCO2/a, the medium one for working 
fluid R134a: 5200 to 4100 MgCO2/a, and the lowest for 
working fluid R227: 5200 to 4050 MgCO2/a.

In all the cases mentioned above the reduction can be 
considered as significant regarding energy and environmental 
performance of reference energy system. Therefore, it should 
be taken into consideration to expand the use of geothermal 
energy beyond the production of heat only.

Conclusions
The aim of the work was to propose the conceptual design 
of geothermal CHP plant that would be applicable in Poland. 
Bearing in mind the geothermal conditions prevailing in Poland 
the use of ORC seems to be the reasonable solution, allowing 
for the reduction of fossil fuels chemical enthalpy consumption 
and carbon dioxide emission.

The energy and environment evaluation of geothermal 
CHP plant based on ORC has been conducted. The evaluation 
referred to the existing geothermal well located in the city 
of Konin in Greater Poland (Wielkolpolska) voivodship, the 

Fig. 6. Total avoided annual use of fossil fuels for reference energy system
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Fig. 7. Total avoided annual emission of carbon dioxide for reference energy system
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central part of Poland. It has been assumed that the system is 
capable to cover heat and electrical power of energy end users, 
thus does not require additional energy sources. Such system is 
characterized by zero chemical enthalpy of fossil fuels use and 
zero carbon dioxide emission. Although the electrical power 
production is not high the use of ORC can significantly reduce 
the emission of carbon dioxide comparing with traditional 
energy systems based fossil fuels and separate production of 
heat and electrical power. 

The amount of heat production highly depends on the 
thermal parameters of heat exchanger operation. The lower 
is the temperature of heat exchanger operation the higher is 
the production of heat. On the other hand, the decrease of 
that temperature determines the need of installation of low 
temperature heating systems in end users what can be difficult 
concerning economical and organizational aspects. 

The proposed method of energy and ecological evaluation 
and achieved results may be also used for analysis of other 
energy systems in which energy supply is dominated by high 
carbon primary energy resources. 

In order to make the final decision concerning the system 
application the future research work will have to be performed. It 
has to cover economic evaluation of the system – investment and 
total operating cost calculations, as well as ecological evaluation 
related to the global warming potential (GWP) of the working 
fluids available for the ORC based geothermal CHP plant. 

Nomenclature
 cw –  specific heat of geothermal water, kJ/kg°C 
 eCO2 –  carbon dioxide emission factor for fossil fuel,  

kgCO2/kWh 
 E· – energy flux, kW
 E·CO2

 – carbon dioxide emission, kg/h
 H· ch – chemical enthalpy flux of fossil fuel, kW
 hG,i –  specific enthalpies of geothermal water, kJ/kg
 m·  – mass flow, kg/s
 Ncp,i – internal power of ORC circulating pump, kW
 Ncp – electrical power of ORC circulating pump, kW
 Ni – internal power of ORC turbine, kW
 Nel – electrical power of ORC turbine, kW
 pi – pressure of ORC working fluid, kPa
 v – specific volume of ORC working fluid, m3/kg
�ηcp,i – internal energy efficiency of ORC circulating pump
�ηcp,em –  electro-mechanical energy efficiency of ORC 

circulating pump
� ηem – electro-mechanical energy efficiency of ORC turbine
� ηi – internal energy efficiency of ORC turbine
� τEL  –  equivalent number of hours of electricity production 

per year, h/year
�τHEX  –  equivalent number of hours of heat production per 

year, h/year 

Indices
 cp – circulating pump
 cond – condenser
 em – electro-mechanical
 evap – evaporator
 geo – geothermal water
 HC – hard coal
 HEX – heat exchanger
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