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Abstract—This paper is focused on multiple soft fault diagnosis 

of linear time-invariant analog circuits and brings a method that 

achieves all objectives of the fault diagnosis: detection, location, 

and identification. The method is based on a diagnostic test 

arranged in the transient state, which requires one node 

accessible for excitation and two nodes accessible for 

measurement. The circuit is specified by two transmittances 

which express the Laplace transform of the output voltages in 

terms of the Laplace transform of the input voltage. Each of these 

relationships is used to create an overdetermined system of 

nonlinear algebraic equations with the circuit parameters as the 

unknown variables. An iterative method is developed to solve 

these equations. Some virtual solutions can be eliminated 

comparing the results obtained using both transmittances. Three 

examples are provided where laboratory or numerical 

experiments reveal effectiveness of the proposed method. 

 
Keywords—analog linear circuits, fault diagnosis, multiple soft 

faults, the Laplace transform 

I. INTRODUCTION 

AULT diagnosis of analog circuits is great important 

problem playing a crucial role in design validation of 

electronic devices. Numerous methods in this field have been 

developed over the past decades. A lot of them are collected in 

the references [1-4]. However, despite these achievements, the 

problem is still open and there is a need for further works in 

this area. The fault diagnosis question is commonly considered 

as the solution of a system of nonlinear equations with circuit 

parameters as the unknown variables. 

A fault is termed soft if the parameter value deviates from 

the tolerance range but does not produce catastrophic changes 

such as open circuit and short circuit. Otherwise, the fault is 

classified as hard. There are two categories of the fault 

diagnosis techniques: simulation before the test (SBT) and 

simulation after the test (SAT). Under the soft fault scenario, 

the SAT approach dominates, whereas the hard fault diagnosis 

usually is based on the SBT approach. Numerous works in the 

fault diagnosis field are focused on the circuits including just a 

single faulty element, e.g. [5-8]. Multiple fault diagnosis is 

more complex and insufficiently resolved. 

Soft fault diagnosis has attracted great attention, leading to 

numerous results relating to linear and nonlinear circuits, e.g. 

[9-15]. Soft faults arise mainly in the fabrication process. They 

influence the circuit specifications but usually do not violate 

circuit functionality. Various aspects of soft fault diagnosis 
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have been considered over the last decades and a large number 

of diagnostic methods has been developed based on: linear and 

nonlinear programming [16-17], matrix theory [8], 

optimization techniques [18], evolutionary algorithms [19-21], 

neural networks [22], support vector machine [23-24], fuzzy 

logic [25], statistical modeling [26], z-transform [27-28]. An 

important role in fault diagnosis plays the testability analysis 

and the test point selection [29-32]. 

This paper deals with multiple soft fault diagnosis of linear 

analog circuits. The goal of the work is to identify the faulty 

elements from among a set of the elements considered as 

potentially faulty and estimate their values. For this purpose, 

the SAT approach is used, based on the measurement test in a 

transient state and two transmittances in symbolic form, 

determined in a preliminary stage of the diagnostic process. 

Each of the transmittances leads to an equation that expresses 

the Laplace transform of an output voltage in terms of the 

Laplace transform of the preset input voltage. Based on this 

equation, a system of overdetermined algebraic type nonlinear 

equations is written with the circuit parameters as the unknown 

variables. To solve it, an iterative method is proposed whose 

core is the Newton-Raphson algorithm. Comparing the results 

obtained on the basis of the two transmittances some sets of 

virtually faulty parameters are eliminated. Unlike the papers 

reporting the verification methods, e.g. [27-28], based on the 

assumption that the set of the faulty elements is given and their 

values are to be calculated, this paper achieves all objectives of 

the fault diagnosis: detection, location, and identification. 

The paper is organized as follows. The basic methodology 

of the proposed approach is described in Section II. Some 

procedures which are exploited by the diagnostic method are 

presented in Section III. Three examples are demonstrated in 

Section IV. Section V concludes the paper. 

II. THE DIAGNOSTIC METHOD 

A. The main idea 

Consider a linear time-invariant dynamic circuit including N 

parameters Nx,,x 1  considered as potentially faulty. To 

perform multiple fault (n-fault) diagnosis ( )Nn   the circuit is 

described in the frequency domain by the equation 

 ( ) ( ) ( )sV,sHsV
ino

x=  (1) 

where ( )sV
in  and ( )sV

o  are the Laplace transforms of the input 

and output voltages ( )tv
in  and ( )tv

o , ( )x,sH  is the transfer 

function (transmittance) of the circuit given in symbolic form, 

where  T
1 n

xx =x , and T denotes the transpose. Since the 
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orders of the parameters differ significantly one from the other 

we scale them using the formula 

 nom

kkk
xpx =           n,,k 1=  (2) 

where nom

k
x  is the nominal value of the parameter k

x  and 

nom

kkk
xxp = . Then for soft faults, all k

p  have similar orders. 

After substitution (2) into ( )x,sH  the transmittance labeled 

( )p,sT  is obtained, where   ,T
1 n

pp =p  and the equation 

(1) becomes 

 ( ) ( ) ( ) 0=− sV,sTsV ino p  . (3) 

Equation (3) describes the circuit with unknown relative 

parameters n
p,,p 

1 , whereas the other circuit parameters 

have nominal values. Let us apply a trapezoidal voltage ( )tv
in  

to the circuit having actual parameters n
p,,p 

1  and measure 

the output voltage ( )tv
o  in the course of the diagnostic test. 

Next, we find the Laplace transforms ( )sV
in  and ( )sV

o  as 

described in Section III. To determine n
p,,p 

1  which meet 

the diagnostic test, we substitute into (3) jss = , n,,j 21=  

where js  are real positive numbers, selected in the way 

presented in Section III 

 

( ) ( ) ( )

( ) ( ) ( ) .sV,sTsV

sV,sTsV

nnn 0

0

2in22o

1in11o

=−

=−

p

p

  (4) 

This system consisting of 2n nonlinear algebraic equations 

with n unknown variables cannot be solved directly. To find 

the variables n
p,,p 

1  the following numerical method will 

be used. We divide (4) into two systems of n equations 

 

( ) ( ) ( )

( ) ( ) ( ) 0

0

ino

1in11o

=−

=−

nnn sV,sTsV

sV,sTsV

p

p

  (5) 

and 

 

( ) ( ) ( )

( ) ( ) ( ) .sV,sTsV

sV,sTsV

nnn

nnn

0

0

2in22o

1in11o

=−

=− +++

p

p

  (6) 

and apply the Newton-Raphson method separately to (5) and 

(6) using the same initial guess 
( )   T0 11=p , and in each 

case, perform just one iteration. The Newton-Raphson iteration 

formula has the form 

where 1=j  in the case of the system (5) and 1+= nj  in the 

case of the system (6). Since ( )p,sT  is given in symbolic 

form, the formulas for the elements of the matrix and the 

vector in equation (7) can be derived before the test. Thus, at 

first, we set 1=k  and solve (7), adapted to the systems (5) and 

(6), in parallel. The obtained vectors 
( ) ( )  T11

1 n
pp   for (5) and 

(6) are denoted by ( )1
A
p  and ( )1

B
p , respectively. Next, we create 

 
( ) ( ) ( )( )1

B

1

A

1

2

1
ppp +=  , (8) 

substitute 2=k  and perform the second iteration using the 

Newton-Raphson iteration formula (7) for (5) and (6). The 

results, labeled ( )2
A
p  and ( )2

B
p , are used to find 

( ) ( ) ( )( )2

B

2

A

2

2

1
ppp += . This process is continued leading to the 

sequence 
( ) ( ) ( ) ,,, 210

ppp  until 

 ( ) ( ) ( ) ( )( ) ~pp
n

i

k

i

k

i

kk −=− 
=

−−

1

211
pp  (9) 

and 

 ( ) ( )( ) ( )( ) 
~~sV,sTsV

n

j

j

k

jj −
=

2

1

2

ino p  (10) 

where ~  and 
~~  are the convergence tolerances and 

( )k
p  is 

considered as an approximate solution. 

B. Sketch of the n-fault diagnostic method 

Step 1 

Create a set A of vectors consisting of n parameters considered 

as potentially faulty. 

Step 2 

In the circuit under test choose an input node and two output 

nodes. Denote the input voltage by ( )tv
in  and the output 

voltages by ( )tv~
o  and ( )tv

~~
o  and their Lapalce transforms by 

( )sV
in , ( )sV

~
o , and ( )sV

~~
o , respectively. Create two 

transmittances ( ) ( ) ( )sVsV
~

p,,p,sT
~

N ino1
=  and 

( ) ( ) ( )sVsV
~~

p,,p,sT
~~

N ino1 = , where N
p,,p 

1  are the 

parameters considered as potentially faulty, in symbolic form. 

Step 3 

Arrange the diagnostic test as follows. Apply a trapezoidal 

voltage ( )tv
in  and measure the output voltages ( )tv~

o  and ( )tv
~~
o . 
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
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Find their Laplace transforms ( )sV
in , ( )sV

~
o , and ( )sV

~~
o  using 

the procedure described in Section III. 

Step 4 

Chose one of the elements (vectors 1n ) of the set A, label it 

p, and consider the transmittance ( )p,sT~ . Write the equation 

 ( ) ( ) ( ) 0
ino

=− sV,sT
~

sV
~

p  (11) 

and reproduce it to n2  equations 

 ( ) ( ) ( ) 0
ino

=−
jjj
sV,sT

~
sV

~
p       n,,j 21=  . (12) 

Divide (12) into two systems of n equations as described at the 

beginning of this Section and solve (12) using the proposed 

iterative method. If the solution does not exist because the 

method does not converge or the obtained solution is not 

accepted (e.g., some parameters are negative), the considered 

vector of the parameters is discarded. 

Step 5 

Repeat step 4 for all vectors of the set A in succession. As a 

result, one or more vectors of the parameters are obtained. 

Step 6 

In the case of one solution, we are given the set of faulty 

parameters and their values. Otherwise, repeat steps 4 and 5 

for the transmittance ( )p,sT
~~

 and proceed to step 7. 

Step 7 

From among the solution vectors corresponding to both 

transmittances ( )p,sT~  and ( )p,sT
~~

 select all the pairs of the 

vectors consisting of the same parameters and determine the 

distance between them. The Euclidean norm of the difference 

of the vectors is taken as the measure of the distance. It is 

labeled DIS and assigned to each of the pair. Choose the pairs 

having the smallest values of DIS and find the average values 

of the corresponding elements of the vectors creating the pair. 

They form the sets of the parameters which meet the 

diagnostic test. 

III. PROCEDURES USED BY THE METHOD 

A. Finding the Laplace transforms 

1) Input voltage 

The input voltage is chosen as a trapezoidal function as 

shown in Fig. 1. 

 
Fig. 1. Trapezoidal function ( )tg  

 

It is described in the time domain as  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
33

23

22

23

11

11

ttutt
tt

A

ttutt
tt

A
ttutt

t

A
ttu

t

A
tg

−−
−

+

+−−
−

−−−−=

 

where ( )tu  is the unit step function. To find its Laplace 

transform we apply the equations: ( )( )
2

1

s
ttu =L  and 

( ) ( )( ) bs

s
btubt −=−− e

1
2

L  ( )0b  finding 

 ( ) 








−

−
+

−
=

23

--

1

-

2

231 eee1

ttts

A
sG

ststst

 . (13) 

2) Output voltage 

The output voltage ( )tv
o  measured in the course of the 

diagnostic test does not have a standard function description in 

the time domain. To find its Laplace transform, we use the 

following procedure. Let us consider a continuous function 

( )tf  represented by a smooth line in Fig. 2. This function can 

be approximated by a staircase function ( )tfa  consisting of 

rectangles with hights ( ) ( ) ( )Nhf,,hf,hf 2  and identical 

width jj tth −= +1  where ( ) 0tf  for Nht  . 

 
Fig. 2. A smooth line ( )tf  approximated by a staircase function ( )tfa  

 

The staircase function has the following representation  

( ) ( )( ) ( )( )
( )( ) .NhtuhNtuNhf

htuhtuhfhtutuhftfa

)())1((

)2()(2)()(

−−−−++

+−−−+−−=


 

Since ( )( )
s

tu
1

=L  and ( )( ) sb

s
btu −=− e

1
L  ( )0b , the 

Laplace transform ( )sF
a  of ( )tfa  is as follows 

( ) ( ) ( )( ) ( )  ( )








−−++= 
=

−−
1-N

1

ee1
1

i

sNhsih

a
Nhfihfhifhf

s
sF (14) 

B. Selection of the values of s 

To write the system of equations (4), n2  real positive values 

of s are needed. They are chosen in the preliminary stage 

before the test as follows. 

Consider the transmittance ( )p,sT  at nominal values of the 

parameters. Take the trapezoidal input voltage ( )tv
in  and find 

its Laplace transform ( )sV
in  (see Section III.A). Calculate the 

Laplace transform of the output voltage ( ) ( ) ( )sV,sTsV ino p= . 
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Find the output voltage in the time domain and using the 

procedure described in Section III.A determine its Laplace 

transform labeled ( )sV̂
o . Consider an interval  +− s,s  of real 

positive values of s and divide it into nL 2  subintervals by 

points i
s . For each i

s  find ( ) ( ) ( )
iii
sV̂sVs

oo
−=  and select a 

subinterval where ( ) 410−
i
s . Divide it uniformly by n6  

points k
s and choose 100 sets consisting of n2  points of k

s  

using random selection assuming uniform distribution. 

Decompose each of the n2  point sets into two n point sets 

ranked in ascending order of values. For any of them, calculate 

the determinants of the Jacoby matrices of (5) and (6) at the 

starting points and choose the ones which give their largest 

absolute values. Repeat this procedure for all the 

transmittances and the Jacoby matrices at the starting points. 

IV. EXAMPLES 

To illustrate the method described in Sections II and III we 

consider three examples. The diagnosed circuits are shown in 

Figures 3, 4, and 5, where nominal values of the parameters 

are indicated. All the operational amplifiers included in the 

circuits are characterized by the ideal model. The computations 

were executed on a PC with the processor Intel (R) Xeon (R) 

E3-1230 using MATLAB R2012a with Symbolic Toolbox. 

 

Example 1 

Let us consider the Sallen-Key filter shown in Fig. 3 

Fig. 3. The Sallen-Key bandpass filter 

 

Double soft fault diagnosis is performed in this circuit. We 

consider the following sets of 12 potentially faulty pairs of the 

elements: 11
CR , 21CR , 21

RR , 31
RR , 21CC , 21RC , 31

RC , 51
RR , 

51
RC , 25CR , 25RR , 35RR . The double fault diagnosis is carried 

out using the method described in Sections II and III with 
2=n . Before the test we choose node 5 as the input node and 

nodes 1 and 4 as the output nodes and create two 

corresponding transmittances in symbolic form. The constants 

characterizing the trapezoidal input voltage (see Fig. 1) are 

picked out as: V1=A , ns181 =t , ms212 =− tt , 

ns18
23

=− tt . 

In the course of the diagnostic test, the output voltages 

( )tv
o  and ( )tv

1  are measured using the measurement system 

consisting of a two-channel digital phosphor oscilloscope with 

2.5 GS/s real-time sample rate and 350 MHz bandwidth, and a 

programmable function generator with 250 MS/s sample rate. 

The samples of the voltages at the instances s
mT , where 

s104 8−=
s
T  is the sample spacing, are chosen and their 

Laplace transforms are calculated as described in Section III. 

Next, the diagnostic equations are written and solved, using the 

proposed iterative method, for each of the 12 pairs of the 

parameters. If only one pair of the acceptable parameters is 

determined, the double fault is located and identified. 

Otherwise, the procedure described in Section II, Step 7, is 

applied. While running this procedure, the smallest value of 

DIP, labeled MIN, is found and the pairs of the parameter 

vectors whose MIN1.25DIP   are selected. The other pairs of 

the vectors, if any, are discarded. For each of the selected 

pairs, the parameter values are calculated as described in 

Section II, Step 7. As a result, one or more pairs of the 

parameters corresponding to the actual fault and the virtual 

ones can be found. 

For illustration 12 double faults in the circuit were 

diagnosed. The outcomes are summarized in Table I where the 

relative error of the parameter x is defined as 

%
x

xx
100

actual

determinedactual −
 . 

In 11 cases (91.7%) the pairs of faulty parameters provided by 

the method include the actual one. In 9 cases this is the only 

one pair, whereas in 2 cases the actual pair is accompanied by 

one or two pairs of virtual faults. Every time the values of the 

actual faulty parameters are correctly estimated. In 81.8% of 

the cases the relative error does not exceed 4%. In 1 case 

(8.3%) the method fails. 
 

TABLE I.  
EXAMPLE 1. RESULTS OF DOUBLE SOFT FAULT DIAGNOSIS 

Number 
of the 

case 

Faulty parameters, 

resistances in , 

capacitances in nF 

Faulty parameters 
provided by the 

method 

Relative errors 
in % 

1 R1 = 7471     C1 = 105.6 R1 = 7146    C1 = 103.0 4.35   2.46 

2 R1 = 7471     C2 = 224.3 R1 = 7216    C2 = 219.5 3.41   2.14 

3 R1 = 7471     R2 = 22250 R1 = 7199    R2 = 22608 3.64   1.61 

4 R1 = 7471     R3 = 12085 R1 = 7473    R3 = 11949 

and the virtual faults: 

R1, C2 and R1, R2 

0.03   1.13 

5 C1 = 105.6     C2 = 224.3 C1 = 101.5   C2 = 207.6 3.88   7.45 

6 C1 = 105.6    R2 = 22250 C1 = 100.1  R2 = 22420 5.21   0.76 

7 C1 = 105.6    R3 = 12085 Only the virtual faults: 

C1, R2              FAIL 

 

8 R1 = 7471       R5 = 7471 R1 = 7387      R5 = 7346 1.12   1.67 

9 C1 = 105.6      R5 = 7471 C1 = 102.2    R5 = 7424 3.22   0.63 

10 R5 = 7471      C2 = 224.3 R5 = 7580    C2 = 215.7 1.46   3.83 

11 R5 = 7471     R2 = 22250 R5 = 7538    R2 = 22170 0.90   0.36 

12 R5 = 7471     R3 = 12085 R5 = 7600    R3 = 11200 

and the virtual faults: 

C1, R5 

1.73   7.32 

 

 



A METHOD FOR SOFT FAULT DIAGNOSIS OF LINEAR ANALOG CIRCUIT USING THE LAPLACE TRANSFORM TECHNIQUE 535 

 

Example 2 

In the circuit depicted in Fig. 4 we perform double fault 

diagnosis considering 9 pairs of the parameters as potentially 

faulty: 21CC , 64RR , 84RR , 14CR , 24
CR , 86RR , 28CR , 16CR , 

18
CR . The diagnoses were carried out using the method 

described in Sections II and III. The diagnostic test was 

arranged using the input node 10 and the output nodes 6 and 9. 

The input voltage was the same as in Example 1. The test was 

simulated numerically. The results are presented in Table II. 

 
Fig.4. A circuit for Example 2 

 

In 7 cases (77.8%) the method found the actual pair of the 

faulty parameters appeared as the only one in 5 cases and 

accompanied by one pair of virtual faults in 2 cases. In two 

cases (22.2%) the method failed. 

 
TABLE II.  

EXAMPLE 2. RESULTS OF DOUBLE SOFT FAULT DIAGNOSIS 

Number 

of the 

case 

Faulty parameters, 

resistances in , 

capacitances in µF 

Faulty parameters 

provided by the 

method 

Relative 

errors in % 

1 C1 = 2.00         C2 = 0.5 C1 = 2.00    C2 = 0.50 0.00   0.00 

2 R4 = 1000.0    R6 = 12000.0 R4 = 959.5 R6 = 12035.5 4.05   0.30 

3 R4 = 1000.0    R8 = 140.0 R4 = 980.5 R8 = 141.0 2.00   0.71 

4 R4 = 1000.0    C1 = 2.00 Only the virtual faults: 

R4, R8               FAIL 

 

5 R4 = 1000.0    C2 = 0.50 Only the virtual faults: 

C1, C2               FAIL 

 

6 R6 = 12000.0    R8 = 140.0 R6 = 12008.5 R8 = 140.4 0.07   0.28 

7 R8 = 140.0        C2 = 0.50 R8 = 140.8     C2 = 0.53 

and the virtual faults: 

R8, R6 

0.57   0.60 

8 R6 = 12000.0    C1 = 2.00 R6 = 11943.0   C1 = 2.00 0.47   0.00 

9 R8 = 140.0       C1 = 2.00 R8 = 140.4       C1 = 2.01 0.29   0.50 

 

Example 3 

Figure 5 shows the Tow-Thomas filter containing three 

operational amplifiers. Double fault diagnoses are performed 

in this circuit choosing ten pairs of the parameters considered 

as potentially faulty: 21
RR , 31

RR , 41RR , 32RR , 42
RR , 12RC , 

22
RC , 32

RC , 41RC , 21CC . For this purpose, the method 

described in Sections II and III is used assuming 2=n . Before 

the test, we choose the input node 1 and the output nodes 3 and 

7, and create the corresponding transmittances in symbolic 

form. The input voltage has a trapezoidal shape (see Fig. 1) 

with V10=A , ns181 =t , ms120
12

.tt =− , ns18
23

=− tt . 

The diagnostic test was simulated numerically. The results are 

presented in Table III. In 8 out of 10 cases, the method finds 

the actual pair of faulty parameters and correctly estimates 

their values, but in 6 of them it also provides one virtual faulty 

pair. Unlike Examples 1 and 2 there are many virtual faults in 

this circuit. 

 
Fig.5. The Tow-Thomas filter for Example 3 

 
TABLE III.  

EXAMPLE 3. RESULTS OF DOUBLE SOFT FAULT DIAGNOSIS 

Number 
of the 

case 

Faulty parameters, 

resistances in k, 

capacitances in nF 

Faulty parameters 
provided by the 

method 

Relative 
errors in % 

1 R1 =  15.00      R2 = 5.00 R1 =  14.99    R2 = 5.00 0.07   0.00 

2 R1 = 15.00      R3 =  4.40 Only the virtual faults: 

R2, R3                 FAIL 
 

3 R1 = 15.00      R4 =  12.00 R1 =  14.99    R4 = 11.99 
and the virtual faults: 

C2, R1 

0.07   0.08 

4 R2 =  5.00       R3 =  4.40 R2 =  5.00       R3 =  4.40 0.00  0.00 

5 R2 =  5.00       R4 =  12.00 R2 =  5.00      R4 =  12.01 

and the virtual faults: 

C2, R2 

0.00  0.08 

6 C2 =  5.00        R2 =  5.00 C2 =  5.00      R2 =  5.00 

and the virtual faults: 

R2, R4 

0.00   0.00 

7 C2 =  5.00        R3 =  4.40 Only the virtual faults: 

R1, R3                 FAIL 
 

8 C2 =  5.00        R1 = 15.00 C2 =  5.02      R1 = 15.04 
and the virtual faults: 

R1, R4 

0.40   0.27 

9 

 

C1 = 12.0         R4 = 12.00 

 

C1 = 12.01     R4 = 12.00 
and the virtual faults: 

C1, C2 

0.08   0.00 

10 C1 = 12.0         C2 =  5.00 C1 = 12.03      C2 =  5.00 
and the virtual faults: 

C1, R4 

0.25  0.00 

V. CONCLUSION 

This paper offers a method for multiple soft fault diagnosis 

of analog linear circuits. Unlike the verification methods, e.g. 

[27-28], the proposed approach achieves all objectives of the 

fault diagnosis: detection, location, and identification. The 
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diagnostic test, performed in the transient state, requires 

measurement devices including a two-channel digital 

oscilloscope, and a programmable function generator. 

The equations which express the Laplace transform of the 

output signals in terms of the Laplace transform of the input 

signal are written on the basis of two transmittances. Each of 

the equations is reproduced to a system of overdetermined 

nonlinear algebraic equations. The procedure applied for this 

purpose is effective. The numerical method for solving the 

system of 2n equations in n unknown variables developed in 

this paper is simple, fast, and reliable. The transmittances in 

symbolic form, required by the diagnostic method, can be 

determined either by hand or using a dedicated computer 

program. 

The diagnostic method can be applied to small and medium-

size circuits. It concentrates on double fault diagnosis because 

triple, quadruple, and higher-order fault cases occur rarely. 
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