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Self-improving Q-learning based controller
for a class of dynamical processes

Jakub MUSIAL, Krzysztof STEBEL and Jacek CZECZOT

This paper presents how Q-learning algorithm can be applied as a general-purpose self-
improving controller for use in industrial automation as a substitute for conventional PI controller
implemented without proper tuning. Traditional Q-learning approach is redefined to better fit the
applications in practical control loops, including new definition of the goal state by the closed
loop reference trajectory and discretization of state space and accessible actions (manipulating
variables). Properties of Q-learning algorithm are investigated in terms of practical applicability
with a special emphasis on initializing of Q-matrix based only on preliminary PI tunings to
ensure bumpless switching between existing controller and replacing Q-learning algorithm. A
general approach for design of Q-matrix and learning policy is suggested and the concept is
systematically validated by simulation in the application to control two examples of processes
exhibiting first order dynamics and oscillatory second order dynamics. Results show that on-
line learning using interaction with controlled process is possible and it ensures significant
improvement in control performance compared to arbitrarily tuned PI controller.

Key words: process control, Q-learning algorithm, reinforcement learning, intelligent con-
trol, on-line learning

1. Introduction

In industrial control systems, over 90% still use conventional PI(D) con-
trollers [16]. Potentially, in majority of cases, they can ensure satisfying control
performance, however, in 80% their tuning is far from optimal [19]. Moreover,
almost 30% have not been tuned at all and operate with default tunings. Conse-
quently, it results in deteriorated performance which leads to increased energy
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consumption, medium wasting (chilled water or steam) and faster degradation
of control equipment [4]. Obviously, performance improvement increases overall
efficiency of manufacturing processes, especially if account is taken of the ever
increasing economic and environmental requirements.

Many advanced controller design methods have been developed that promise
to improve control performance but at the cost of increasing complexity. At the
same time, the most significant bottlenecks in practical application of such ad-
vanced control: difficulties in implementation in the form of general-purpose
function blocks and lack of clear tuning rules, not to mention autotuning. Con-
sequently, even if bad performance of currently operating PID-based control
loop is observed, its improvement is difficult because it requires time consum-
ing retuning of the controller or even more challenging substituting it by more
advanced controller. Thus, probably the most awaited solution for this difficulty
is self-improving controller that should be able to substitute existing controller
exhibiting poor performance and gradually improve the performance by learning
from interaction with controlled dynamical process. From practical viewpoint,
such a solution is still an unrealistic promise but some initial attempts using ma-
chine learning techniques whichmake it implementable can be found in literature.

In this paper, Q-learning technique is suggested to design self-improving
controller as the most promising attempt with relatively many reported initial
studies. In a sense, this approach can be considered as similar to Iterative Learning
Control (ILC) that is widely used in automatic and robotics for batch processes
[3, 20]. Different applications of Q-learning in automation have been already
reported. Boubertakh et al. [1] propose to use Q-learning for optimization of
the performance of fuzzy PID controllers. Q-learning algorithm was compared
with conventional PID controller for fermentation process [7], and nonlinear
liquid level stabilization [8]. Quality control of chemical production line based
on application of Q-learning technique in fuzzy multi-agent system is reported
in [12]. In [16,17], application ofQ-learning algorithm for pH control are reported
while Syafiie et al. [18] present its implementation for wastewater treatment
control. Examples of applications of Q-learning can be also found in robotics
[2,11] and automotive [10]. In [9], it is shown how to use Q-learning approach to
generate assembler encoding program that supports implementation of artificial
neural networks. Preliminary results on general aspects of application of Q-
learning algorithm in industrial automation are discussed by Stebel [13].

Even if applications of Q-learning algorithm for design or performance im-
provement of control systems have been reported relatively often, proposed solu-
tions were dedicated to very specific cases and they suffer from lack of generality.
Thus, there are still significant difficulties that have to be managed when it comes
to general-purpose application in practical control systems. Firstly, definition
and discretization of state space describing current state of control system is
not clearly established at the acceptable level of generality. Secondly, definition
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of set of acceptable actions in relation to limitations of real control system is
not determined. Thirdly, even if some practical applications were reported, these
cases were limited to processes of exhibiting simple (first order) dynamics. Thus,
extension to processes with more complex dynamics remains still a challenge.
Finally, stage of initial learning (based on model or worsely, during normal oper-
ation) is not acceptable for practitioners. This paper concentrates on systematic
study and settle of most important difficulties that limit practical implementation
of Q-learning algorithm as a self-improving control strategy. The major novelty
of this paper results from the following contributions:

• redefining state space for Q-learning algorithm based on definition of ref-
erence trajectory of control system as a goal state,

• proposing reliable method for initialization of Q-learning algorithm based
on tunings of existing PI controller,

• systematic validation of the suggested approach not only for first order but
also for oscillatory second order processes.

2. Short introduction to q-learning algorithm

Q-learning algorithm [21] belongs to a class of reinforcement learningmeth-
ods [14] that combine machine learning with optimisation. More precisely, based
on trial and error learning inspired by psychology, Q-learning algorithm applies
the reward/punishment policy that provides a suboptimal solution (reaching the
goal state S) of even very complex dynamical problems, for which the analyt-
ical solution is not available, e.g. due to the lack of accurate model. Based on
this policy, Q-learning algorithm learns directly from interaction between active
decision-making Agent and its dynamical target system. Learning process allows
for modification of Agent behavior to adapt to varying properties of a target sys-
tem. At the same time, when these properties are constant, Q-learning algorithm
is able to improve its actions if they are not optimal at the beginning of learning.

Q-learning algorithm is based on learning policy that in general can be de-
scribed by the following iterative formula:

Q (st, at ) ← Qp (st, at ) + α
[
R + γ ·max

a
Q (st+1, at+1) −Qp (st, at )

]
, (1)

where t is discrete time instant, s and a respectively denote state and action that
should be taken at this state, Q (st, at ) denotes the element (Q-value) of so-called
Q-matrix that represents reward for applying action a when the system is at the
state s. Additionally, in Eq. (1), Qp (st, at ) is the value of Q (st, at ) before update,
Q (st+1, at+1) indicates the state to which the system will move from Q (st, at ),
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α ∈ [0, 1] is the learning rate, R is the reward assigned to state s, γ ∈ [0, 1]
is the discount factor and maxa selects the optimal action for taking which the
maximum reward was encountered. In general, parameters α and γ must be
considered as turning parameters of Q-learning algorithm. However, even if there
are some tuning tips, tuning of Eq. (1) is still not deterministic and it requires
trial and error approach.

Reward R is assigned depending if the system is at the goal state (s = S)
or not. Precisely, if s = S, then R = 1 is applied, otherwise R = 0. During
continuous learning, Agent must take actions other than optimal one that was
previously assigned to current state. For simultaneous learning and normal op-
eration, exploration/exploitation problem must be solved depending on the ratio
between exploration and exploitation. For normal operation (exploitation), previ-
ously learned optimal actions are taken while for further learning (exploration), in
general, random actions are taken to force different behavior and consequently to
check if action so far considered as optimal should be updated. When Q-learning
algorithm is to operate real system, exploitation should have higher priority over
exploration, which impacts on performance but extend the learning time.

3. Application for process control

3.1. Statement of the problem

In this paper, it is assumed that proposed Q-learning algorithm should be able
to substitute PI controller applied in conventional industrial single-loop control
system as shown in Fig. 1. The control goal is defined to keep Process output
Y equal to its desired setpoint Ysp (tracking) by adjusting manipulating variable
U in the presence of load disturbance d. PI controller is pre-tuned so it provides
more or less acceptable control performance but this performance can be far from
optimal that is defined by desired tracking trajectory. Therefore, replacing the PI
controller with the Q-learning algorithm is intended to allow for a continuous
improvement of the control performance thanks to the potential learning from
the behavior of the Process. In this work, considerations are limited to first order
(FO) and second order (SO) processes.

In order to ensure potential practical applicability of the suggested solution,
switching between PI controler and Q-learning algorithm has to be bumpless. In
other words, after the switching, Q-learning algorithm should be able to provide
exactly the same control performance as substituted PI controller. Because it
is assumed that Process model is unknown, initial learning by simulation can
not be used so this feature must be ensured by proper preliminary tuning of Q-
learning algorithm based on tunings of substituted PI controller. At the same time,
on-line further learning is to be ensured while normal operation of the system,
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Figure 1: Schematic diagram of the considered control system. Initially, the system is
operated by conventional PI controller. Q-learning algorithm should be designed to ensure
not only bumpless control after switching from 1 to 2 but also self-improving properties
by on-line learning from interaction with a process

so reasonable balance between exploration and exploitation must be provided,
especially if learning requires additional excitation of the process.

In control theory, control performance of the closed loop system is quantified
by control error e = Ysp − Y and by its time evolution. Thus, the simplest and
most intuitive definition of desired goal state for considered problem S = (e = 0).
Based on this definition, application of Q-learning for process control was dis-
cussed in [16]. Authors suggest to define a number of states of closed-loop system
based on the current value of control error e. These states are uniformly distributed
around the goal state S = ( |e| ¬ emin) and for each state, reward/punishment pol-
icy is proposed to keep control error in this goal state S. Desired threshold emin is
a positive value complying impact of measurement noise that occurs in particular
closed-loop control system. It was reported that this approach provides acceptable
control performance for certain cases but from practical viewpoint, it has a sig-
nificant drawback. Defining the goal state as S = ( |e| ¬ emin) does not ensure
good control performance without significant overregulations and oscillations in
transients. Figure 2 shows that when the goal state of control system is defined
only as S = (|e| ¬ emin), for both oscillatory and overregulated cases this state
can be reached many times before error decays, which is potentially misleading
for Q-learning algorithm.

In practical cases, every closed-loop control system should be designed based
on the predefined trajectory that describes desired closed-loop dynamics. Thus,
in this paper, the goal state of control system is redefined based on required
reference trajectory. Namely, suggested goal state is defined as follows: for each
value |e| > emin, controller should take the actions and change the manipulating
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Figure 2: Three different trajectories representing potential tracking properties in real
control systems. Note that only for exponential one, definition of goal state S = (|e| ¬
emin) directly represents desired steady state of control system. For two other cases,
control system goes through this state twice (overshoot) or even more times (oscillatory),
still being in transient

variable U to ensure not only that the control error is regulated to |e| ¬ emin but
also that this regulation takes place with dynamics defined by reference trajectory.

Reference trajectory is defined as dynamical equation describing decay of
control error e. The most desired trajectory is exponential decay with adjusted
time constant Te > 0 that is considered as the design parameter for closed-loop
system. This exponential trajectory is described as follows:

F (e, ė) = ė +
1
Te

e = 0, (2)

where ė denotes time derivative of control error e and exemplary shape of this
trajectory is shown in Fig. 2, jointly with undesirable oscillatory or overregulated
error decay.

If the state of control system is defined as a deviation from reference trajectory
(2), the goal state can be defined as S = (|F (e, ė) | ¬ σ (e, ė)) where σ (e, ė) > 0.
Consequently, states of the system for Q-learning algorithm can be defined from
Eq. (2), based on discretization of both e and ė values for determining discretized
state space.
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For considered case, action uQ,t taken by Q-learning algorithm at sampling
instant (t) can be converted to manipulating variable applied to a process UQ,t by
the following formula:

UQ,t =



UQ,t−1 + uQ,t if s , S,

UQ,t−1 otherwise,
(3)

where UQ,t−1 denotes manipulating variable applied to a process at previous
sampling instant (t−1). One can note that Eq. (3) is equivalent to action taken by
conventional PI controller depending on control error andwritten in velocity form:

UPI,t = UPI,t−1 + KPITs

(
1
TI

et + ėt

)
, (4)

where KPI and TI respectively denote gain and integral time of PI controller and
Ts is a sampling time. Thus, by combining Eqs. (3) and (4), one can obtain:

uQ,t = KPITs

(
1
TI

et + ėt

)
. (5)

This property leads to the conclusion that has very strong impact on practical
applicability of Q-learning algorithm in industrial control loops. Namely, it allows
for deterministic definition of the values of actions accessible for Q-learning
algorithm and suggesting initialization of Q-matrix to ensure bumpless switching.

3.2. Definition of states space and action values

Application of Q-learning algorithm for use in control loops requires defining
states and actions and in this paper, the definition is suggested to be consistent
with the definition of goal state given by reference trajectory (2) according to
conventional PI controller shown by Eq. (5).

Based on reference trajectory (2), a state of control system is defined by actual
values of control error e and its time derivative ė. Thus, to ensure finite number
of states, space (e, ė) must be discretized. Not uniform discretization should be
applied because for small values of e and ė, more dense discretization is required
to ensure ability of precise control when the system is close to the desired steady
state. If e and ė is higher, then precision of the discretization may be lower. Thus,
for discretization of e, three design parameters must be determined: minimal
control error emin representing dead zone, maximal expected control error emax
and time constant of the desired reference trajectory Te. Then, the following
formulas are suggested for determining boundaries of consecutive e intervals:

e1 = emin , (6a)
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ei+1 = ei
Te + Ts

Te
, for i starting from 1, while ei+1 ¬ emax , (6b)

where i denotes consecutive e interval number.
Suggested discretization of ė requires defining of two additional design pa-

rameters: k denoting a number of ė intervals between ė = 0 and ė <
1
Te

e (
1
Te

e

represents reference trajectory) and w denoting number of the same k intervals
for ė > 0. Then, the boundaries of consecutive ė intervals can be calculated as:

ėi, j=1 =
ei

k · Te
, (7a)

ėi, j = ėi, j−1 +
ei

k · Te
, for j ¬ k · w, (7b)

where j denotes consecutive ė interval number.Note that boundaries of ė intervals
are calculated separately for each e boundary calculated by Eqs.( 6). It ensures
that for bigger values of e and ė, precision of discretization decreases as it was
suggested before.

Once the continuous state space is discretized, a discrete number of acceptable
actions must generated for each state. These actions are generated using middle
points of e, ė intervals that are defined for each state as:

em
1 = 0, (8a)

em
l+1 =

(
el + el

Te + Ts

Te

)
/2, for l ¬ i + 1, (8b)

for e intervals, and:

ėm
i, j=1 = 0, (9a)

ėm
i, j = ėm

i, j−1 +
em

i

k · Te
, for j ¬ k · w + 1, (9b)

for ė intervals, where em
i and ėm

i, j denote middle points of e, ė intervals, respec-
tively.

Then, using previously calculated middle points discretized actions for each
state are generated similarly to PI controller given by Eq. (5) as:

uQ i, j = KPITs

(
1
Te

em
i + ėm

i, j

)
, for j ¬ k · w + 1. (10)

All calculations defined by Eqs. (6)–(10) are given for positive values of e, ė.
Extension for other e, ė space quadrants is straightforward due to symmetry of
both e, ė axes.
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Figure 3 shows the suggested concept of discretization of the space (e, ė)
presented only for the first quadrant. Other quadrants are discretized by symmetry
in the same way.

Figure 3: Definition of system states based on discretization of e and ė values. Straight

line
1
Te

e represents reference trajectory. Gray area represents goal state of the system

Note that the suggested method of discretization of e and ė values into the
state space of Q-learning algorithm results in the fact that Q-values are stored in
cuboid array. At the same time, values of actions calculated for each ei by Eq. (10)
are stored in rectangular array.

3.3. Initialization of Q-learning algorithm and self-improving by on-line learning

In conventional Q-learning approach, Q-matrix does not contain any knowl-
edge about process behavior at the initial stage thus an initial learning is required.
This stage can be performed by simulation but only if relatively precise model
of a process is known. However, it is rare case in practice. Moreover, even if it
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is known, there are many well established methods that can be directly applied
for deriving model-based advanced controllers that provide very good control
performance with no learning required. The other possibility is direct learning
from interaction with real process but in practice, this approach is absolutely
unacceptable due to potential very large perturbations in the process operation
required at the initial stage of learning.

In this paper, using similarity with PI controller shown by Eq. (5), a method
for deterministic initialization of Q-matrix is proposed based only on tunings
of conventional PI controller currently operating real process. This approach is
partially uses the method suggested in [13] and it allows to avoid initial learn-
ing. Moreover, it ensures that after such initialization of Q-matrix, Q-learning
algorithm provides exactly the same control performance as PI controller which
tunings were used for Q-matrix initialization.

Initialization method uses actions calculated by Eq. (10) and stored in actions
array. After initial reset of all Q-values stored in cuboid Q-matrix, for each state,
unitary weight is adjusted in the cell representing the action which value is closest
to the action that would be applied by PI controller with the same settings that
were used for generating actions by Eq. (10). This method provides very similar
control performance as PI controller does, and eventual small differences result
only from discretization accuracy.

After the suggested initialization, Q-learning algorithm can substitute PI con-
troller without losses in control performance. Now continuous improvement is
expected during operation the real process. Thus, the exploration/exploitation
problem must be solved to ensure balance between normal operation and on-line
learning. It is suggested to solve this problem using ε-greedy method [6,15] with
additional limitation on the range, from which the actions are randomized for
on-line learning. In standard Q-learning approach, actions are randomized with
no limitation and it allows for relatively fast learning but in practice, such an
approach could result in unacceptable disturbance of the process introduced in-
testinally by Q-learning algorithm only for learning. Limitation on range of draws
(RD) extends the learning process but allows for safe operation of the process.
This concept is shown in Fig. 4 for an example of RD = 2. If gray box represents
the action so far considered optimal for current state st by adjusting maximal
weight in Q-matrix (maxa Q (st, at ) = n), for learning, this optimal action is
substituted by the other action drawn from the range [n−RD, n+RD]. According
to ε-greedy method, this substitution takes place only if randomly drawn ξ ¬ ε,
providing ξ and ε are both within the range (0, 1) and ε is arbitrarily adjusted by
the user. Otherwise, optimal action is taken.

In practical application, RD must be adjusted according to acceptable fluctu-
ations of the process output but if RD is too small, the control error cannot decay
with the assumed reference trajectory because none of the actions that can be
drawn to provide such property.
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Figure 4: An example of one raw from actions rectangular table for a single discretised
value of ei. Gray box represents the action so far considered optimal by adjustingmaximal
weight in Q-matrix. RD = 2 shows an example of range of draw for actions adjusted for
on-line learning

3.4. Adjustment of discount factor γ for practical applications

An important parameter of Q-learning algorithm is the discount factor γ
which determines reward policy described by Eq. (1). Its value influences reward
R distribution to the states that belong to a single transition path. At the same
time, it determines the differences between Q-values assigned to each state.
This property is very important if Q-learning algorithm is to be implemented in
the platforms with limited decimal precision of calculations. Due to numerical
rounding, too small difference between Q-values may cause the same Q-values
assignment to different states. Then, the choice of optimal transition path is not
ambiguous. Consequently, proper choice of the discount factor γ is very critical
for practical applications of Q-learning algorithm in industrial control loops.

This choice can be suggested based on example of a single transition path
following from the state sN through sN−1 . . . s1, s0 = S (goal state) with n =
N . . . 0 denoting consecutive numbers of states in the transition path. If the
system continuously remains at the goal state S, for Q-values Q (st+1, at+1) =
Q (st, at ) = Q (S, at ), so Eq. (1) can be written as:

∆t
α

Q (S, at ) −Qp (S, at )
∆t

= R +
(
γ − 1

)
Qp(S, at ), (11)

where ∆t denotes sampling time. After assuming that ∆t is small enough com-
paring to dynamics of closed loop system with Q-learning algorithm, Eq. (11)
can be written in the continuous form:

τ
dQ(S, at )

dt
= R +

(
γ − 1

)
Qp(S, at ), (12)

where τ =
∆t
α

is a time constant representing dynamics of changes of each single

Q-value. Therefore, if the system remains in the goal state S,
dQ(S, at )

dt
= 0 then
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Q-value assigned to this goal state has the maximal value:

Q(S, at ) =
R

1 − γ
. (13)

Thus, after rearrangement, Eq. (12) describes distribution of this value to
subsequent states sn (n = N . . . 0) without any additional reward in transition
states:

τ
dQ(sn

t , at )
dt

= −Q
(
sn

t , at
)
+ γQ(sn−1

t+1 at+1), (14)

and because Q
(
s0

t , at
)
= Q (S, at ), Q

(
sn

t , at
)
= γQ

(
sn−1

t+1 , at+1
)
= γnQ(S, at ) so

it can be written that:
Q(sn

t , at ) =
Rγn

1 − γ
. (15)

Eq. (15) can be used to determine minimal value of γ that ensures discrimina-
tion between Q-values assigned to different states for assumed δQ > 0 considered
as a design parameter. Such a discrimination feature is defined as:

Q
(
sN

t , at
)
−Q

(
sN−1

t+1 , at+1
)
> δQ , (16)

and after combining Eqs. (15) and (16), it can be obtained that:

γNQ (S, at ) − γN−1Q (S, at ) > δQ , (17)

which leads to the final condition for adjusting the value of γ:

γ >
N−1

√
δQ

R
. (18)

In Eq. (18), R is the reward value adjusted by the user. N should be adjusted
based on the number of states in the longest reasonable transition path. In the
considered case, it is suggested to adjust N = k · w + 1. The value of δQ should
be adjusted based on the decimal precision of calculations accessible for certain
platform, on which Q-learning algorithm is to be implemented. For instance,
if this platform is Programmable Logic Controller (PLC), its precision may be
limited to four decimal places. Thus, in such a case, it is suggested to adjust
δQ > 0.001.

4. Simulation results

Potential applicability of the suggested approach was tested by simulation for

two examples of processes represented by models: FO model K1(s) =
1

5s + 1
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and SOmodel K2(s) =
1

5s2 + 2s + 1
. Note that the latter represent more complex

dynamics that exhibits oscillatory behaviour. Both models were initially operated
in control loop presented in Fig. 1 with PI controllers tuned as follows: KPI = 1,
TI = 5 for FO model and KPI = 0.96, TI = 10 for SO model.

At the first stage of validation, for both models, Q-matrix was initialized by
the suggested method using corresponding PI tunings to ensure the same initial
control performance both for PI and Q-learning algorithm. Then, after adjusting
Ysp = 0.5 and replacing PI to Q-learning algorithm, learning stage was simulated
by consecutive randomizing initial conditions for e(0) and ė(0). After each draw,
control system was brought to a steady state, which represents a single learning
epoch. After a number of epochs, Q-matrix indicates control actions that ensure
more precise tracking of assumed reference trajectory.

Figure 5 shows comparative results for FO model between: PI controller,
Q-learning algorithm which was initialized using on PI tunings without any addi-
tional learning and Q-learning after intensive learning procedure covering 10 000
epochs. Control performance of PI and Q-learning (PI) is the same due to affec-
tive initialization procedure. Then, after learning period, Q-learning algorithm
ensures very precise tracking the reference trajectory defined by Te = 2 and a sig-
nificant improvement in disturbance rejection. Very similar results can be seen in
Fig. 6 for SO oscillatory model. This time, control performances of PI controller
and Q-learning (PI) algorithm are not the same but they are very similar, which
ensures bumpless switching between both controllers. The difference results from
the fact that when Q-learning algorithm ensures tracking the reference trajectory,
it cannot take any action and the process output temporarily remains unchanged.
After learning period of 10 000 epochs, Q-learning algorithm also ensures very
significant improvement in control performance. Control system tracks the de-
sired reference trajectory defined by Te = 6 and disturbance rejection is more
efficient. Oscillatory behaviour of manipulating variable U results from the fact
that the model itself exhibits oscillatory SO dynamics. Thus, if reference trajec-
tory is defined as exponential, it is a big challenge for any controller to ensure
desired closed loop behaviour. Summarizing, the results presented in Figs. 5 and 6
prove potential ability of self-improvement feature of Q-learning algorithm.

Figure 7 shows how the control performance ofQ-learning algorithm improves
over time due to continuous learning after different number of epochs for both FO
and oscillatory SO models. In both cases, Q-learning algorithms were initialized
by corresponding PI tunings and the improvement is shown after 1000, 2000 and
3000 epochs. For both processes, improvement occurs during learning and it is
visible even after 1000 epochs.

Learning abilities are strongly influenced by RD value that limits the range
from which actions are drawn during on-line learning. Figure 8 shows how
RD influences improvement in control performance from on-line learning for
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Figure 5: Tracking and disturbance rejection for Q-learning algorithm operating FO
model after 10 000 learning epochs, for w = 4, k = 10. Upper diagram shows process
output Y and lower diagram shows manipulating variable U. Q-learning (PI) represents
Q-learning algorithm initialized based on PI tunings

both considered models. In both cases, higher value of RD results in greater
improvement after 5000 epochs but it was encountered that for oscillatory SO
model, RD value requires stricter limitation because for higher values of RD,
instead of improvement, learning process can lead to deterioration in control
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Figure 6: Tracking and disturbance rejection for Q-learning algorithm operating oscilla-
tory SO model after 10 000 learning epochs, for w = 6, k = 14, RD = 40. Upper diagram
shows process output Y and lower diagram shows manipulating variable U . Q-learning
(PI) represents Q-learning algorithm initialized based on PI tunings

performance comparing to Q-learning algorithm initialized by PI tunings. On the
other hand, too small value of RD results in very small improvement in control
performance even for a huge number of learning epochs.

Influence of the value of ε on control performance of Q-learning algorithm
after on-line learning is shown in Fig. 9 for FO and oscillatory SO models. This
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Figure 7: Improvement in control performance for Q-learning algorithm operating FO
model (upper diagram) and oscillatory SO model (lower diagram). Q-learning (PI) rep-
resents Q-learning algorithm initialized based on PI tunings

value determines a tradeoff between exploitation and exploration and once again,
the results are as expected. For both cases, higher value of ε results in more
significant improvement after the same number of learning epochs.

Self-improving property requires ability of on-line learning during normal
operation. Thus, the second stage of validation consists in experiments that are to
simulate realistic on-line learning when process is frequently disturbed by apply-
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Figure 8: Influence of RD on improvement in control performance after 5000 epochs for
Q-learning algorithm operating FO model (upper diagram) and oscillatory SO model
(lower diagram). Q-learning (PI) represents Q-learning algorithm initialized based on PI
tunings

ing a huge number of consecutive step changes of load disturbance d of amplitude
randomized within the range (0, 0.5). At the beginning, Q-matrix is initialized
based on PI tunings. After applying each step change, Q-learning rejects a distur-
bance and at the same time, learns by taking modified actions. Consecutive step
changes of load disturbance are separated by a period which is required to lead
the process to steady state and a period between two load changes form a single
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Figure 9: Influence of ε on improvement in control performance after 5000 epochs for
Q-learning algorithm operating FO model (upper diagram) and oscillatory SO model
(lower diagram). Q-learning (PI) represents Q-learning algorithm initialized based on PI
tunings

epoch. Figures 10 and 11 show an example of two consecutive learning epochs
for FO model and for oscillatory SO model, respectively. Comparison between
not learned Q-learning initialized by PI tunings and Q-learning algorithm that
learns on-line show the scale of changes introduced in manipulating signal U by
learning procedure. They are acceptable from practical viewpoint because they
provide overregulation and settling time similar to Q-learning (PI).
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Figure 10: An example of two consecutive learning epochs for on-line learning of Q-
learning algorithm from load disturbance step changes for FO model. Upper diagram
shows process output Y and lower diagram shows manipulating variable U. Dots indi-
cate moments of rewarding for preserving of the reference trajectory. Q-learning (PI)
represents Q-learning algorithm initialized based on PI tunings
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Figure 11: An example of two consecutive learning epochs for on-line learning of Q-
learning algorithm from load disturbance step changes for oscillatory SO model. Upper
diagram shows process outputY and lower diagram shows manipulating variableU . Dots
indicate moments of rewarding for preserving of the reference trajectory. Q-learning (PI)
represents Q-learning algorithm initialized based on PI tunings
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Improvement in control performance after such learning procedure is pre-
sented for both models in Figs. 12 and 13, for two different numbers of learning
epochs. These results show that control performance improves with successive

Figure 12: Disturbance rejection for Q-learning algorithm operating FO model for on-
line learning from consecutive load disturbance step changes, after 1000 learning epochs
(upper diagram) and 2000 learning epochs (lower diagram). Q-learning (PI) represents
Q-learning algorithm initialized based on PI tunings



548 J. MUSIAL, K. STEBEL, J. CZECZOT

learning epochs and that on-line learning is possible only from process distur-
bances, without any preliminary learning.

Figure 13: Disturbance rejection for Q-learning algorithm operating FO model for on-
line learning from consecutive load disturbance step changes, after 2500 learning epochs
(upper diagram) and 5000 learning epochs (lower diagram). Q-learning (PI) represents
Q-learning algorithm initialized based on PI tunings
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5. Conclusions

In this paper, it was shown that Q-learning algorithm can be potentially used as
a self-improving controller to be applied in industrial control loops and it can com-
bine normal process operating with on-line learning. It was suggested to define
the goal state as an exponential closed loop reference trajectory, which allows for
design the closed loop dynamics of the control systemwith Q-learning algorithm.
Themethod to ensure bumpless switching between existing (poorly tuned) PI con-
troller and the suggested Q-learning algorithm was proposed to use preliminary
initialization of Q-matrix. This method ensures that after switching, Q-learning
algorithm provides the same control performance as PI controller. Then, it can
only improve this performance by on-line learning. This self-improvement ability
was tested by simulation in the application to first order dynamical model and
more challenging oscillatory second-order model.

Results presented in this paper were limited to linear time-invariant processes.
Extension to nonlinear processes is straightforward but in cases of time-varying
processes, applicability of Q-learning algorithm is limited due to relatively long
time required for effective on-line learning stage. If process dynamics fluctuate
faster, Q-learning algorithm is not able to follow this fluctuations. Additionally,
there are still many issues that require further research to make this concept
a realistic alternative for PID controllers operating in majority of control loops.
Especially, aspects of practical implementation in PLC-based platforms should be
investigated. Dynamics of learning process also requires further research because
it limits applicability of Q-learning algorithm as an general-purpose industrial
adaptive controller. Finally, more deterministic rules should be suggested for
adjusting parameters of Q-learning algorithm (Q-learning tuning rules).
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