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Difference melt model

Saule Sh. KAZHIKENOVA, Sagyndyk N. SHALTAKOV and Bekbolat R. NUSSUPBEKOV

The basic objective of the research is to construct a differencemodel of the melt motion. The
existence of a solution to the problem is proven in the paper. It is also proven the convergence of
the difference problem solution to the original problem solution of the melt motion. The Rothe
method is implemented to study the Navier–Stokes equations, which provides the study of the
boundary value problems correctness for a viscous incompressible flow both numerically and
analytically.
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1. Introduction

It is impossible to model numerically the melt motion without taking into
account the mathematical aspects of solving the equations of hydrodynamics.
To describe the motion of melts in this work, we consider the continuity equation
and the Navier–Stokes equations, which are a consequence of the mass and
momentum conservation application to the elementary volume of a liquid.

The theory of Navier–Stokes equations is well established in its content and
development, therefore it sets increasingly more new mathematical problems
related not only to applications in hydrodynamics, but also in such fundamen-
tal mathematics areas as the theory of functional spaces embedding, potential
theory, interpolation theory and so on. This theory allows to solve many prob-
lems related to the the molten state and has a positive impact on the liquid state
physics progress, the theory of metallurgical processes and in turn metallurgical
technologies.
Copyright © 2021. The Author(s). This is an open-access article distributed under the terms of the Creative Com-
mons Attribution-NonCommercial-NoDerivatives License (CC BY-NC-ND 4.0 https://creativecommons.org/licenses/
by-nc-nd/4.0/), which permits use, distribution, and reproduction in any medium, provided that the article is properly
cited, the use is non-commercial, and no modifications or adaptations are made

S.Sh. Kazhikenova (corresponding author, e-mail: sauleshka555@mail.ru, ORCID: 0000-0002-6937-
1577) and S.N. Shaltakov (ORCID: 0000-0002-1186-1178) are with Karaganda Technical University, Kaza-
khstan.

B.R. Nussupbekov Bekbolat (ORCID: 0000-0003-2907-3900) is with the Karaganda University
E.A. Buketov, Kazakhstan.

Received 09.04.2021. Revised 19.08.2021.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:sauleshka555@mail.ru
https://orcid.org/0000-0002-6937-1577
https://orcid.org/0000-0002-6937-1577
https://orcid.org/0000-0002-1186-1178
https://orcid.org/0000-0003-2907-3900


608 S. SH. KAZHIKENOVA, S. N. SHALTAKOV, B. R. NUSSUPBEKOV

Section 2 of the paper presents the problem formulation and relation to the
literature. Navier–Stokes equations in the form corresponding to the certain melt
motion aspects are introduced in Sec. 3, where the main results of the research are
presented, i.e using ofRothemethod forNavier–Stokes equations.We consider the
copper melt flow in an inclined chute and interpret numerical modeling melt flow
in Sec. 4. The theoretically determined optimum flow temperature of copper melt
is consistent with the practical one, being in the optimum 1423–1558 [K] interval,
which is close to the temperatures of real melt flow in industrial conditions. Sec.
5 of the paper presents the conclusion. The validity and reliability of theoretical
studies have been confirmed by comparing the results with the parameters of the
flow of copper melt in the technological equipment of Southwier–2000 line.

2. Problem formulation

Many systems of partial differential equations, linear and nonlinear, are used
to describe physical phenomena. In this paper we have chosen to describe the
Navier–Stokes equations which govern the flow of a viscous fluid. The Navier–
Stokes equations are of primary importance in fluid mechanics, and exhibit by
themselves all the main features and difficulties of nonlinear equations. There
are several reasons why the study of the Navier–Stokes has been central in the
activities of mathematicians for more than two centuries. The Navier–Stokes
equations are perfectly well defined mathematical objects and are paradigms of
nonlinear equations. The solutions exhibit in their behavior many characteristics
of genuinely nonlinear phenomena.

In view of the needs of practical applications in engineering sciences success
has been limited. It is known that the Navier–Stokes equations are analytically
unsolvable in general. Analytical solutions have been reported only for relatively
trivial cases [1–4]. Therefore, our attention focuses on the numerical methods.

The present problems are: how can one describe the phenomenawith adequate
equations, how can one compute them, and visualize the results in spite of their
complexity. The equations involve some physical parameters and turn out to be
relevant when these parameters have certain values. Therefore as an introduction
it is natural to consider a “chain” of equations, hoping, as is often the case,
that the next equation will become relevant when the structure of the phenomena
becomes too complicated to be computed by the previous one. The Navier–Stokes
equations appear to be one of the main links in this chain [3]:

I Hamiltonian system of particles → II Boltzmann equation → III Navier–
Stokes equations→ IV Models of turbulence.

Each step is deduced from the previous one with the introduction of hierarchy
of equations and a process of closure which in some cases leads to the appearance
of irreversibility.
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The development of numerical models of the equations of hydrodynamics
is devoted to many scientific articles. Shortened version of the Navier–Stokes
equations with viscous members are given in [4]. Correctness of the Cauchy
problem formulation has been proved mathematically and general problems of
the considered systems classification has been studied.

Further development of the problem is described in [5]. Solving method
of three-dimensional hydrodynamic equations is based on the introduction of
artificial compressibility. System of equations is solved by using an implicit
scheme. It is proved that the method is fast converging.

An algorithm for solving the hydrodynamic equations in the three-dimensional
curvilinear coordinates is presented in the works [6–8]. There are considered
stationary and non-stationary flows of incompressible liquid.

Other methods are being sought. There is an attempt to derive the Navier–
Stokes equation by using the variational method, as presented in [9]. Variational
method is based on the natural decrease of the flow exergy. Author deals with the
liquids thermodynamic properties.

We discuss the implementation of a numerical algorithm for simulating in-
compressible fluid flows. A first we have to investigate Rothe’s scheme for the
Navier–Stokes equations in two dimensional bounded domainswith slip boundary
conditions admitting flow across the boundary. The structure of themodel enables
to reformulate it into the coupled system of the vorticity and velocity problems.
The method is based on the maximum principle for the vorticity equation which
delivers a new bound for the solutions.

3. Nonlinear Navier–Stokes equations

The main objective of this study is the melt motion description, assumed that
there are known the external forces acting on the melt in the boundary mode
and, the initial velocity field for a non-stationary flow. Basically, we assume that
there is a coordinate system in which the field with the melt are unchanged. The
assumption of the field constancy is fulfilled in such practically important tasks
as the problem of the solid body flowing with an infinite flow; the problem of the
liquid motion under the action of volume forces in a vessel and others.

Consider a mathematical model of a melt in melting bath:

∂υ

∂t
+ (υ · ∇)υ = µ0

∂2υ

∂x2
3
+ µ∆υ − ∇ξ + f (θ), (1)

∂ξ

∂t
+

H∫
0

div υd x3 = 0, (2)
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∂θ

∂t
+ (υ · ∇)θ = λ

∂2θ

∂x2
3
+ λ∆θ, (3)

with initial boundary conditions:

υ��t=0 = υ0(x), ξ��t=0 = ξ0(x), θ��t=0 = θ0(x),

t ∈ [0,T], υ��S = 0, θ��S = 0,
(4)

where υ – velocity, θ – temperature, ξ – surface level.
Here:

υ =
*..
,
υ1, υ2,−

x3∫
0

div υd x3
+//
-
, div υ =

∂υ1

∂x1
+
∂υ2

∂x2
, ∇ξ =

(
∂ξ

∂x1
,
∂ξ

∂x2

)
,

where f (θ) – linear function of its argument.
For simplicity, assume: the area Ω is a cube, ρε → ρ is border area of Ω.
We use the Rothe method [10,11] for the problem (1)–(4). The Rothe method

is being used to prove existence theorems and the actual definition of initial
boundary value problems’ solutions, the essence of which is in reducing these
problems to boundary-value problems of elliptic type.

We conduct a discretization by time:

υn+1 − υn

τ
+ (υn · ∇)υn+1 = µ0

∂2υn+1

∂x2
3
+ µ∆υn+1 + f (θn) − ∇ξn+1, (5)

ξn+1 − ξn

τ
+

H∫
0

div υn+1d x3 = 0, (6)

θn+1 − θn

τ
+ (υn · ∇)θn+1 = λ0

∂2θn+1

∂x2
3
+ λ∆θn+1. (7)

Equations (5)–(7) are solved with the following conditions:

θ0 = θ0(x), υ0 = υ0(x), ξ0 = ξ0(x),

θn+1���S = 0, υn + 1��S = 0, 0 ¬ nτ ¬ T < ∞.
(8)

Lemma 1 Let θ0(x) ∈ L∞(Ω), υ0(x) ∈ L2(Ω), ξ0 ∈ L2(Ω). Then in order to
solve the problem (5)–(8) the following assessment is true:

max
0¬nτ¬T

υn +
N∑

m=1
τ ∇υm2 ¬ c < ∞,
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max
0¬nτ¬T

θnL∞(Ω) +

N∑
m=1

τ ∇θm2 ¬ c < ∞.

Proof. By multiplying equation (7) by (θn+1)2k+1, integrating by parts and dis-
carding positive terms, we get the assessment:

θn2k
L2k (Ω) ¬

θ
0

2k

L2k (Ω)
. (9)

By assuming the application of the limit at k → ∞, we have:

θnL∞(Ω) ¬
θ

0L∞(Ω)
.

Now let multiply the equation (7) by 2τθn+1, then it integrate over the areaΩ.
Therefore, we get:

θ
n+1

2
− θn2

+
θ

n+1 − θn
2

+ 2τ
∫
Ω

(υn · ∇)θn+1 · θn+1d x + 2τ *
,
λ0


∂θn+1

∂x3



2

+ λ
∇θ

n+1
2+

-
= 0. (10)

It can be noticed that:∫
Ω

(
υn · ∇

)
θn+1 · θn+1d x = 0. (11)

By taking into account the (11) equality from (10) we conclude:

τ

N∑
n=0

*
,
λ0


∂θn+1

∂x2



2

+ λ
∇θ

n+1
2+

-
¬ c < ∞.

Let multiply the equation (5) by 2τυn+1, and the equation (6) by 2τξn+1 and
integrate the results by parts. Subsequently, we get the following:

υ
n+1

2
− υn2

+
υ

n+1 − υn
2
+ 2τ

∫
Ω

(
υn · ∇

)
υn+1 · υn+1d x

+


µ0


∂υn+1

∂x3



2

+ µ
∇υ

n+1
2
+

(
∇ξn+1, υn+1

)
· 2τ

= 2τ
∫
Ω

f
(
θn) · υn+1d x, (12)



612 S. SH. KAZHIKENOVA, S. N. SHALTAKOV, B. R. NUSSUPBEKOV

ξ
n+1

2
− ξn2

+
ξ

n+1 − ξn
2
+ 2τ

∫
Ω

H∫
Ω

div υn+1 · ξn+1d x3d x = 0. (13)

By adding the equalities (12) and (13), after uncomplicated transformations
we get:

max
0¬mτ¬T

(ξm2
+ υm2)

+

N∑
m=1

∇υm2 τ ¬ c < ∞.

Thus, the Lemma is proved. 2

The following is true.
Theorem 1 Let problem solution (1)–(4) be sufficiently smooth. Then difference
problem solution (5)–(8) converges to the problem solution (1)–(4) with a velocity:

max
0
¬ n ¬ N υn − υ(nτ) + τ

N∑
m=1

∇υm − ∇(υ(mτ))2 ¬ c(τ)2,

where υ(nτ) – function value at the point (τ, x).
Proof. Reserve of smoothness provides a compact set {υn} at υ(x, t) – less than
some δ, determined by initial data and the existence of a limit vector-function
υ(nτ) ∈ L2(Ω), being the limit υn at τ → 0. If substituted υn into equations
of system (1)–(3) and initial conditions (4), then the equations will be satisfied
up to the right-hand sides, which tends to zero weakly. It follows that υ(nτ)
is a solution to the problem (1)–(4) and, due to the uniqueness of the problem
solution (5)–(8) on the basis of the Lemma and embedding inequalities, it follows
that υn converges to υ(nτ) at τ → 0 with velocity:

max
0¬n¬N

υn − υ(nτ) + τ
N∑

m=1

∇υm − ∇(υ(mτ))2 ¬ c(τ)2.

The theorem is proved. 2

Theoretical hydrodynamics has long attracted attention of various special-
ties’ scientists: comparative simplicity of the basic equations, precise problems
formulation and clarity of its experiments inspired hope of getting a dynamic
phenomena complete description occurring in melts [12–14].

4. The copper melt flow numerical modeling in an inclined chute

Let us consider melt flow in an inclined chute. For a particular design, one can
interpret and consider it as follows. Direct axis Oz by chute axis, assumingthat
chute design is infinite, and the melt flow is directed along chute axis so that from
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the three velocity components u, υ, w, there is left only one w, therefore u = 0,
υ = 0. Let melt flow be isothermal, then density ρ and viscosity coefficient µ are
constant.

Hence, the Navier–Stokes equations are given in the form:

−
1
ρ

∂p
∂x
= 0,

−
1
ρ

∂p
∂y
= 0,

w
∂w

∂z
= −

1
ρ

∂p
∂z
+ γ

(
∂2w

∂x2 +
∂2w

∂y2 +
∂2w

∂z2

)
,

∂w

∂z
= 0.

(14)

Thus, as can be seen from the system of equations (14), velocity w repre-
sents a function of only x, y coordinates besides that, the pressure function p
is a function of coordinate z. The pressure changes narrowly from section to
section, keeping the same value in the given section. Such movements are called
established.

Based on (14) we obtain the following equation:

dp
d z
= µ

(
∂2w

∂x2 +
∂2w

∂y2

)
. (15)

The right hand side of (15) represents a function of x, y coordinates, then the
left hand side is a function of z coordinate. The main statements follow from the
hydrodynamics:

dp
d z
= −
∆p
`
,

where ∆p is the pressure dropping in an arbitrarily selected area, ` is the chute
length.

Besides that, due to the melt free surface presence in the chute, the pressure is
equal to atmospheric one. Since chute is inclined to the horizon at a certain angle
α, then a volume force arises, a projection of which onto the axis Oz is equal to

Fz = g sin α =
∆p
`
. Then the motion equation (15) in the direction of Oz takes

the form:

µ

(
∂2w

∂x2 +
∂2w

∂y2

)
+ ρg sin α = 0. (16)

Boundary conditions are necessary to be defined in order to solve obtained
equation. These conditionswill be determined bymelt sticking to the chute bottom
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and the friction absence on the melt free surface. Let us denote the flow depth as
h1, and the width as h2. Then the problem boundary conditions are represented
as follows:

w = 0 at y = 0,
∂w

∂y
= 0 at y = h1 ,

∂w

∂x
= 0 at x = h2 .

(17)

Thus, the equation (16) with the boundary conditions (17) describe the melt
flow process in concrete designs of chute type. The model is built for melting
equipment of the SCR–2000 line, a sketch of which is presented in Fig. 1.

Melting oven Upper chute Upper slag Mixer collector Bottom chute

Figure 1: Sketch of the melting equipment SCR – 2000 line location

Calculations are made for the lower chute with an inclination angle of 3◦ as
shown in Fig. 1. Cross section of the lower chute is presented in Fig. 2 where the
melt level is depicted as well. Numerical parameters are determined by following
calculations: the segment area is

S =
[lr − a (r − h)]

2
,

where l – arc length, a – chord, h – segment arrow:

a = 83 [mm], h = 18 [mm],
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l ≈
√

a2 +
(
16h2/3

)
=

√
832 +

(
16 · 182/3

)
= 92.8 [mm].

Hence S =

[
92.8 ·

115
2
− 83

(
115
2
− 18

)]

2
= 1029 [mm2].

Then the second melt flow velocity is Q = 3.61
[
kg
s

]
. With this taken into

account it is possible to determine average melt flow velocity, which is equal to
υcp = 0.45

[m
s

]
. There were used a constant step sizes ∆x = ∆y = 0.02 in the

calculations. Time step in the calculations was chosen to be equal to ∆t = 0.001.

Figure 2: Section of lower chute (measurements given in [mm])

Established results for the velocities profiles υ and u of melt flow profiles
in the flat channel are presented in Fig. 3. Obtained results show that proposed
computational scheme is efficient and can be used for calculating of the flow at
sufficiently small Reynolds numbers without special difficulties.

Copper melt atoms at the moment of collisions approach as close as possible
and are under the electrical forces action. In the time interval between thermal
collisions, the copper melt atoms are rearranged in mutual location, jump in the
force direction, and the atoms thermal movement occurs. When the melt flows
in chute, no mixing of the melt various layers occurs, thus the copper melt flow
can be represented as separate layers that move at different velocities, increasing
towards melt surface. From the moment of atoms hopping in direction of the bulk
force action, the flow is separated into the bottom layer and the main layer [9].
Bottom layer atoms are held at the bottom surface by the forces of interatomic
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(a) (b)

Figure 3: Profiles a) transverse υ and b) longitudinal u velocities

adhesion with the surface, the main layer atoms under the bulk force action move
along the bottom layer boundary. Chute walls, due to internal friction, inhibit the
movement of the closest to it copper melt layer, and this inhibiting is transferred
from one layer to another throughout the melt flow to the surface, where the flow
is the fastest.

Taking into account the copper melt shear and bulk viscosities, the flow
velocities distribution in the lower chute at a temperatures of 1358 [K], 1398 [K],
1438 [K], 1478 [K], 1518 [K], 1558 [K], 1598 [K], 1638 [K] in projections onto
the XOY and also in XYZ spaces are presented in correspondence on Figs. 4–11
and Tables 1–8. It can be seen that the constant velocity lines, isolines, vary from
0.64

[ m
s

]
to 0.01

[ m
s

]
. Moreover, the maximum flow velocity is achieved on

surface, and at the chute bottom it is almost equal to zero, that is, completely
consistent with the equations (14) and (15). Average value of velocity isoline
is approximately equal to melt flow average velocity υ ≈ 0.40

[ m
s

]
. Number of

isolines at appropriate temperatures is as follows:

T [K] 1358 1398 1438 1478 1518 1558 1598 1638
n is number of isolines 19 21 23 24 26 28 12 12

These data show that the number of isolines passes through a maximum at
a temperature of 1558 [K]. At lower temperatures, for example, at 1358 [K], and
also at high temperatures, for example, at 1598 [K], velocity distribution is not
so dense. This is probably due to the fact that the melt near the melting point
is nonhomogeneous due to the formation clusters existence in it. And nonho-
mogeneity at temperatures of 1598 [K] and higher is associated with thermal
loosening of molten metal structure and is not technologically feasible, since it
leads to mechanical defects while the final product is formatted.
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(a) (b)

Figure 4: Velocity isolines a) and surface b) at a temperature of 1358 [K]

Table 1. Copper melt’s flow velocity profiles at temperature of 1358 [K]

Y
X

0.0000 5.0000 10.000 15.000 20.000 25.000
0.0000 0.4023 0.4007 0.3961 0.3883 0.3775 0.3636
–5.00 0.4007 0.3992 0.3945 0.3868 0.3760 0.3620
–10.00 0.3961 0.3945 0.3899 0.3821 0.3713 0.3574
–15.00 0.3883 0.3868 0.3821 0.3744 0.3636 0.3496
–20.00 0.3775 0.3760 0.3713 0.3636 0.3527 0.3388
–25.00 0.3636 0.3620 0.3574 0.3496 0.3388 0.3249
–30.00 0.3466 0.3450 0.3404 0.3326 0.3218 0.3079
–35.00 0.3264 0.3249 0.3202 0.3125 0.3017 0.2877
–40.00 0.3032 0.3017 0.2970 0.2893 0.2785 0.2645
–45.00 0.2769 0.2754 0.2707 0.2630 0.2521 0.2382
–50.00 0.2475 0.2460 0.2413 0.2336 0.2227 0.2088
–55.00 0.2150 0.2135 0.2088 0.2011 0.1902 0.1763

Y
X

30.000 35.000 40.000 45.000 50.000 55.000
0.0000 0.3466 0.3264 0.3032 0.2769 0.2475 0.2150
–5.00 0.3450 0.3249 0.3017 0.2754 0.2460 0.2135
–10.00 0.3404 0.3202 0.2970 0.2707 0.2413 0.2088
–15.00 0.3326 0.3125 0.2893 0.2630 0.2336 0.2011
–20.00 0.3218 0.3017 0.2785 0.2521 0.2227 0.1902
–25.00 0.3079 0.2877 0.2645 0.2382 0.2088 0.1763
–30.00 0.2908 0.2707 0.2475 0.2212 0.1918 0.1593
–35.00 0.2707 0.2506 0.2274 0.2011 0.1717 0.1392
–40.00 0.2475 0.2274 0.2042 0.1779 0.1485 0.1160
–45.00 0.2212 0.2011 0.1779 0.1515 0.1221 0.0896
–50.00 0.1918 0.1717 0.1485 0.1221 0.0927 0.0602
–55.00 0.1593 0.1392 0.1160 0.0896 0.0602 0.0277
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(a) (b)
Figure 5: Velocity isolines a) and surface b) at a temperature of 1398 [K]

Table2. Copper melt’s flow velocity profiles at temperature of 1398 [K]

Y
X

0.0000 5.0000 10.000 15.000 20.000 25.000
0.0000 0.4412 0.4395 0.4344 0.4259 0.4140 0.3987
–5.00 0.4395 0.4378 0.4327 0.4242 0.4123 0.3970
–10.00 0.4344 0.4327 0.4276 0.4191 0.4072 0.3919
–15.00 0.4259 0.4242 0.4191 0.4106 0.3987 0.3835
–20.00 0.4140 0.4123 0.4072 0.3987 0.3869 0.3716
–25.00 0.3987 0.3970 0.3919 0.3835 0.3716 0.3563
–30.00 0.3801 0.3784 0.3733 0.3648 0.3529 0.3376
–35.00 0.3580 0.3563 0.3512 0.3427 0.3308 0.3156
–40.00 0.3325 0.3308 0.3258 0.3173 0.3054 0.2901
–45.00 0.3037 0.3020 0.2969 0.2884 0.2765 0.2613
–50.00 0.2714 0.2697 0.2646 0.2562 0.2443 0.2290
–55.00 0.2358 0.2341 0.2290 0.2205 0.2086 0.1934

Y
X

30.000 35.000 40.000 45.000 50.000 55.000
0.0000 0.3801 0.3580 0.3325 0.3037 0.2714 0.2358
–5.00 0.3784 0.3563 0.3308 0.3020 0.2697 0.2341
–10.00 0.3733 0.3512 0.3258 0.2969 0.2646 0.2290
–15.00 0.3648 0.3427 0.3173 0.2884 0.2562 0.2205
–20.00 0.3529 0.3308 0.3054 0.2765 0.2443 0.2086
–25.00 0.3376 0.3156 0.2901 0.2613 0.2290 0.1934
–30.00 0.3190 0.2969 0.2714 0.2426 0.2103 0.1747
–35.00 0.2969 0.2748 0.2494 0.2205 0.1883 0.1526
–40.00 0.2714 0.2494 0.2239 0.1951 0.1628 0.1272
–45.00 0.2426 0.2205 0.1951 0.1662 0.1340 0.0983
–50.00 0.2103 0.1883 0.1628 0.1340 0.1017 0.0661
–55.00 0.1747 0.1526 0.1272 0.0983 0.0661 0.0304
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(a) (b)
Figure 6: Velocity isolines a) and surface b) at a temperature of 1438 [K]

Table 3. Copper melt’s flow velocity profiles at temperature of 1438 [K]

Y
X

0.0000 5.0000 10.000 15.000 20.000 25.000
0.0000 0.4814 0.4795 0.4740 0.4647 0.4517 0.4351
–5.00 0.4795 0.4777 0.4721 0.4629 0.4499 0.4332
–10.00 0.4740 0.4721 0.4666 0.4573 0.4443 0.4277
–15.00 0.4647 0.4629 0.4573 0.4480 0.4351 0.4184
–20.00 0.4517 0.4499 0.4443 0.4351 0.4221 0.4054
–25.00 0.4351 0.4332 0.4277 0.4184 0.4054 0.3888
–30.00 0.4147 0.4128 0.4073 0.3980 0.3851 0.3684
–35.00 0.3906 0.3888 0.3832 0.3740 0.3610 0.3443
–40.00 0.3628 0.3610 0.3554 0.3462 0.3332 0.3165
–45.00 0.3314 0.3295 0.3240 0.3147 0.3017 0.2851
–50.00 0.2962 0.2943 0.2888 0.2795 0.2665 0.2499
–55.00 0.2573 0.2554 0.2499 0.2406 0.2276 0.2110

Y
X

30.000 35.000 40.000 45.000 50.000 55.000
0.0000 0.4147 0.3906 0.3628 0.3314 0.2962 0.2573
–5.00 0.4128 0.3888 0.3610 0.3295 0.2943 0.2554
–10.00 0.4073 0.3832 0.3554 0.3240 0.2888 0.2499
–15.00 0.3980 0.3740 0.3462 0.3147 0.2795 0.2406
–20.00 0.3851 0.3610 0.3332 0.3017 0.2665 0.2276
–25.00 0.3684 0.3443 0.3165 0.2851 0.2499 0.2110
–30.00 0.3480 0.3240 0.2962 0.2647 0.2295 0.1906
–35.00 0.3240 0.2999 0.2721 0.2406 0.2054 0.1665
–40.00 0.2962 0.2721 0.2443 0.2128 0.1776 0.1388
–45.00 0.2647 0.2406 0.2128 0.1813 0.1462 0.1073
–50.00 0.2295 0.2054 0.1776 0.1462 0.1110 0.0721
–55.00 0.1906 0.1665 0.1388 0.1073 0.0721 0.0332
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(a) (b)
Figure 7: Velocity isolines a) and surface b) at a temperature of 1478 [K]

Table 4. Copper melt’s flow velocity profiles at temperature of 1478 [K]

Y
X

0.0000 5.0000 10.000 15.000 20.000 25.000
0.0000 0.5227 0.5207 0.5147 0.5046 0.4906 0.4725
–5.00 0.5207 0.5187 0.5127 0.5026 0.4886 0.4705
–10.00 0.5147 0.5127 0.5067 0.4966 0.4825 0.4644
–15.00 0.5046 0.5026 0.4966 0.4865 0.4725 0.4544
–20.00 0.4906 0.4886 0.4825 0.4725 0.4584 0.4403
–25.00 0.4725 0.4705 0.4644 0.4544 0.4403 0.4222
–30.00 0.4503 0.4483 0.4423 0.4322 0.4182 0.4001
–35.00 0.4242 0.4222 0.4161 0.4061 0.3920 0.3739
–40.00 0.3940 0.3920 0.3860 0.3795 0.3618 0.3437
–45.00 0.3598 0.3578 0.3518 0.3417 0.3277 0.3096
–50.00 0.3216 0.3196 0.3136 0.3035 0.2894 0.2713
–55.00 0.2794 0.2774 0.2713 0.2613 0.2472 0.2291

Y
X

30.000 35.000 40.000 45.000 50.000 55.000
0.0000 0.4503 0.4242 0.3940 0.3598 0.3216 0.2794
–5.00 0.4483 0.4222 0.3920 0.3578 0.3196 0.2774
–10.00 0.4423 0.4161 0.3860 0.3518 0.3136 0.2713
–15.00 0.4322 0.4061 0.3759 0.3417 0.3035 0.2613
–20.00 0.4182 0.3920 0.3618 0.3277 0.2894 0.2472
–25.00 0.4001 0.3739 0.3437 0.3096 0.2713 0.2291
–30.00 0.3779 0.3518 0.3216 0.2874 0.2492 0.2070
–35.00 0.3518 0.3256 0.2955 0.2613 0.2231 0.1808
–40.00 0.3216 0.2955 0.2653 0.2311 0.1929 0.1507
–45.00 0.2874 0.2613 0.2311 0.1969 0.1587 0.1165
–50.00 0.2492 0.2231 0.1929 0.1587 0.1205 0.0783
–55.00 0.2070 0.1808 0.1507 0.1165 0.0783 0.0360
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(a) (b)
Figure 8: Velocity isolines a) and surface b) at a temperature of 1518 [K]

Table 5. Copper melt’s flow velocity profiles at temperature of 1518 [K]

Y
X

0.0000 5.0000 10.000 15.000 20.000 25.000
0.0000 0.5654 0.5207 0.5633 0.5567 0.5306 0.5111
–5.00 0.5633 0.5187 0.5611 0.5546 0.5285 0.5089
–10.00 0.5567 0.5127 0.5546 0.5480 0.5219 0.5024
–15.00 0.5459 0.5026 0.5437 0.5372 0.5111 0.4915
–20.00 0.5306 0.4886 0.5285 0.5219 0.4958 0.4762
–25.00 0.5111 0.4705 0.5089 0.5024 0.4762 0.4567
–30.00 0.4871 0.4483 0.4850 0.4784 0.4523 0.4327
–35.00 0.4588 0.4222 0.4567 0.4501 0.4240 0.4045
–40.00 0.4262 0.3920 0.4240 0.4175 0.3914 0.3718
–45.00 0.3892 0.3578 0.3871 0.3805 0.3544 0.3348
–50.00 0.3479 0.3196 0.3457 0.3392 0.3131 0.2935
–55.00 0.3022 0.2774 0.3000 0.2935 0.2674 0.2478

Y
X

30.000 35.000 40.000 45.000 50.000 55.000
0.0000 0.4871 0.4588 0.4262 0.3892 0.3479 0.3022
–5.00 0.4850 0.4567 0.4240 0.3871 0.3457 0.3000
–10.00 0.4784 0.4501 0.4175 0.3805 0.3392 0.2935
–15.00 0.4675 0.4393 0.4066 0.3697 0.3283 0.2826
–20.00 0.4523 0.4240 0.3914 0.3544 0.3131 0.2674
–25.00 0.4327 0.4045 0.3718 0.3348 0.2935 0.2478
–30.00 0.4088 0.3805 0.3479 0.3109 0.2696 0.2239
–35.00 0.3805 0.3522 0.3196 0.2826 0.2413 0.1956
–40.00 0.3479 0.3196 0.2870 0.2500 0.2087 0.1630
–45.00 0.3109 0.2826 0.2500 0.2130 0.1717 0.1260
–50.00 0.2696 0.2413 0.2087 0.1717 0.1304 0.0847
–55.00 0.2239 0.1956 0.1630 0.1260 0.0847 0.0390
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(a) (b)
Figure 9: Velocity isolines a) and surface b) at a temperature of 1558 [K]

Table 6. Copper melt’s flow velocity profiles at temperature of 1558 [K]

Y
X

0.0000 5.0000 10.000 15.000 20.000 25.000
0.0000 0.6101 0.6078 0.6007 0.5890 0.5726 0.5514
–5.00 0.6078 0.6054 0.5984 0.5867 0.5702 0.5491
–10.00 0.6007 0.5984 0.5913 0.5796 0.5632 0.5421
–15.00 0.5890 0.5867 0.5796 0.5679 0.5514 0.5303
–20.00 0.5726 0.5702 0.5632 0.5514 0.5350 0.5139
–25.00 0.5514 0.5491 0.5421 0.5303 0.5139 0.4928
–30.00 0.5256 0.5233 0.5162 0.5045 0.4881 0.4669
–35.00 0.4951 0.4928 0.4857 0.4740 0.4575 0.4364
–40.00 0.4599 0.4575 0.4505 0.4388 0.4223 0.4012
–45.00 0.4200 0.4176 0.4106 0.3989 0.3824 0.3613
–50.00 0.3754 0.3730 0.3660 0.3543 0.3378 0.3167
–55.00 0.3261 0.3237 0.3167 0.3050 0.2885 0.2674

Y
X

30.000 35.000 40.000 45.000 50.000 55.000
0.0000 0.5256 0.4951 0.4599 0.4200 0.3754 0.3261
–5.00 0.5233 0.4928 0.4575 0.4176 0.3730 0.3237
–10.00 0.5162 0.4857 0.4505 0.4106 0.3660 0.3167
–15.00 0.5045 0.4740 0.4388 0.3989 0.3543 0.3050
–20.00 0.4881 0.4575 0.4223 0.3824 0.3378 0.2885
–25.00 0.4669 0.4364 0.4012 0.3613 0.3167 0.2674
–30.00 0.4411 0.4106 0.3754 0.3355 0.2909 0.2416
–35.00 0.4106 0.3801 0.3449 0.3050 0.2604 0.2111
–40.00 0.3754 0.3449 0.3097 0.2698 0.2252 0.1759
–45.00 0.3355 0.3050 0.2698 0.2299 0.1853 0.1360
–50.00 0.2909 0.2604 0.2252 0.1853 0.1407 0.0914
–55.00 0.2416 0.2111 0.1759 0.1360 0.0914 0.0421
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(a) (b)
Figure 10: Velocity isolines a) and surface b) at a temperature of 1598 [K]

Table 7. Copper melt’s flow velocity profiles at temperature of 1598 [K]

Y
X

0.0000 5.0000 10.000 15.000 20.000 25.000
0.0000 0.6539 0.6513 0.6438 0.6312 0.6136 0.5910
–5.00 0.6513 0.6488 0.6413 0.6287 0.6111 0.5884
–10.00 0.6438 0.6413 0.6337 0.6211 0.6035 0.5809
–15.00 0.6312 0.6287 0.6211 0.6086 0.5910 0.5683
–20.00 0.6136 0.6111 0.6035 0.5910 0.5734 0.5507
–25.00 0.5910 0.5884 0.5809 0.5683 0.5507 0.5281
–30.00 0.5633 0.5608 0.5532 0.5406 0.5230 0.5004
–35.00 0.5306 0.5281 0.5205 0.5079 0.4903 0.4677
–40.00 0.4929 0.4903 0.4828 0.4702 0.4526 0.4300
–45.00 0.4501 0.4476 0.4400 0.4274 0.4098 0.3872
–50.00 0.4023 0.3998 0.3922 0.3797 0.3620 0.3394
–55.00 0.3495 0.3469 0.3394 0.3268 0.3092 0.2866

Y
X

30.000 35.000 40.000 45.000 50.000 55.000
0.0000 0.5633 0.5306 0.4929 0.4501 0.4023 0.3495
–5.00 0.5608 0.5281 0.4903 0.4476 0.3998 0.3469
–10.00 0.5532 0.5205 0.4828 0.4400 0.3922 0.3394
–15.00 0.5406 0.5079 0.4702 0.4274 0.3797 0.3268
–20.00 0.5230 0.4903 0.4526 0.4098 0.3620 0.3092
–25.00 0.5004 0.4677 0.4300 0.3872 0.3394 0.2866
–30.00 0.4727 0.4400 0.4023 0.3595 0.3117 0.2589
–35.00 0.4400 0.4073 0.3696 0.3268 0.2790 0.2262
–40.00 0.4023 0.3696 0.3319 0.2891 0.2413 0.1885
–45.00 0.3595 0.3268 0.2891 0.2463 0.1985 0.1457
–50.00 0.3117 0.2790 0.2413 0.1985 0.1507 0.0979
–55.00 0.2589 0.2262 0.1885 0.1457 0.0979 0.0451
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(a) (b)

Figure 11: Velocity isolines a) and surface b) at a temperature of 1638 [K]

Table 8. Copper melt’s flow velocity profiles at temperature of 1638 [K]

Y
X

0.0000 5.0000 10.000 15.000 20.000 25.000
0.0000 0.6994 0.6967 0.6887 0.6752 0.6564 0.6321
–5.00 0.6967 0.6940 0.6860 0.6725 0.6537 0.6295
–10.00 0.6887 0.6860 0.6779 0.6644 0.6456 0.6214
–15.00 0.6752 0.6725 0.6644 0.6510 0.6321 0.6079
–20.00 0.6564 0.6537 0.6456 0.6321 0.6133 0.5891
–25.00 0.6321 0.6295 0.6214 0.6079 0.5891 0.5649
–30.00 0.6025 0.5999 0.5918 0.5783 0.5595 0.5353
–35.00 0.5676 0.5649 0.5568 0.5433 0.5245 0.5003
–40.00 0.5272 0.5245 0.5164 0.5030 0.4841 0.4599
–45.00 0.4815 0.4788 0.4707 0.4572 0.4384 0.4142
–50.00 0.4303 0.4276 0.4196 0.4061 0.3873 0.3631
–55.00 0.3738 0.3711 0.3631 0.3496 0.3308 0.3065

Y
X

30.000 35.000 40.000 45.000 50.000 55.000
0.0000 0.6025 0.5676 0.5272 0.4815 0.4303 0.3738
–5.00 0.5999 0.5649 0.5245 0.4788 0.4276 0.3711
–10.00 0.5918 0.5568 0.5164 0.4707 0.4196 0.3631
–15.00 0.5783 0.5433 0.5030 0.4572 0.4061 0.3496
–20.00 0.5595 0.5245 0.4841 0.4384 0.3873 0.3308
–25.00 0.5353 0.5003 0.4599 0.4142 0.3631 0.3065
–30.00 0.5057 0.4707 0.4303 0.3846 0.3335 0.2769
–35.00 0.4707 0.4357 0.3953 0.3496 0.2985 0.2420
–40.00 0.4303 0.3953 0.3550 0.3092 0.2581 0.2016
–45.00 0.3846 0.3496 0.3092 0.2635 0.2124 0.1559
–50.00 0.3335 0.2985 0.2581 0.2124 0.1612 0.1047
–55.00 0.2769 0.2420 0.2016 0.1559 0.1047 0.0482
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Proposed method can be applied to calculate the copper melt movement
during bottling from converters, from anode ovens, as well as in a continuous
casting and rolling line in the copper wire rod production. It is noteworthy that
this temperature is close to optimum temperature for pouring copper at the Joint
Venture “Kazkat” in Zhezkazgan.

Thus, the theoretical determined optimum flow temperature of copper melt is
consistent with the practical one, being in the optimum 1423–1558 [K] interval,
which is close to the temperatures of real melt flow in industrial conditions.

5. Conclusion

The paper presents well converging numerical schemes, using the attempts
made to regularize initial systems of differential equations of an incompressible
liquid. Lack of the time derivative from the pressure function in the initial system
makes it non-evolutionary. This fact was considered as the main one and the
regularization ways were proposed to eliminate this “defect”. There were built
various ρN,ε → ρε-approximations, with a small parameter, introduced into the
equation and the time derivative from pressurewith a series of terms of the desired
functions. However, these approaches proved to be effective only for theoretical
justification of the difference schemes convergence. Since the numerical solutions
are approximate, it is necessary to substantiate the influence of terms introduced
during regularization, which is sometimes difficult. In the paper the authors used
Rothe method to construct a difference melt model.

The study of convergence velocity of approximating problem related to the
solutions of the original hydrodynamics problem allowed to develop an algorithm
for numerical integration of hydrodynamics equations, which allows predicting
the technological parameters of metal melts pouring. The validity and reliabil-
ity of theoretical studies have been confirmed by comparing the results with
the parameters of the flow of copper melt in the technological equipment of
Southwier-2000 line. The distribution of melt flow velocities in technological
equipment has been constructed on the basis of numerical experiments. The the-
oretically determined optimum flow temperature of copper melt is consistent with
the practical one, being in the optimum 1423–1558 [K] interval, which is close
to the temperatures of real melt flow in industrial conditions.
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