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Evacuation by leader-follower model with bounded
confidence and predictive mechanisms

Ricardo ALMEIDA, Ewa GIREJKO, Luís MACHADO,
Agnieszka B. MALINOWSKA and Natália MARTINS

This paper studies an evacuation problem described by a leader-follower model with
bounded confidence under predictive mechanisms. We design a control strategy in such a way
that agents are guided by a leader, which follows the evacuation path. The proposed evacuation
algorithm is based on Model Predictive Control (MPC) that uses the current and the past in-
formation of the system to predict future agents’ behaviors. It can be observed that, with MPC
method, the leader-following consensus is obtained faster in comparison to the conventional
optimal control technique. The effectiveness of the developed MPC evacuation algorithm with
respect to different parameters and different time domains is illustrated by numerical examples.
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1. Introduction

In recent years, emergency evacuation problem has attracted a lot of attention,
ranging from social sciences to the computer implementation of modeling and
simulation. Researchers from different disciplines have proposed models and de-
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signed evacuation policies by using different tools and methods. Generally, there
are two different approaches in the mathematical modeling of human behaviors
in an emergency situation. The first is macroscopic and uses the density of nodes
in continuous flows [9, 14, 15]. Thus, it could be applied only for large crowds,
and it is based on the assumption that all humans behave in the same way. The
second approach is microscopic and treats individuals in the group as separate
objects interacting with each other. Cellular automaton model [2, 25], Helbing’s
social force model [12, 21], and the multi-agent based model [16, 24] belong to
the microscopic approach. In this paper, we use the most popular mathemati-
cal model in opinion formation of multi-agent systems, the Hegselmann–Krause
(HK) model [11]. In this model, we fix a range of confidence C > 0 and for
each agent we have a confidence interval ] − C,C[. Then, each agent interacts
only with those agents whose opinions belong to his confidence interval, that
is, with a group of trusted agents (individuals). The dynamics of the system is
governed by local interactions between agents and the idea is to repeat averaging
under bounded confidence. In the classical setting, the opinion formation pro-
cesses with bounded confidence are modeled by a nonlinear discrete-time [6] or
a continuous-time [7] systems. However, in real-life, interactions between agents
can occur at any time, that is, the step size between every two consecutive mo-
ments of interactions does not have to be identical. An excellent tool that allows
us to model opinion processes with these types of interactions is the theory of
time scales. Time scales, introduced in 1988 by S. Hilger and B. Aulbach [4],
are generalized time domains. The bulk of systems theory to date rests on two
time scales R and Z, which allow to consider continuous-time or discrete-time
models. However, real-life problems demand more sophisticated tools to be mod-
eled such as hybrid systems, continuous systems with impulse control, sampled
data, or quantization. These kinds of systems give rise to mathematical rep-
resentation of a system evolving on general time scales. In [3] and [10], the
HK model on isolated time scales was considered and it was shown that there
are many important aspects and properties of this model that depend on the
step size between every two consecutive moments of interactions. In [3], the
HK model with predictive mechanisms was also analyzed on hybrid time do-
mains.

Planning for emergency evacuation has attracted much attention owing to
the potential of losses in terms of human lives and properties during a disas-
ter [1, 5]. Few people can think clearly and logically in a crisis, so it is rea-
sonable and more efficient in practice to introduce a rescue agent that people
may follow [20]. In this paper, we design an evacuation politics based on the
HK model with a leader and control. The leader has the ability to influence
an agent that is in his bounded confidence region (it means close enough).
The dynamics of the leader is not influenced by the other agents and it is as-
sumed that the leader knows the evacuation path a priori. We use the "non-
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invasive" control strategy in the sense that we apply control only to the leader.
It means that the control can be easily implemented as soon as the leader is
available. In the objective functional, agents’ distance to the leader, the leader
distance to the evacuation path, and the rescuing cost (the control) are min-
imized. By choosing appropriate weights in the functional, one can decide
about the importance of particular terms that are minimized. The important
point to notice here is that due to considering the problem in the context of
time scales, we cover situations when an exchange of information between
agents may occur continuously or from time to time with different frequen-
cies.

Model Predictive Control (MPC) is an advanced and well-recognized control
method in the process industries [17–19]. It is a receding horizon control concept
with feedback update. More precisely,MPC is formulated as the repeated solution
of a finite horizon open-loop optimal control problem at each sampling instant.
Since the initial state of the system is updated during each sampling period, a new
optimization problem is solved at each sampling interval. In this way, the process
captures the natural dynamics of the system and can provide early warnings of
potential problems. MPC method was also applied to the consensus problem in
multi-agent systems [22,23] and in the HKmodel [3]. It was observed that adding
a predictive mechanism to the routine consensus protocol increases the speed of
consensus convergence. Moreover, the MPC routine has the ability to steer the
system to attain consensus even in situations where consensus cannot be reached
via the routine protocol. Since in natural bio-groups, individuals generally possess
some level of predictive computing capabilities that they use for updating their
state, the MPC seems to be an efficient method to design an evacuation strategy.
Henceforth, the evacuation procedure that we propose in this paper is based on
the MPC. In this way, leader and agents can estimate their future states several
steps ahead by taking into account the current and a few past states, and then
make a decision on the next actions.

The main contribution of this paper, beyond the novelty of the problem for-
mulation in the general context of time scales, lies in the application of the MPC
method to a leader-follower model with bounded confidence and "non-invasive"
control. This sounds to be a more realistic strategy in real-life emergency situ-
ations. To the best of authors’ knowledge, the mathematical approach proposed
here is new in the literature.

The remainder of this paper is organized as follows. In Section 2, we re-
call the HK model of agents’ dynamics and some basic definitions from the
calculus on time scales that are needed in the sequel. In Section 3, we define
the HK model with a leader and control on an arbitrary time scale. Necessary
and sufficient optimality conditions for the considered optimal control problem
are proven. Section 4 describes our original evacuation algorithm with predic-
tive mechanisms. The MPC scheme is used to agent-based model with bounded
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confidence and in each sampling interval the optimal control strategy for the
leader is designed so that agents are guided by him/her and the leader is close
to the evacuation path. We analyze the proposed evacuation algorithm with re-
spect to different parameters and with respect to different time scales throughout
numerical examples. Section 5 concludes the paper.

2. Preliminaries

We start with some notations and facts from the calculus on time scales.
A time scale, denoted by T, is a nonempty closed subset of R. Since a time scale
may not be connected, we need the concept of the backward and forward jump
operators ρ, σ : T→ T that are defined as

ρ(t) = sup{s ∈ T : s < t} for t , inf T and ρ(inf T) = inf T

and

σ(t) = inf{s ∈ T : s > t} for t , supT and σ(supT) = supT,

respectively. We call a point t ∈ T right-dense, right-scattered, left-dense and
left-scattered if σ(t) = t, σ(t) > t, ρ(t) = t, and ρ(t) < t, respectively. In the
context of this paper, an important notion is the graininess function.

Definition 1 [8] The graininess function µ : T → [0,∞) is defined by µ(t) =
σ(t) − t.

In the continuous-time case, when T = R, we have that for all t ∈ R : σ(t) = t
and µ(t) = 0. In the discrete-time case, for each t ∈ T = hZ, h > 0: σ(t) = t+ h,
µ(t) = h. Therefore, the graininess is analogous to the step size h. However, the
forward jump operator and graininess concepts apply just readily to any closed
subset of the real line, e.g., for T = {qn : n ∈ N0} with q > 1, we have σ(t) = qt
and µ(t) = (q − 1)t.

Let a, b ∈ T and a < b. Then, we define the interval [a, b]T in T as follows
[a, b]T = {t ∈ T : a ¬ t ¬ b}. If supT is finite and left-scattered, we define
Tκ := T \ {supT}. Otherwise, Tκ := T.

We say that f is delta differentiable at t ∈ Tκ if there exists a number f ∆(t)
such that, for all ε > 0, there exists some neighborhood U of t such that

| f (σ(t)) − f (s) − f ∆(t)(σ(t) − s) | ¬ ε |σ(t) − s |,

for all s ∈ U. If f is delta differentiable at every t ∈ Tκ, then we say that f is delta

differentiable. Note that if T = hZ, then f ∆(t) =
f (t + h) − f (t)

h
, and if T = R,

then f ∆(t) is the usual derivative of f at time t.
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A function F is a delta antiderivative of f if F∆(t) = f (t), for all t ∈ Tκ. In

this case, the delta integral of f in [a, b]T is defined by
b∫

a

f (t)∆t = F (b)−F (a).

Clearly, if T = R, then the delta integral is the Riemann integral; if T = hZ, then

b∫
a

f (t)∆t =

b
h−1∑
k= a

h

h f (kh).

Finally, a function f : T → R is called rd-continuous if it is continuous at
all right-dense points and its left-sided limits exist and are finite at all left-dense
points.

For a more comprehensive introduction to the theory of time scales, we refer
the readers to [8].

Now, we discuss the Hegselmann–Krause model [6, 7, 11], where N agents
interact in time. We use 1, 2, . . . , N to label the agents. At each time t, each agent i
has a certain state xi (t) ∈ R. In the case when time domain is R, and we consider
the continuous-time Hegselmann–Krause model, the state of agent i evolves in
time according to the following differential equation:

ẋi (t) =
1∑

j:|x j (t)−xi (t) |<1
1

∑
j:|x j (t)−xi (t) |<1

(
x j (t) − xi (t)

)
, i = 1, . . . , N . (1)

It means that agents’ states can change in time subject to the interactions between
neighboring agents. Two agents are neighbors at time t only if the difference of
their states at time t is below the threshold C (i.e. the bound of the confidence),
that here equals 1. Defining

ai j (t) =




1∑
l:|xl (t)−xi (t) |<1

1
if |x j (t) − xi (t) | < 1,

0 if |x j (t) − xi (t) |  1,

(2)

one can rewrite Equation (1) in a concise way:

ẋi (t) =
N∑

j=1
ai j (t)(x j (t) − xi (t)), i = 1, . . . , N .

In the case when time domain is Z, and we consider the discrete-time
Hegselmann–Krause model, the state of agent i evolves in time according to
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the following difference equation:

xi (t + 1) =
1∑

j:|x j (t)−xi (t) |<1
1

∑
j:|x j (t)−xi (t) |<1

x j (t), i = 1, . . . , N .

In other words, it is a series of discrete-time steps and at each step, an agent
updates its state by adding the average of its neighbors’ states and its own state.

The time scale theory allows us to consider the Hegselmann–Krause model
on the arbitrary time domain T. To this end, we use the notion of delta derivative
and obtain the following dynamic equation:

x∆i (t) =
N∑

j=1
ai j (t)(x j (t) − xi (t)), i = 1, . . . , N,

that describes a time evolution of the agent i state.

3. Optimal control problem

Let T be a time scale with t0,T ∈ T and such that ρ(T ) > t0. We fix a
rescue trajectory g : [t0,T]T → R and assume g to be piecewise rd-continuously
delta differentiable. In this section, we focus on the optimal control problem that
consists in finding a solution to the system involving N interacting agents (labeled
from 1 to N) with one leader (labeled by 0) as follows

x∆0 (t) = g∆(t) + u(t),

x∆i (t) =
N∑

j=1
ai j (t0)(x j (t) − xi (t)) + bi (t0)

(
x0(t) − xi (t)

)
,

(3)

for t ∈ [t0, ρ(T )]T, i = 1, . . . , N and xi (t0) = xi
0, i = 0, . . . , N, that minimizes the

functional

J (x, u) =
1
2

T∫
t0

*.
,
αu2(t) + β

(
x0(t) − g(t)

)2
+ γ

N∑
j=1

(x j (t) − x0(t))2+/
-
∆t, (4)

where coefficients ai j (t0) are given by (2), parameters α, β, γ > 0 are fixed, and

bi (t) :=



1 if |x0(t) − xi (t) | < 1,
0 if |x0(t) − xi (t) |  1.

(5)
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Note that, if bi (t0) = 1, then there is information flow from the leader to agent i
at time t0, and thus the leader is capable to influence agent’s state, xi.

We assume that function x : [t0,T]T → RN+1, where x = [x0 x1 · · · xN ]T , is
piecewise rd-continuously delta differentiable and function u : [t0, ρ(T )]T → R
piecewise rd-continuous. A pair (x, u) is said to be feasible if it satisfies (3).

Definition 2 A feasible pair (x, u) is a weak local minimizer for problem (3)–
(4), if there exists ε > 0, such that for any feasible (x, u) with ‖x − x‖C <
ε and ‖u − u‖Cprd

< ε, we have J (x, u) ¬ J (x, u), where ‖u‖Cprd
:=

sup
t∈[t0,ρ(T )]T

|u(t) | and ‖x‖C := maxt∈[t0,T]T | |x(t) | |.

System (3) can be written in the matrix form

x∆(t) = M x(t) +
(
g∆(t) + u(t)

)
S, (6)

where

M =



0 0 0 · · · 0

b1(t0) −b1(t0)−
N∑

j=2
a1 j (t0) a12(t0) · · · a1N (t0)

. . .

bN (t0) aN1(t0) aN2(t0) · · · −bN (t0) −
N−1∑
j=1

aN j (t0)



,

S =
[
1 0 · · · 0

]T
.

(7)

Theorem 1 Assume that I + µ(t)M is nonsingular for all t ∈ [t0, ρ(T )]T. A pair
(x, u) is a weak local minimizer for problem (3)–(4) if and only if there exists
a unique piecewise rd-continuously delta differentiable function q : [t0,T]T →
RN+1, where q = [q0 q1 · · · qN ]T , such that the triplet (q, x, u) satisfies the
following conditions:

1) the adjoint equations: for all t ∈ [t0, ρ(T )]T

− q∆(t) = MT qσ (t) + Cx(t) − βg(t)S; (8)

2) the stationary condition: ST qσ (t) = −αu(t), for all t ∈ [t0, ρ(T )]T;

3) the transversality condition: q(T ) = 0,
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where

C =



Nγ + β −γ −γ · · · −γ
−γ γ 0 · · · 0

. . .
−γ 0 0 · · · γ



. (9)

Proof. Since I + µ(t)M is nonsingular for all t ∈ [t0, ρ(T )]T, using the Weak
Maximum Principle on time scales (cf. Theorem 9.4 in [13]), one concludes that
the adjoint equation is

−q∆(t) = MT qσ (t) +



β(x0(t) − g(t)) − γ
N∑

j=1

(
x j (t) − x0(t)

)
γ
(
x1(t) − x0(t)

)
...

γ
(
xN (t) − x0(t)

)



,

for all t ∈ [t0, ρ(T )]T. Using matrices S and C defined in (7) and (9), respectively,
one gets Eq. (8). The stationary and the transversality conditions follow straight-
forward. To prove that conditions 1)–3) are also sufficient, define the Hamiltonian
associated to problem (3)–(4) as follows

H (q, x, u, t) = L(x, u, t) +
(
qσ

)T
(
M x + (g∆ + u)S

)
,

where L(x, u, t) =
1
2

*.
,
αu2(t) + β(x0(t) − g(t))2 + γ

N∑
j=1

(x j (t) − x0(t))2+/
-
. Then

we may write conditions 1)–2) as
∂L
∂x

(x, u, t) = −q∆(t) − MT qσ (t),

∂L
∂u

(x, u, t) = −ST qσ (t).

Since function L is convex with respect to x and u, for any feasible solution ( x̄, ū),
one has

J ( x̄, ū) −J (x, u) 

T∫
t0

(
∂L
∂x

(x, u, t)
)T

( x̄(t) − x(t)) +
(
∂L
∂u

(x, u, t)
)T

(ū(t) − u(t))∆t

= −

T∫
t0

(q∆(t) + MT qσ (t))T ( x̄(t) − x(t))∆t −

T∫
t0

(
ST qσ (t)

)T
(ū(t) − u(t))∆t.
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Using integration by parts on time scales [8]:

b∫
a

f (t)p∆(t)∆t = ( f p)(t)���
t=b

t=a
−

b∫
a

f ∆(t)pσ (t)∆t,

and the transversality condition q(T ) = 0, one gets

J ( x̄, ū)−J (x, u) 

T∫
t0

(
qσ (t)

)T
(
x̄∆(t) − x∆(t)

)
∆t −

T∫
t0

(
qσ (t)

)T M
(
x̄(t) − x(t)

)
∆t

−

T∫
t0

(
ST qσ (t)

)T
(ū(t) − u(t))∆t.

Applying Eq. (6), one can conclude that

J ( x̄, ū) − J (x, u) 

T∫
t0

(
qσ (t)

)T (
M x̄(t) + ū(t)S − M x(t) − u(t)S

)
∆t

−

T∫
t0

(
qσ (t)

)T M
(
x̄(t) − x(t)

)
∆t −

T∫
t0

(
qσ (t)

)T S(ū(t) − u(t))∆t = 0,

and the proof is complete. 2

4. Evacuation algorithm with predictive mechanisms

In this section, we propose a control strategy for evacuation based on theMPC
scheme. Consider the following bounded confidence model with control

x∆0 (t) = g∆(t) + u(t),

x∆i (t) =
N∑

j=1
ai j (t)

(
x j (t) − xi (t)

)
+ bi (t)

(
x0(t) − xi (t)

)
,

(10)

where xi (t0) = xi
0, i = 0, . . . , N , coefficients ai j (t) and bi (t) are given by (2) and

(5), respectively.
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Evacuation algorithm with predictive mechanisms consists of the follow-
ing four steps:
Step 1. Let xi (t0) = xi

0, i = 0, . . . , N . Choose a sequence of sampling instants
{ti}i∈N, where ti ∈ T, r  2 and positive parameters α, β, γ. Set k = 0.
Step 2. Compute A = [ai j] and bi, where

ai j =




1∑
l : |xl (tk )−xi (tk ) |<1

1
if |x j (tk ) − xi (tk ) | < 1,

0 if |x j (tk ) − xi (tk ) |  1

and

bi =



1 if |x j (tk ) − x0(tk ) | < 1,
0 if |x j (tk ) − x0(tk ) |  1.

Step 3. If I + µ(t)M is nonsingular for all t ∈ [tk, ρ(tk+r )]T, then compute a
control u that minimizes the functional

J (x, u) =
1
2

tk+r∫
tk

*.
,
αu2(t) + β

(
x0(t) − g(t)

)2
+ γ

N∑
j=1

(
x j (t) − x0(t)

)2+/
-
∆t (11)

subject to

x∆0 (t) = g∆(t) + u(t),

x∆i (t) =
N∑

j=1
ai j

(
x j (t) − xi (t)

)
+ bi

(
x0(t) − xi (t)

)
,

(12)

for i = 1, . . . , N , t ∈ [tk, ρ(tk+r )]T and xi (tk ) = xi
k, i = 0, . . . , N . Otherwise, put

u(t) = 0 for all t ∈ [tk, ρ(tk+r )]T.
Step 4. Apply the control u to system (12) and let it evolve in the interval
[tk, tk+1]T. Put xk+1 := x(tk+1). Replace k by k + 1 and go to Step 2.

Let us observe that in the proposed evacuation algorithm with predictive
mechanisms:
1) the control is obtained by repeatedly solving open loop optimal control

problems in each sampling interval, every time using the current system
state at time tk , i.e., xi (tk ), i = 0, ..., N , as the initial condition;

2) according to Step 2, matrix A and coefficients bi are updated at each sam-
pling instant, it means that agents’ behavior can change in time subject to
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currently available state information of neighboring agents and the leader,
as well as subject to the prediction of their future states;

3) the sampling time can vary;
4) the integer r defines the prediction horizon;
5) optimal control problem (11)–(12) can be solved using the necessary and

sufficient optimality conditions given in Theorem 1;
6) the first term of functional (11) penalizes the control, the second penalizes

the distance between the state of the leader and the known evacuation path,
and the third penalizes the state difference between the leader and each
agent.

In the following, we report numerical analysis of the proposed evacuation algo-
rithm on particular time scales with different parameters in the objective func-
tional and the prediction horizon showing its feasibility and efficacy. In all exam-
ples, we consider the systemwith one leader and 25 agents. The state of the leader
x0 is plotted in black, states of agents in different colors. In all simulations, the
initial condition for the leader is x0(0) = 1 and the initial conditions for agents
are chosen randomly from the interval [0, 5]. The rescue path is given by the
function g(t) ≡ 1.
Case 1. The analysis with respect to the prediction horizon.
Figure 1 illustrates the situation on the time scale T = 0.1N0. In Fig. 1, we
consider functional (4) with α = β = γ = 1. Plots (a)–(c) show the states
of agents and the leader resulting from the evacuation algorithm with different
prediction horizons r = 3, r = 40, r = 80, respectively. We remark that in
Fig. 1c, predictive mechanism is not used and one can observe that it takes more
time for the system to reach a consensus. It means that with MPC method the
leader-following consensus is obtained faster in comparison to the conventional
optimal control technique.

(a) r = 3 (b) r = 40 (c) r = 80

Figure 1: Time evolution of the leader and agents’ states on T = 0.1N0 and with different
prediction horizons
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Case 2. The analysis with respect to different parameters in the objective func-
tional.
Figure 2 illustrates the evolution of the system on T = 0.1N0 for different values
of parameters α, β, γ, and the same prediction horizon r = 3. The difference
between Fig. 1a and Fig. 2 is the value of the parameters. As it can be observed,
the increase of the control cost causes that the leader cannot move so freely and
therefore it is more difficult and it takes longer to guide the agents to the rescue
path (α = 10, Fig. 2a). When comparing Fig. 2b with Fig. 2c, one can observe
that it is not enough to penalize the distance between the leader and the rescue
path in order to evacuate all the agents through the rescue path (β = 10, γ = 1,

(a) α = 10, β = γ = 1 (b) α = 0.1, β = 10, γ = 1

(c) α = 0.1, β = γ = 10 (d) α = 0.1, β = γ = 10

Figure 2: Time evolution of the leader and agents’ states on T = 0.1N0 and with different
weights in the functional.
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Fig. 2b). To succeed with this emergency evacuation, one should also penalize
the distance between the leader and agents (β = γ = 10, Fig. 2c). In Fig. 2d,
with a longer range of time, it is visible that the leader is capable to guide all the
agents through the rescue path as desired.

Case 3. The analysis with respect to different time scales.
Figure 3 illustrates the evolution of the system on different time scales with pa-
rameters r = 3, α = 0.1 and β = γ = 10. In plots (a)–(b), the time scales are
T1 = 0.5N0 and T2 = 2N0, respectively, while in plot (c) is the non-homogeneous
time scale T3 = {0, 0.1, 0.2, . . . , 0.9} ∪ {1, 2, . . . , 6} ∪ {6.1, 6.2, . . . , 6.4} ∪
{6.5, 8.5, . . . , 16.5} ∪ {16.6, 16.7, . . . , 16.9} ∪ {17, 19, . . . , 27} ∪ · · · . Finally, in
plots (d)–(e), we analyze the system on hybrid time scales (T4 and T5) that are
unions of a sequence of disjoint closed intervals and discrete sets of points (with
graininess h = 0.9 and h = 2, respectively). As might be expected, the increase
of the frequency of interactions between agents on a given time interval causes
the leader to follow the given path and his ability to gather all the agents to
follow him. Concluding, our simulations show the importance of the frequency
of information exchange between individuals for the efficiency of the proposed
evacuation algorithm.

(a) T1 = 0.5N0 (b) T2 = 2N0 (c) T3

(d) T4 (e) T5

Figure 3: Time evolution of the leader and agents’ states on different time scales



642 R. ALMEIDA, E. GIREJKO, L. MACHADO, A.B. MALINOWSKA, N. MARTINS

5. Conclusions

We investigated the evacuation problem in a group of interacting agents with
one leader under predictive mechanisms. The considered model was a bounded
confidencemulti-agent one, due to the fact that agents exchanged information only
with those individuals that were neighbors. The key advantage of the proposed
MPC evacuation algorithm lay in the fact that the behavior of each agent was not
only based on the current behavior of the neighboring agents inside the group
but also based on their predicted future behaviors. The proposed algorithm was
analyzed with respect to different parameters, as well as various time domains,
through numerical simulations.
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