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Abstract: In the research it has been assumed that an observation corresponds to a measured 
height difference of a levelling section while a pseudo-observation corresponds to a sum 
of observations for consecutive levelling sections which make up a levelling line. Relations 
between observations and pseudo-observations are shown. It has also been assumed that 
observations are not correlated. 

The study compares Helmert - Pranis-Praniewicz. algorithm of parametric. multi-group 
(parallel) least squares adjustment of observations with the algorithm of rwo-stage least 
squares adjustment of levelling network. The two-stage adjustment consists of least squares 
adjustment of pseudo-observations and then the adjustment of observations, which is carried 
out separately for each levelling line. 

It was shown that normal equations concerning heights of nodal points, created on the 
basis of pseudo-observations, are identical to the reduced normal equations formed on the 
basis of observations in multi-group adjustment. So, adjusted heights of nodal points and 
their variance-covariance matrix are the same in the case of adjustment of observations and 
in the case of adjustment of pseudo-observations. 

Following a brief presentation of known algorithm of height computation for interme 
diate benchmarks of levelling lines there is shown the proof that the value of a square root 
of the a posteriori variance of unit weight 1110, known also as mean square error of a typical 
observation/pseudo-observation, is the same in the case of adjustment of observations and 
in the case of adjustment of pseudo-observations. 

The conclusion states that the results of two-stage adjustment and rigorous least squares 
adjustment of observations are identical. 

Keywords: Levelling network, Helmert - Pranis-Praniewicz algorithm, pseudo-observa 
tions, least squares adjustment 

1. Introduction 

The structure of a levelling network is simple. The network consists of levelling lines 
which converge in nodal points (junction points), and each levelling line consists of le 
velling sections which connect the adjacent benchmarks of the line. lt has been assumed 
that the result of measurement of the height difference of a given levelling section con- 
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stitutes an observation. In this study there is also used the term "pseudo-observation"
which means measured height difference of a levelling line.

By performing the rigorous (least squares) adjustment of observations carried out
at all levelling sections, the adjusted heights of all benchmarks can be computed. lf the
parametric method of adjustment is applied, the heights of all determined benchmarks
of the network will be used as parameters.

In the I '1 order precise levelling network in Poland there are over 16 OOO bench
marks including 245 nodal points. ln the United European Levelling Network UELN
95/98 (EUREF Report, 2007) there is more than 3 600 nodal points and the number
of all benchmarks reaches about I 00 OOO.

ln order to avoid serious numerical problems that may arise in the process of
simultaneous determination of such large number of unknown parameters, a two-stage
adjustment method can be applied. The two-stage adjustment method consists of
• the adjustment of pseudo-observations (summed height differences of levelling sec

tions within levelling lines), which results in adjusted heights of all nodal points,
• the adjustment of observations at levelling lines based on adjusted heights of nodal

points.
An algorithm for the two-stage adjustment method is known from literature (e.g.

Vanicek and Krakiwsky, 1982; Baran and Gajderowicz, 1993). In both publications the
formulae related to the second stage of adjustment were developed under the assumption
that observations are not correlated.

The important assumption used in the study was that observations of neighbouring
sections are not correlated. The existence of such correlation has, however, been proven
(Remrner, 1975; Lucht, 1972, 1983). In the algorithm of levelling network adjustment
with the use of a priori covariance matrix of observations (Vanicek and Krakiwsky,
1982) one possible family of exponential covariance functions (e.g. Lucht, 1972) has
been postulated. Unfortunately, the following sentence of (Vanicek and Krakiwsky,
1982) is still valid: "Research is needed into finding the best kind of covariance func
tion for a given region". There are two problems there. The first - how to divide
the network into regions taking into consideration conditions such as slope of lines,
atmospheric parameters, vegetation etc, and the second - how to select proper family
of covariance functions and then how to determine parameters of those functions.
Different assumptions/solutions of the above problems lead to different results of ad
justment. That is why, looking for unambiguous solution, practical adjustments are
usually carried out under the assumption that observations are not correlated.

The two-stage adjustment algorithm for uncorrelated observations was applied in
the adjustment of many national levelling networks, e.g. the 1st order precise levelling
network in Poland (Gajderowicz, 2005), the levelling network covering Lithuania and
neighbouring countries (Parśeliunas et al., 2000), as well as in the adjustment of the
UELN 95/98 (EUREF Report, 2007). Commonly the second stage of the two-stage
adjustment was not even mentioned in publications; it is obvious, however, that com
putation of heights of all benchmarks is a goal of a network adjustment.
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Two stages of the solution, creating and using pseudo-observations, and a simple 
method of observation adjustment on levelling lines, may raise suspicions that the 
two-stage method is not equivalent to the rigorous least squares adjustment of all 
the observations 111 a network. The study aims at showing that the two-stage method 
of adjustment of a levelling network is fully equivalent to the rigorous least squares 
adjustment of all the observations. Comparison of the algorithm of two-stage adjust 
ment method with Helmert - Pranis-Praniewicz algorithm of least squares, parametric, 
multi-group (parallel) adjustment of all observations carried out in a network is an 
important part of this study. 

There may also be mentioned another algorithm for levelling network adjustment 
(Bel uch, 1991) which is similar to Helmert - Pranis-Praniewicz algorithm with simpli 
fications due to specific structure of levelling networks. That algorithm was not applied 
in the study. 

2. Relations between observations and pseudo-observations 

An observation dh, is the result of measurement of i-th levelling section height dif 
ference (between two consecutive benchmarks). The variance a-; of dh, is expressed 
as 

(I) 

where CT6 is a unit variance (the variance of a measurement of a levelling section of 
I km length), and R1 is the length of i-th levelling section, expressed in km. 

The weight p1 of observed i-th levelling section can be calculated from the formula 

C 
P1 = -1 

CT~ 
I 

(2) 

where C is any positive constant. With C = CT6, one obtains 
~ ero 

P, = -1- = - 
cr0R, R, 

The observation equation for the i-th observation has the following form 

dhi+ v, = (H~, .. , + dH8,.,) - (Ht,+ dHs,.J 

(3) 

(4) 

where Ht,, Ht, are approximate heights of the starting point (Bs) and the end-point 
(Be) of the i-th section, and cl HB,,, cl H e., are the corrections to the approx i mate heights 
(parameters to be determined). Denoting 

I, = -H~., + Ht, - dh, (5) 
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the observation equation (4) can be written as 

v; = -dH8,_; + dH13, . .; + I; (6) 

Now let us consider pseudo-observations h. The following relationship is valid for 
the J K line connecting the nodal points J and K 

IIJK 

h1K = Idh; 
i=I 

(7) 

where n1 K is the number of levelling sections in the line J K. 
Usually, in practice of processing levelling data, it is assumed that observations are 

not correlated; thus the variance of a pseudo-observation can be expressed as follows 

=i: = Iu; = CT6 IR;= CT6DJK 
i=I i=I 

where D 1 K is the sum of section lengths in J K line, i.e. the length of the J K line. 
The weight P 1 K of a pseudo-observation 

C C CT6 I 
P1K = -?- = -?-- = -,-- = -- 

u,- u0-D1K u0-D1K D1K 
IJK 

(8) 

(9) 

is related to the weights p; of observations as follows 

I IIJK IIJK I 
- =D1K = IR;= I- 
PJK i=I i=I p; 

The observation equation for a pseudo-observation h1 K results from the relationship 

(10) 

(11) 

Therefore 

( 12) 

where HJ, Hi are approximate heights, and dH1, dHK are the corrections to the 
approximate heights of nodal points J and K, respectively, and 

( 13) 

3. Multi-group adjustment of observations 

All observations dh in the network should be adjusted using the least squares method. 
Let us apply Helmert - Pranis-Praniewicz's method, which is multi-group, parallel, 
parametric adjustment (e.g. Wolf, 1975; Baran, l 983) 
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A levelling network can easily be divided into groups. Let each levelling line of 
a network constitutes a separate group. Heights of all points of a given levelling line, 
except for the nodal points, will be considered the internal unknowns of the group. 
while the heights of the nodal points - the external unknowns. 

Thanks to such a natural division of the network into groups 
• the groups are linked with external unknowns (heights of the nodal points), 
• each observation belongs to one spec i fie group, 
• there is no such observation in the network which would link internal unknowns 

belonging to two groups. 
For each group (levelling line) the following processing actions should be per 

formed: 
• forming the observation equations (calculating the elements of the design matrix), 
• forming the normal equations, 
• reducing such normal equations to 2 equations which bind two external unknowns 

of the group. 
Those actions can be demonstrated, taking as an example the levelling line (the 

)-th group) which connects the nodal points J and K, and which has two intermediate 
points I and 2 (Fig. I). 

hJ1 h12 h2K 

VJ1 \l 12 \i2K 

□ I), o I), o I), □
J 1 2 K 

Ho Ho Ho Ho J 1 2 K 

dHJ dH1 dH2 dHK 

Fig. I. The levelling line J K 

The internal unknowns of the group will make up the matrix X1 , whereas the '-' 111t 

external ones - the matrix X~,1 

( 14) 

- [ dH1 l x., = 
dHK 

The observation equations for the )-th group will have the following form 

V1 - A1 x1 A1 x1 Jl - int int + ext ext + 

( 15) 

( 16) 
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where 

V.i I 
V'= VJ 2 

V2J<: 

111 Hf - HJ - h11 
,1 = / I 2 = H0 - H0 - h11 2 I - 

l2K H0 - H0 - h i« K 2 - 

o 
A1 = -I 

1171 

o -I 

( 17) 

( 18) 

( 19) 

-I o 
A' - o o CX[ - 

o 
(20) 

while the weight matrix pl will be 

pi= dia g [ l/D11 l/D12 I/D2K ] (21) 

It is obvious that the external unknowns of the j-th group, found in X~,1, belong 
to the column vector Xexi of all the external unknowns of the network. 

The normal equations for the j-th group will have the following form 

01 . 01 ][ x1 l + [ L1 l = o InL!nl int.ext mt In[ (22) 
01 . 01 x~X[ L~X[ t'.Xt.111t ext.ext 

where 

. ( . )T . . 01 . = A1 P1A1 
im.mt 1111 int 

(23) 

. ( . )T . . 01 = A1 P' A' uu.ext 1111 ext (24) 

. ( . )T 01 = 0' ext. int int.ext (25) 

0~xl.exl = (A~,1)
1 
pJA~xl (26) 

U = (A1 )T P111 
int int (27) 
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T 
Li _ (Al ) piti 

CXI ext (28) 

Having eliminated the internal unknowns Xi I one obtains the reduced normal 
'-' Ill 

equations for the j-th group in the following form 

(29) 

where 

. . . ( . )-1 . B1 = • 1 - 01 . 01 . 01 
ext 0ext.ext ext, int 111t.111t mt.ext 

. . . ( . )-1 
J = L1 - 01 . 01 . L1 ccxt ext ext. 1!11 int.inr 1111 

(30) 

(31) 

After calculating and reducing the normal equations for all n1 groups, a collective 
normal equations can be computed for a given network, with only external unknowns. 

[ 

li/ l ( li/ l I B~x1 x., + I c~xl = o 
J=I J=I 

(32) 

The matrices B~,t and <. were calculated from (30) and (3 l), then expanded and 
completed with zeros so that they corresponded to the vector of all external unknowns 
Xext· 

After computation of the unknowns Xext using (32), one can compute, separately 
for each group, the unknowns X(

11
t solving (22), and then the corrections yl using (16). 

In the case of the levelling line shown in Figure 1, the matrices found in normal 
equations (22), computed according to (23)-(28) with the use of (19)-(21 ), have the 
following forms 

01 . = [ l/D11 + l/D12 -1/D12 
(33) 

int.mt -1/D\2 l/D12 + l/D2K 

0l - [ -l/Dll 
- l/~2K l (34) int.ext - O 

i [ l/D11 o l 0ext,ext = O l/D2K 
(35) 

u = [ l11/D11 - /12/ D12 l (36) in: ll21D12 - l2Kf D2K 

U = [ -l11/D11 l (37) 
ext li«! D2K 
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Subsequent matrices, which are necessary to get the reduced normal equations of 
the j-th group have, according to (30) and (31 ), the following forms 

(01 ' )-1 = 
mt.int 

] [D11(D12+D2K) D11+D2K 

D.11 + D12 + D2K D.11 + D2K (D.11 + D12)D2K 

B' = ] [ - li l 
ext D11 + D12 + D2K -] 

(38) 

(39) 

C~" = _D D_I __ D--[ 
. JI + 12 + 2K 

-U11 + l12 + l2K) 
+U1 I + / I 2 + l2K) 

(40) 

The formulae (39) and (40) concern the levelling line with 2 intermediate points. 
Similar formulae have been derived for lines containing I, 3 or 4 intermediate points, 
yielding the following results 

· I [ I BJ - ext - -- 
D1K -l -: l ( 41) 

c~xt = v~K [ =~~: ] 
where D1K is the sum of the lengths of all levelling sections which make up the 
levelling line, i.e. the length of the levelling line J K, and l1 K is obtained from ( 13 ). 

Deriving the formulae for B~xl' C~xt for levelling lines containing more than 3 
intermediate points is a tedious task. However, numerical experiments indicate that 
the formulae (41) and (42) are correct for each line, regardless of the number of 
intermediate points. 

Summing up the considerations which have resulted in formulae (41) and (42), the 
reduced normal equations for each group can be presented as 

(42) 

(43) 

4. Two-stage adjustment 

4.1. Adjustment of pseudo-observations 

In the levelling network divided into levelling lines, the procedure of obtaining reduced 
normal equations for a given levelling line can be much more simple than it was shown 
in the previous section. Note that for each levelling line (i.e, each group considered 
previously) there is one pseudo-observation described with (7)-(9). 
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The observation equation ( 12) for the pseudo-observation can be written as 

V.1K = I - I j I 
dH1 1 I + l.1K 
dHK 

(44) 

Hav111g taken 111to account the weight of pseudo-observation P JK = I/ D.1 K, two 
normal equations, binding the nodal points J, and Kofa given levelling line, will have 
the form 

[ 
+ I/D1K 
- I/D1K 

(45) 

Comparison of (45) with (43) leads to an important conclusion: two normal 
equations, obtained directly from the observation equation for a given pseudo 
observation, are identical IO the reduced normal equations, obtained in the process of 
elaboration of the given levelling line with the multi-group method. 

The a priori covariance matrix for all pseudo-observations in a levelling network, 
is a diagonal matrix as those pseudo-observations are not correlated. Therefore, the 
normal equations can sequentially be processed for the whole network. For each con 
secutive pseudo-observation, partial normal equations are formed according to ( 45); 
elements of those equations are then added to the appropriate elements in collective 
normal equations (for the whole network). 

After applying all the observation equations for pseudo-observations, collective 
normal equations will be obtained, binding all heights of the levelling network's nodal 
points. Such collective normal equations are identical to the normal equations (32), 
obtained with the use of the multi-group method. Therefore, the adjusted heights of 
nodal points and their variance-covariance matrix (see also the Section 4.3 concerning 
mo) are the same, regardless of whether adjustment of observations or adjustment of 
pseudo-observations is performed. 

4.2. Heights of intermediate benchmarks 

The adjustment of pseudo-observations provides the adjusted heights of the nodal points 
as well as corrections to pseudo-observations. The adjusted heights of intermediate 
benchmarks on the levelling lines can now be calculated. 

For each levelling line, there is one condition equation of the form 

(46) 

where v; is the correction for the i-th observation (dh;), and V1K is the correction for 
the pseudo-observation (h 1 K ). 

The right-hand side of (46) is known. According to the definition of pseudo 
observation (7) h1 K is equal to the sum of all (111 K) observations on a le veiling line. 
Therefore, 
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(47) 

ln the case of one condition equation, the solution ,s simple: corrections 
l 

v1, v2, ... , v11,K are inversely proportional to the weights p1 = and the sum of cor- 
R, 

rections must be equal to V1 K (Baran and Gajderowicz, 1993 ). Therefore 

R, v, = V1K-
D1K

Conclusion: corrections v to the observations carried our on the levelling line J K
have been calculated correctly, as this was done with a correctly calculated correc
tion V.1 K to pseudo-observation h1 K and with the only condition equation binding the
corrections.

Mean square errors of the adjusted heights of intermediate points of the line J K 
are calculated according to the formula (Vanicek and Krakiwsky, 1982) 

(48) 

m~ = (I - q)2QJJ + 2q(I - q)QJK + ą2QKK + q(I - q)D1Km6 (49) 

where q = D1 ,ID 1 K, and QJJ, Q1 K, QK K are the elements of the variance-covariance 
matrix, which corresponds to points J, and K. 

4.3. Mean square error mo of typical measurement 

Pseudo-observation adjustment also involves the computation of the mean square error 
1110 of a typical measurement (P = I) of a section/line (square root of the a posteriori
variance of unit weight) with the following formula: 

mo=
1 111 
- "\7 p vv6 I I l 

11 fl i= I 
(50) 

where Pis a weight of a pseudo-observation, V is a correction to the pseudo-observation, 
n1 is a number of levelling lines, and n1, is a number of redundant pseudo-observations. 

Another determination of the mean square error mo can be based on corrections v
to the observations 

mo=
I lik-;; L p,v,v,
o i=I 

(51) 

where p is a weight of an observation, v is a correction to the observation, nk is a 
number of levelling sections (number of observations), and 110 is a number of redundant 
observations. 

Let us compare the value of m0 determined with the use of (50) with the one 
determined using (5 I). For each levelling line J K 
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IIJf.. 

P1KV1K\l_lf..· = I p.v,v, 
i=I 

(52) 

what can easily be proven using (48). Therefore, in the whole network, the sum of the 
products P\/\1 is equal to the sum of the products pvv 

Jl I li~ IP; \/,V; = I fJ;\';V; 
i=I i=I 

(53) 

The number of redundant pseudo-observations n" 1s 

111, = n t - \\ · + 5 (54) 

where 111 is a number of levelling lines (number of pseudo-observations), w is a number 
of all nodes, and s is a number of nodes of known heights. 

In the case of adjustment of observations, the number of redundant observations 
no is 

110 = nk - r + s (55) 

where nk is a number of all observations, r is a number of all points, ands is a number 
of points (nodes) of known heights. 

The number of all observations is 

Ilf Ilf 

ru. = (11111 +I)+ (1111-2 +I)+ ... + (1111111 + 1) = L (n ... ;+ I)= In,11 + n, (56) 
i=I i=I 

where n\\"1, 1111.2, ...• n\\"111 are the numbers of intermediate points of consecutive levelling 
lines. 

The number of all points of the network can be computed as follows 

11, 

r = 1111"1 + 1111,2 + ... + 11,rn1 +\V= I 11,ri + W 

i=I 

(57) 

Now, applying (56) and (57), the number of redundant observations is 

[ 
"' ) [ 11, ) 110 = I 1111-i + n, - I 1111-; + w + s = n, - w + s 

1=1 1=1 

(58) 

and thus 110 = n". Considering also (53), the following statement can be formulated: 
The mean error 1110 of a rypical observation/pseudo-observation has rhe same value, 
regardless of whether its calculation is based on corrections v to the observations or 
on corrections V to the pseudo-observations. 
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5. Conclusion 

The two-stage adjustment of a levelling network, consisting of
• rigorous least squares adjustment of pseudo-observations,
• calculation of heights of intermediate points, based on the condition (46),
yields the same results which would have been obtained in the process of rigorous least
squares adjustment of observations. The two-stage adjustment of a levelling network
is a rigorous adjustment of all the observations which make up a network.
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Porównanie algorytmów wyrównania dwuetapowego 
i wyrównania wiclogrupowego sieci niwelacyjnej 
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Streszczenie 

W pracy przyjęto, że obserwacją Jest pomierzone przewyższenie odcinka niwelacyjnego, zaś pseudoobser
wacją Jest suma obserwacji wykonanych dla kolejnych odcinków tworzących linię niwelacyjną. Przyjęto
także, że obserwacje nie są wzajemnie skorelowane.

Porównano algorytm 1-lelmena - Pranis-Praniewicza parametrycznego. wielogrupowego (równole
głego) wyrównania obserwacji z algorytmem dwuetapowego wyrównania sieci niwelacyjnej. Dwuetapowe
wyrównanie składa się z wyrównania pseudoobserwacji metodą najmniejszych kwadratów i wyrównania
obserwacji. które wykonywane jest oddzielnie dla każdej linii niwelacyjnej.

Wykazano. że równania normalne dotyczące wysokości punktów węzłowych, utworzone w oparciu
o pseudoobserwacje. są identyczne ze zredukowanymi równaniami normalnymi utworzonymi w oparciu
o obserwacje w procesie wyrównania wielogrupowego. A zatem, wyrównane wysokości punktów węzło
wych i ich macierz wariancyjno-kowariancyjna są takie same w przypadku wyrównywania obserwacji
i w przypadku wyrównywania pseudoobserwacji.

W dalszej kolejności przedstawiono algorytm obliczania wysokości reperów pośrednich linii niwela
cyjnych. Wykazano, że wartość błędu średniego 1110 typowej obserwacji/pseudoobserwacji jest taka sama
w przypadku wyrównywania obserwacji i w przypadku wyrównywania pseudoobserwacji

W konkluzji stwierdzono, że wyniki wyrównania dwuetapowego i ścisłego wyrównania obserwacji
są identyczne.


