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1. INTRODUCTION
Constant advances in the field of data science lead to massive
technological progress in numerous branches of industry and
science, beating recent state-of-the-art solutions thanks to im-
proved algorithms, datasets or hardware. Deep learning tech-
nologies are certainly one of the favorites to widen scientific
discoveries in current applications and therefore enhance their
capabilities, which is already taking place [1].

Nevertheless, classical artificial intelligence (AI) techniques
such as deep neural networks (DNNs) often fail to achieve the
expected generalizability because of different reasons. In some
cases the artificial neural network (ANN) model is simply not
enough to satisfy the demanding needs of a certain task [2]
while in others the training process or its parameters are not
optimal to guarantee the best possible results [3]. Popular dif-
ficulties are encountered when providing data that is fed to the
model during training, validation and test stages. Creation of
a complete, consistent and objective dataset is not only diffi-
cult but also expensive and time consuming. Problems such as
lack of information, bias, interference or annotation errors ap-
pear very often and are challenging to overcome [4]. The so-
lution may be data augmentation [5] or different methods of
evaluation such as cross-validation [6], which in fact allow to
minimize the problems, but do not solve them completely. One
of the basic limitations of typical “black-box” models is their
clear dependence on data presented to them in the learning pro-
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cess [7]. For example, a typical ANN for a supervised prob-
lem can be only as good as the representative quality of the la-
beled data that it is fed with. This means that even if the model
achieves a good performance in terms of accuracy on the test
set, it could be still useless in real-world scenarios due to criti-
cal contradictions occurring in the given data.

It is very difficult to obtain precise information about the fac-
tors on the basis of which the neural network draws conclu-
sions in the decision-making process during its training. Typical
“black-box” models adjust the weights between their neurons,
thus minimizing the cost function to achieve the best results
on presented data. Nevertheless, frequently decisions of AI are
based on completely different factors than expected [8]. If the
results are correct beyond doubt, it may not matter, but the prob-
lem arises when the prediction of a neural network is in conflict
with basic laws of physics or logic. Explainable AI (XAI) is a
field that explores the decision process of neural network af-
ter its training [9]. It allows to apply a comprehensive set of
methods such as debugging, visualization, evaluation, testing,
explainable decisions, cohort analysis, performance and fair-
ness monitoring. Thanks to these types of techniques, we are
able to quite accurately determine on the basis of what factors
the network made decisions, and in case of some incompati-
bilities, modify the dataset and re-train the model [10]. This
approach certainly brings many benefits, but XAI cannot be in-
terpreted as any form of preventive interference to a structure
of the model that would completely eliminate physical contra-
dictions. It is rather a solution that allows to provide informa-
tion about the deduction factors, while later combating the ef-
fects of incorrect training of the model must be done indepen-
dently. Despite many advantages, such analysis is often not per-
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formed due to the lack of awareness, its complexity, and time
consumption.

The solution that eliminates or significantly reduces the de-
scribed problems already in the training process is making a
cost function of the model dependent on a scientific formula.
This approach was utilized in so called physics-guided neural
networks (PGNNs) that combine opportunities given by classi-
cal ANNs with physics-based knowledge. In this case, we are
not only able to ensure that the results presented by the network
will comply with a specific dependence (based on the given
equation), but also to prevent potential contradictions already
at the training stage. Of course, it is also possible to supple-
ment PGNN with XAI analysis, and thus close the system in a
loop, which further checks the consistency of results and leads
to further minimization of contradictions. In this case, PGNN
can be treated as a typical neural network that is a subject to
XAI methods. Differences in justification of results in case of
PGNN and XAI approach are shown in the Fig. 1.

Fig. 1. Two approaches to guarantee the scientific consistency of pre-
dictions in DNNs. (Left) Explainable AI – information from the eval-
uation phase is passed in a closed loop to analyze the results and fur-
ther improve the training. (Right) PGNN – a combination of a neural
network with scientific knowledge that allows to explain the decision

process already in the training phase

There are two types of original physics-based models that
can be distinguished: (1) scientific equations, formulas and
rules that implement relations between variables and thus allow
to describe practical scenarios in theory; (2) numerical mod-
els of complex physical systems that accurately simulate real-
world phenomenon. It is worth to outline that while abilities of
physics-based models to correctly interpret relations in scien-
tific terms are greatly beneficial, they are limited in interpre-
tation of data. Therefore, a certain compromise between neural
networks that take advantage of data processing as well as phys-
ical models that interpret scientific relations is the right direc-
tion to allow combining the power of both solutions. The dis-

tance between physics-based models and black-box neural net-
works is schematically depicted in Fig. 2. Both approaches oc-
cupy the two extreme ends of knowledge discovery, either re-
lying only on scientific knowledge (physics-based models) or
only on the data (neural networks). Their connection is pre-
sented as an intersection between both solutions placed in cen-
ter of the plot.

Fig. 2. A schematic representation of PGNNs in the context of
other knowledge discovery approaches that either use physics or data.
The X-axis measures the use of data while the Y-axis measures the use

of scientific knowledge

In this paper, we describe a fundamental concept of PGNN
and make an overview of solutions already proposed in the
domain. Furthermore, we explain the construction of physics-
based cost function and show its numerous benefits that could
be utilized in various scenarios. Moreover, there are two pri-
mary contributions of this work which introduce applications
of PGNNs to make full use of both physics and data in theoret-
ical and real-world examples using spatial analysis. To demon-
strate the effectiveness of PGNNs, we consider a Poisson’s non-
homogeneous second-order linear partial differential equation
being an important formula especially in electrostatics or fluid
dynamics. In the homogeneous case, it is likewise known as
the Laplace’s differential equation [11], which is widely used
e.g., to describe a behaviour of electric and gravitation poten-
tial as well as heat conduction. Second application explains the
effectiveness of PGNN in solving a Burger’s partial differential
equation [12] occurring in various areas of applied mathemat-
ics, such as fluid mechanics, nOnlinear acoustics, gas dynamics,
and traffic flow.

Our choice of these specific equations was motivated by sev-
eral factors. First of all, the work aims to illustrate the gen-
eral mechanisms behind PGNNs, which should be presented on
the basis of the most accessible issues possible. Although many
partial differential equations cannot be solved analytically due
to the computational complexity, their solution can be often
approximated by numerical methods. These methods are par-
ticularly efficient for low-dimensional problems. Nevertheless,
finding an appropriate discretization for a complex space can
be sometimes as demanding as solving the actual equation it-
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self. Both Poisson’s and Burger’s equations are characterized
by a relatively simple mathematical description and have been
widely studied, which makes them accessible even to a reader
who does not specialize in applied mathematics. On the other
hand, finding their approximate solution can be difficult i.e.,
when using very few data points, which makes them especially
interesting candidates for this study. Moreover, the equations
have been successfully used in many areas, therefore their ef-
fective solution has real scientific value. Thus, the presented
work could ultimately contribute to many applications not only
on the theoretical side, but also in practice.

The remainder of this paper is organized as follows. Section 2
presents the overview of research discoveries and applications
of PGNNs in numerous domains of science and industry. Sec-
tion 3 describes the general intuition behind physics-based loss
function and explains the potential of PGNNs that can be ap-
plied in various novel scenarios. Section 4 introduces a theoreti-
cal application of the framework for Poisson’s differential equa-
tion, including a tailored loss function for the problem, discus-
sion on model architecture and comparison of results between
PGNN and ANN. Section 5 presents a corresponding study on
Burger’s differential equation which might give new insights
on connection between data science and physic-based models
in practical applications. Finally, Section 6 provides a conclu-
sion and discussion about opportunities for a future work in this
domain.

2. BACKGROUND AND RELATED WORK
Intelligent methods of computations are known since the be-
ginning of the second half of the twentieth century when the
first research laboratories for this purpose were created. Al-
ready in the year 1950, Alan Turing proposed a test of ma-
chine’s ability to exhibit intelligent behaviour equivalent to, or
indistinguishable from, that of a human [13]. In 1955 the term
“Artificial Intelligence” was used for the first time with defini-
tion proposed by John McCarthy: “the science and engineering
of making intelligent machines” [14]. Since this time we ob-
serve ongoing innovations of intelligent computing in connec-
tion with various technical fields of science which become more
and more popular in modern times [15]. Taking into account the
period of AI development, it can be concluded that physically-
inspired neural networks are a relatively new concept that has
been implemented successively over the last few years. One of
the fundamental works in this domain was introduced in 2018
by A. Karpatne et al. in their paper “Physics-guided Neural Net-
works (PGNN): An Application in Lake Temperature Model-
ing” [16]. Since then, the combination of capabilities of neural
networks with scientific knowledge constantly finds its utiliza-
tion in new fields.

When analyzing applications of PGNNs, it is worth empha-
sizing their basic work requirement resulting from commonly
known laws of science. Modification of the model in order to
ensure its physical compliance bases on the use of already exist-
ing physical relationship, which is integrated into the cost func-
tion formula as precisely presented in Section 3.1. Thus, the
application of this solution is limited to problems with clearly

defined scientific basis, which can be argued by the laws of
physics. Consequently, PGNNs find numerous applications in
spatial analysis, where they extend possibilities of basic physi-
cal models. A comprehensive overview of solutions in the field
of integrating physics-based modeling with machine learning
was presented in a survey by J. Willard et al. [17]. In this chap-
ter we aim to introduce a reader to selected literature items that
contributed to finding new applications of PGNNs or suggested
improvements to their model architecture.

The above-mentioned example of lake temperature model-
ing can be considered one of the main inspirations in the field,
due to the formalization of PGNN framework and introduction
of hybrid models (Section 3.2). Results of this work have been
extended by the authors to include modifications in the ANN
structure by introducing PGNN concept in recurrent neural net-
works [18], including particular focus on LSTM layers [19].
Another interesting experiments with architecture of models
have been presented by Y. Yang et al. [20] and R. Singh et
al. [21] who show possibilities of physics-informed deep gen-
erative models. Furthermore, L. Wang et al. [22] use physics-
guided autoencoders to estimate states of a power system.
These examples show that capabilities of scientifically con-
strained loss-functions are not limited to any particular network
type, but can function in models of varying complexity and
layer character.

PGNN applications in spatial problems may occur wherever
there is a specific physical dependence. In addition to the pre-
viously mentioned examples, it is worth citing the work of N.
Muralidhar et al. about predicting drag force on particle sus-
pensions in moving fluids [23]. Moreover, PGNNs have been
studied in several emerging use cases such as wind-farm power
estimation [24], turbulent flow prediction [25], flood forecast-
ing [26] or Fourier Ptychography [27]. Applications of PGNN
in the field of medicine and bioinformatics may also seem im-
portant e.g., for tomography image processing [28] or cardiac
activation mapping [29].

In addition to practical solutions with real-world collected
data, related work was carried out on generated examples, us-
ing various types of formulas. M. Raissi et al. present trainings
of PGNNs to solve partial differential equations (PDE) such
as Shrödinger and Allen-Cahn Equations [30, 31]. Moreover,
Z. Fang et al. present numerous approaches to solving PDEs on
surface, including 3D generated data [32]. These examples can
be interpreted as a broad spectrum of theoretical solutions to
which our examples in Sections 4 and 5 refer. In this case, our
contribution shows an example of solving a relatively simple
Poisson’s and Burger’s equations, which illustrate the operation
of PGNN, and at the same time can be generally applicable in
practice or extended to more complex formulas, as presented in
the cited works.

In opposition to conventional ANNs, purely bio-inspired
computing techniques such as Spiking Neural Networks
(SNNs) are being intensively developed [33]. This third gener-
ation of artificial intelligence aims to extend machine learning
capabilities into areas that correspond to human cognition, such
as interpretation and autonomous adaptation. Thanks to their
asynchronicity, SNNs are known for their impressive speed and
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energy savings when combined with dedicated hardware [34].
They already find promising applications in many areas includ-
ing robotics [35], physics [36], or language and vision process-
ing [37]. However, due to the non-differential character of spik-
ing activation functions, this technology is still considered to
be in its incubation phase. Importantly, a connection of SNNs
with physics-based reasoning has not yet been demonstrated,
therefore we outline Spiking-PGNNs as a particularly interest-
ing research direction that might improve the performance of
neuromorphic technologies.

3. CONCEPT OF PHYSICS-GUIDED NEURAL NETWORKS
In this section, we describe the technical idea behind physics-
guided neural networks and explain the usage of scientific
knowledge in the cost function. Moreover, we discuss a hybrid
concept of PGNN that combines physics-based models with
machine learning algorithms.

3.1. Physics-based Loss Function
The basic principle of PGNN’s operation is very simple on the
conceptual level. The main assumption is to introduce a phys-
ical formula to the cost function so as to enable the usage of
known theoretical laws when executing the network. The ba-
sic cost function formula for an artificial neural network can be
represented as follows:

arg min
f

Loss
(
Ŷ , Y

)
︸ ︷︷ ︸

Typical loss function

. (1)

In this case, an expected output (ground truth) is compared to
the achieved results of a model, creating a so-called loss func-
tion which can be represented with various equations depend-
ing on the type of problem. Squared Error Loss, Absolute Er-
ror Loss or Cross Entropy Loss are just few examples of the
most poplar functions utilized in this case [38]. Regardless of
the function applied, the goal of the algorithm is to minimize the
cost so as to ensure the greatest generality of the neural network
by later updating the model weights, i.e., thanks to stochastic
gradient descent (SGD) algorithm [39].

A standard approach for training the PGNN model is very
similar and bases on the same rules. Moreover, the architec-
ture of the neural network does not change either. The only
difference is an extension of the minimized function with a
commonly known physical formula (so-called physical incon-
sistency) as presented below:
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f

Loss
(
Ŷ , Y

)
+λR( f )︸ ︷︷ ︸

Typical loss function

+λPHY Loss.PHY (Ŷ )︸ ︷︷ ︸
Physicsl inconsistency

. (2)

In this case, λPHY is a hyper-parameter chosen by the sci-
entist who decides about the relative importance of a physical
influence on the model. This parameter is crucial for generated
results, because its proper selection allows to increase the relia-
bility, genericity and compliance of results with physical laws.
On the other hand, its incorrect setting (too high value) may
lead to a drastic deterioration of effectiveness of the neural net-

work, the results of which will be based too much on the phys-
ical formula, thus the model will not be able to maximize a po-
tential of the information contained in a training data. Too low
value of the λPHY parameter may cause a very low influence of
the formula, and thus the network will take form of a classic
ANN model.

A concept of PGNN loss function may seem relatively sim-
ple, but its impact on the generated results is often significant.
A key aspect in this case is an appropriate selection of the
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to be used. It is natural that a specific formula must combine
parameters that are available in the dataset used for the prob-
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son, physically inspired neural networks are treated rather as
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3.2. Hybrid Models
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physics-based numerical models represent part of a real physi-
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fHPD : X = [D, YPHY ]→ Y. (3)

In this setup, it is possible to benefit from physically-
consistent features as an output of physics-based model as well
as take advantage of other input drivers to the neural network,
thus reducing possible knowledge gaps.

It is important to emphasize that physics-based models are
very often difficult to obtain or may provide incomplete rep-
resentation of target due to simplified or missing physics re-
lations, thus resulting in model discrepancies. Moreover, they
usually require calibrating which is a time-consuming and in-
effective process. It is worth to remember about their multiple
advantages also as hybrid-physics-data models, however in this
work we focus on physics-based loss function and investigate
pure PGNN architectures.

4. POISSON’S DIFFERENTIAL EQUATION
The Poisson’s partial differential equation is used as an ex-
ample theoretical case study that directly shows work the of
PGNNs basing on primary results of T. Dockhorn [40]. In sub-
section 4.1 of this chapter we introduce the problem and discuss
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its physics-guided relation. The subsection 4.2 shows the archi-
tecture of neural network used and explains its training process.
In the subsection 4.3 results of experiments and comparisons
between ANN and PGNN are depicted.

4.1. Problem description and physics-guided relation
The Poisson’s equation in combination with Dirichlet boundary
conditions can be written as:

−∇2u(x) = f (x) on area Ω,

u(x) = g(x) on area ∂Ω.
(4)

The function f of spatial variables is treated as known.
The Poisson’s equation can be also written explicitly for space
with a given dimension d. In case of this work we consider a
two-dimensional space (d = 2), therefore it takes form of a par-
tial differential equation:

∂ 2

∂x2
1

u(x1,x2)+
∂ 2

∂x2
2

u(x1,x2) = f (x1,x2), (5)

where for purpose of our work:

u(x1,x2) = sin(πx1)cos(πx2), (6)

f (x1,x2) = 2π2 sin(πx1)cos(πx2). (7)

The equation is considered on the area Ω = [0,1]2

For boundary conditions, the loss function can be written as:

loss = MSE(û−g) . (8)

After applying physics-guided relationship, resulting from the
Poisson’s equation, modified loss function takes a following
representation:

loss = MSE(û−g)+MSE
(
∇2û− f

)

where MSE
(
∇2û− f

)
is considered a physical loss.

(9)

Eventually, after substitution of the Mean Squared Error
(MSE), the overall loss can be presented as:

loss(û;θ) =
1

Nbou

Nbou

∑
i=1

(û−g)2 +
1

Nint

Nint

∑
j=1

(
∇2û− f

)2
. (10)

To explain this equation better, we could say that the algo-
rithm approximates some certain u(x) using a neural network
û(x,θ), where θ is a stacked vector of the algorithm parameters
(weights), which we adjust in the training process. Furthermore,
Nbou and Nint mean a number of boundary as well as interior
(physics-inspired) data points respectively. More details on the
dataset and training process of the model are presented in Sec-
tion 4.2. Importantly, the functions f and g are a known true, as
given in (4) and further explained in (6) and (7). To be precise,
we want to minimize the error of our algorithm (10), therefore
our ultimate goal is to find such an approximate u(x) that both
parts of the equation are minimized.

4.2. Neural Network Architecture and dataset
The goal of this work is not to experiment with the architec-
ture of the neural network by introducing complex layers, such
as e.g., Convolutions, Long Short-Term Memory (LSTM), or
Gated Recurrent Units (GRU). Various implementations of ex-
otic physics-guided neural networks on the layer structure side
were already presented in Section 2, an example of which may
be autoencoders or generative models. Our goal is to show the
possibilities of PGNNs in a way that is accessible to the reader,
therefore we assume to emphasize the impact of the modified
cost function on the algorithm’s result rather than the novel net-
work architectures.

Secondly, we show that the considered differential equations
can be solved using relatively simple neural networks in terms
of the class of their layers and the number of learnable param-
eters, assuming the addition of a physical formula to the cost
function. The results obtained in this way appeared to be char-
acterized by satisfactory accuracy, which is why modifying the
structure of the algorithm would not bring any greater benefit
in terms of performance. In fact, an increased complexity of the
algorithm could lead to negative consequences such as making
the training process more difficult, e.g., by extending its time
and cost. We can say that when choosing the type of an algo-
rithm we refer directly to the Occam’s razor principle [41] and
do not complicate our approach beyond the absolute necessity.

For the selected Poisson’s problem we consider a set of fully-
connected neural networks with different number of hidden lay-
ers and units. We did not observe any significant increase in
performance of the models with more than three dense layers.
In fact, accuracy of the architecture with 16 units in each cell
appeared to be empirically optimal. Nevertheless, differences
between workloads bigger than three hidden layers appeared
to be minimal, therefore we decided to limit our study to the
model presented in Fig. 3.

The depicted architecture uses three hidden layers and sig-
moid activation functions [42] combined with Xavier initializa-

Fig. 3. Architecture of a fully-connected neural network used to solve
Poisson’s partial differential equation. The model consists of three hid-
den layers, each of which is activated with the sigmoid function. Qual-
ity measure between the approximated and true solutions is calculated
on a single output, considering two inputs in the given Poisson’s for-
mula. Experimentally, the model appeared to guarantee the best results

on the given task
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its physics-guided relation. The subsection 4.2 shows the archi-
tecture of neural network used and explains its training process.
In the subsection 4.3 results of experiments and comparisons
between ANN and PGNN are depicted.

4.1. Problem description and physics-guided relation
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conditions can be written as:

−∇2u(x) = f (x) on area Ω,

u(x) = g(x) on area ∂Ω.
(4)

The function f of spatial variables is treated as known.
The Poisson’s equation can be also written explicitly for space
with a given dimension d. In case of this work we consider a
two-dimensional space (d = 2), therefore it takes form of a par-
tial differential equation:
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rithm approximates some certain u(x) using a neural network
û(x,θ), where θ is a stacked vector of the algorithm parameters
(weights), which we adjust in the training process. Furthermore,
Nbou and Nint mean a number of boundary as well as interior
(physics-inspired) data points respectively. More details on the
dataset and training process of the model are presented in Sec-
tion 4.2. Importantly, the functions f and g are a known true, as
given in (4) and further explained in (6) and (7). To be precise,
we want to minimize the error of our algorithm (10), therefore
our ultimate goal is to find such an approximate u(x) that both
parts of the equation are minimized.

4.2. Neural Network Architecture and dataset
The goal of this work is not to experiment with the architec-
ture of the neural network by introducing complex layers, such
as e.g., Convolutions, Long Short-Term Memory (LSTM), or
Gated Recurrent Units (GRU). Various implementations of ex-
otic physics-guided neural networks on the layer structure side
were already presented in Section 2, an example of which may
be autoencoders or generative models. Our goal is to show the
possibilities of PGNNs in a way that is accessible to the reader,
therefore we assume to emphasize the impact of the modified
cost function on the algorithm’s result rather than the novel net-
work architectures.

Secondly, we show that the considered differential equations
can be solved using relatively simple neural networks in terms
of the class of their layers and the number of learnable param-
eters, assuming the addition of a physical formula to the cost
function. The results obtained in this way appeared to be char-
acterized by satisfactory accuracy, which is why modifying the
structure of the algorithm would not bring any greater benefit
in terms of performance. In fact, an increased complexity of the
algorithm could lead to negative consequences such as making
the training process more difficult, e.g., by extending its time
and cost. We can say that when choosing the type of an algo-
rithm we refer directly to the Occam’s razor principle [41] and
do not complicate our approach beyond the absolute necessity.

For the selected Poisson’s problem we consider a set of fully-
connected neural networks with different number of hidden lay-
ers and units. We did not observe any significant increase in
performance of the models with more than three dense layers.
In fact, accuracy of the architecture with 16 units in each cell
appeared to be empirically optimal. Nevertheless, differences
between workloads bigger than three hidden layers appeared
to be minimal, therefore we decided to limit our study to the
model presented in Fig. 3.

The depicted architecture uses three hidden layers and sig-
moid activation functions [42] combined with Xavier initializa-

Fig. 3. Architecture of a fully-connected neural network used to solve
Poisson’s partial differential equation. The model consists of three hid-
den layers, each of which is activated with the sigmoid function. Qual-
ity measure between the approximated and true solutions is calculated
on a single output, considering two inputs in the given Poisson’s for-
mula. Experimentally, the model appeared to guarantee the best results
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its physics-guided relation. The subsection 4.2 shows the archi-
tecture of neural network used and explains its training process.
In the subsection 4.3 results of experiments and comparisons
between ANN and PGNN are depicted.

4.1. Problem description and physics-guided relation
The Poisson’s equation in combination with Dirichlet boundary
conditions can be written as:

−∇2u(x) = f (x) on area Ω,

u(x) = g(x) on area ∂Ω.
(4)

The function f of spatial variables is treated as known.
The Poisson’s equation can be also written explicitly for space
with a given dimension d. In case of this work we consider a
two-dimensional space (d = 2), therefore it takes form of a par-
tial differential equation:
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The equation is considered on the area Ω = [0,1]2

For boundary conditions, the loss function can be written as:

loss = MSE(û−g) . (8)

After applying physics-guided relationship, resulting from the
Poisson’s equation, modified loss function takes a following
representation:
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where MSE
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is considered a physical loss.
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Eventually, after substitution of the Mean Squared Error
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To explain this equation better, we could say that the algo-
rithm approximates some certain u(x) using a neural network
û(x,θ), where θ is a stacked vector of the algorithm parameters
(weights), which we adjust in the training process. Furthermore,
Nbou and Nint mean a number of boundary as well as interior
(physics-inspired) data points respectively. More details on the
dataset and training process of the model are presented in Sec-
tion 4.2. Importantly, the functions f and g are a known true, as
given in (4) and further explained in (6) and (7). To be precise,
we want to minimize the error of our algorithm (10), therefore
our ultimate goal is to find such an approximate u(x) that both
parts of the equation are minimized.

4.2. Neural Network Architecture and dataset
The goal of this work is not to experiment with the architec-
ture of the neural network by introducing complex layers, such
as e.g., Convolutions, Long Short-Term Memory (LSTM), or
Gated Recurrent Units (GRU). Various implementations of ex-
otic physics-guided neural networks on the layer structure side
were already presented in Section 2, an example of which may
be autoencoders or generative models. Our goal is to show the
possibilities of PGNNs in a way that is accessible to the reader,
therefore we assume to emphasize the impact of the modified
cost function on the algorithm’s result rather than the novel net-
work architectures.

Secondly, we show that the considered differential equations
can be solved using relatively simple neural networks in terms
of the class of their layers and the number of learnable param-
eters, assuming the addition of a physical formula to the cost
function. The results obtained in this way appeared to be char-
acterized by satisfactory accuracy, which is why modifying the
structure of the algorithm would not bring any greater benefit
in terms of performance. In fact, an increased complexity of the
algorithm could lead to negative consequences such as making
the training process more difficult, e.g., by extending its time
and cost. We can say that when choosing the type of an algo-
rithm we refer directly to the Occam’s razor principle [41] and
do not complicate our approach beyond the absolute necessity.

For the selected Poisson’s problem we consider a set of fully-
connected neural networks with different number of hidden lay-
ers and units. We did not observe any significant increase in
performance of the models with more than three dense layers.
In fact, accuracy of the architecture with 16 units in each cell
appeared to be empirically optimal. Nevertheless, differences
between workloads bigger than three hidden layers appeared
to be minimal, therefore we decided to limit our study to the
model presented in Fig. 3.

The depicted architecture uses three hidden layers and sig-
moid activation functions [42] combined with Xavier initializa-

Fig. 3. Architecture of a fully-connected neural network used to solve
Poisson’s partial differential equation. The model consists of three hid-
den layers, each of which is activated with the sigmoid function. Qual-
ity measure between the approximated and true solutions is calculated
on a single output, considering two inputs in the given Poisson’s for-
mula. Experimentally, the model appeared to guarantee the best results
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its physics-guided relation. The subsection 4.2 shows the archi-
tecture of neural network used and explains its training process.
In the subsection 4.3 results of experiments and comparisons
between ANN and PGNN are depicted.

4.1. Problem description and physics-guided relation
The Poisson’s equation in combination with Dirichlet boundary
conditions can be written as:

−∇2u(x) = f (x) on area Ω,

u(x) = g(x) on area ∂Ω.
(4)

The function f of spatial variables is treated as known.
The Poisson’s equation can be also written explicitly for space
with a given dimension d. In case of this work we consider a
two-dimensional space (d = 2), therefore it takes form of a par-
tial differential equation:
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To explain this equation better, we could say that the algo-
rithm approximates some certain u(x) using a neural network
û(x,θ), where θ is a stacked vector of the algorithm parameters
(weights), which we adjust in the training process. Furthermore,
Nbou and Nint mean a number of boundary as well as interior
(physics-inspired) data points respectively. More details on the
dataset and training process of the model are presented in Sec-
tion 4.2. Importantly, the functions f and g are a known true, as
given in (4) and further explained in (6) and (7). To be precise,
we want to minimize the error of our algorithm (10), therefore
our ultimate goal is to find such an approximate u(x) that both
parts of the equation are minimized.

4.2. Neural Network Architecture and dataset
The goal of this work is not to experiment with the architec-
ture of the neural network by introducing complex layers, such
as e.g., Convolutions, Long Short-Term Memory (LSTM), or
Gated Recurrent Units (GRU). Various implementations of ex-
otic physics-guided neural networks on the layer structure side
were already presented in Section 2, an example of which may
be autoencoders or generative models. Our goal is to show the
possibilities of PGNNs in a way that is accessible to the reader,
therefore we assume to emphasize the impact of the modified
cost function on the algorithm’s result rather than the novel net-
work architectures.

Secondly, we show that the considered differential equations
can be solved using relatively simple neural networks in terms
of the class of their layers and the number of learnable param-
eters, assuming the addition of a physical formula to the cost
function. The results obtained in this way appeared to be char-
acterized by satisfactory accuracy, which is why modifying the
structure of the algorithm would not bring any greater benefit
in terms of performance. In fact, an increased complexity of the
algorithm could lead to negative consequences such as making
the training process more difficult, e.g., by extending its time
and cost. We can say that when choosing the type of an algo-
rithm we refer directly to the Occam’s razor principle [41] and
do not complicate our approach beyond the absolute necessity.

For the selected Poisson’s problem we consider a set of fully-
connected neural networks with different number of hidden lay-
ers and units. We did not observe any significant increase in
performance of the models with more than three dense layers.
In fact, accuracy of the architecture with 16 units in each cell
appeared to be empirically optimal. Nevertheless, differences
between workloads bigger than three hidden layers appeared
to be minimal, therefore we decided to limit our study to the
model presented in Fig. 3.

The depicted architecture uses three hidden layers and sig-
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on a single output, considering two inputs in the given Poisson’s for-
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its physics-guided relation. The subsection 4.2 shows the archi-
tecture of neural network used and explains its training process.
In the subsection 4.3 results of experiments and comparisons
between ANN and PGNN are depicted.
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conditions can be written as:

−∇2u(x) = f (x) on area Ω,

u(x) = g(x) on area ∂Ω.
(4)

The function f of spatial variables is treated as known.
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with a given dimension d. In case of this work we consider a
two-dimensional space (d = 2), therefore it takes form of a par-
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∇2û− f

)

where MSE
(
∇2û− f
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tion 4.2. Importantly, the functions f and g are a known true, as
given in (4) and further explained in (6) and (7). To be precise,
we want to minimize the error of our algorithm (10), therefore
our ultimate goal is to find such an approximate u(x) that both
parts of the equation are minimized.
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cost function on the algorithm’s result rather than the novel net-
work architectures.
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of the class of their layers and the number of learnable param-
eters, assuming the addition of a physical formula to the cost
function. The results obtained in this way appeared to be char-
acterized by satisfactory accuracy, which is why modifying the
structure of the algorithm would not bring any greater benefit
in terms of performance. In fact, an increased complexity of the
algorithm could lead to negative consequences such as making
the training process more difficult, e.g., by extending its time
and cost. We can say that when choosing the type of an algo-
rithm we refer directly to the Occam’s razor principle [41] and
do not complicate our approach beyond the absolute necessity.
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connected neural networks with different number of hidden lay-
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The equation is considered on the area Ω = [0,1]2

For boundary conditions, the loss function can be written as:

loss = MSE(û−g) . (8)

After applying physics-guided relationship, resulting from the
Poisson’s equation, modified loss function takes a following
representation:
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To explain this equation better, we could say that the algo-
rithm approximates some certain u(x) using a neural network
û(x,θ), where θ is a stacked vector of the algorithm parameters
(weights), which we adjust in the training process. Furthermore,
Nbou and Nint mean a number of boundary as well as interior
(physics-inspired) data points respectively. More details on the
dataset and training process of the model are presented in Sec-
tion 4.2. Importantly, the functions f and g are a known true, as
given in (4) and further explained in (6) and (7). To be precise,
we want to minimize the error of our algorithm (10), therefore
our ultimate goal is to find such an approximate u(x) that both
parts of the equation are minimized.

4.2. Neural Network Architecture and dataset
The goal of this work is not to experiment with the architec-
ture of the neural network by introducing complex layers, such
as e.g., Convolutions, Long Short-Term Memory (LSTM), or
Gated Recurrent Units (GRU). Various implementations of ex-
otic physics-guided neural networks on the layer structure side
were already presented in Section 2, an example of which may
be autoencoders or generative models. Our goal is to show the
possibilities of PGNNs in a way that is accessible to the reader,
therefore we assume to emphasize the impact of the modified
cost function on the algorithm’s result rather than the novel net-
work architectures.

Secondly, we show that the considered differential equations
can be solved using relatively simple neural networks in terms
of the class of their layers and the number of learnable param-
eters, assuming the addition of a physical formula to the cost
function. The results obtained in this way appeared to be char-
acterized by satisfactory accuracy, which is why modifying the
structure of the algorithm would not bring any greater benefit
in terms of performance. In fact, an increased complexity of the
algorithm could lead to negative consequences such as making
the training process more difficult, e.g., by extending its time
and cost. We can say that when choosing the type of an algo-
rithm we refer directly to the Occam’s razor principle [41] and
do not complicate our approach beyond the absolute necessity.

For the selected Poisson’s problem we consider a set of fully-
connected neural networks with different number of hidden lay-
ers and units. We did not observe any significant increase in
performance of the models with more than three dense layers.
In fact, accuracy of the architecture with 16 units in each cell
appeared to be empirically optimal. Nevertheless, differences
between workloads bigger than three hidden layers appeared
to be minimal, therefore we decided to limit our study to the
model presented in Fig. 3.

The depicted architecture uses three hidden layers and sig-
moid activation functions [42] combined with Xavier initializa-

Fig. 3. Architecture of a fully-connected neural network used to solve
Poisson’s partial differential equation. The model consists of three hid-
den layers, each of which is activated with the sigmoid function. Qual-
ity measure between the approximated and true solutions is calculated
on a single output, considering two inputs in the given Poisson’s for-
mula. Experimentally, the model appeared to guarantee the best results

on the given task
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tion [43] of weights. Thanks to the initial weights, our loss gra-
dients are not too large or too small at the beginning, hence the
network converges faster. Broyden–Fletcher–Goldfarb–Shanno
(BFGS) algorithm [44] is used to optimize the weights, where
we know the ground truth and can therefore measure the quality
of the approximate solution. We define the maximum number of
iterations equal 1000. However, to eliminate any possible over-
training of the neural network, we apply the gradient tolerance
equal 10−14. This optimization parameter measures the differ-
ences in sizes of gradients on consecutive steps and stops the
training once the criteria is violated.

The network is trained on five datasets with 1000, 2000,
4000, 8000, and 16 000 interior and boundary data points with
batch size 1000. Because Ω is a rectangle, the grid points are
chosen in a way such that two neighboring points have the same
value in d−1 coordinates and only differ by 0.01 in one coordi-
nate. Training data was generated as a set of uniformly spaced
grid points over Ω ⊂ R from the square area [0, 1] and is stored
in the CSV format with number of records corresponding to the
dataset size. Each record contains 4 values placed in separate
cells as given in the demonstration samples in Table 1. Subse-
quently, points are read by a data loader and divided into interior
and boundary samples given for each part of the loss function
respectively.

Table 1
Example training data for the Poisson’s task. Interior x and y coordi-
nates distinguish a point inside the studied area in comparison to the
boundary x and y coordinates, which describe the points on the edge of
the rectangle. The expected output value is calculated using physical

equations (6) and (7) respectively

interior x interior y boundary x boundary y

0.70024601 0.25877339 0.38812045 0.0

0.41249577 0.24691931 0.24181088 1.0

0.57185811 0.72342523 0.0 0.75604303

0.68693357 0.20367522 1.0 0.91711312

The project was carried out entirely in Python, while the pure
Tensorflow was used to implement the neural network. This
framework selection allows the reader to understand various
processes, especially mathematical operations taking place dur-
ing the training stage. Thanks to a direct declaration of opera-
tions in low-level API, a convenient insight and control over the
code is possible, particularly when working with operations like
weights or gradients. In case of further interests or novel ideas
to improve the process, the reader can benefit from our source
code (please see Section 6) and introduce the modifications to
the presented problem.

4.3. Results
In order to observe the operation of PGNN, we train the neural
network using both loss functions (8) (9) and compare the ob-
tained estimates with the scientifically proven solution as pre-
sented in Fig. 4. This example shows that a small neural net-
work is able to accurately learn the complex solution for a sys-
tem of partial differential equations. Moreover, the presented

results were obtained when training the model on 1000 data
samples to emphasize the advantages of PGNN when having a
very small number of data points. From this perspective, it can
be stated that both PGNN and ANN estimate the real values
over the entire area, which was shown by a heatmap for each
point of the space.

Fig. 4. Results of experiments on Poisson’s differential equation for
each datapoint on the square area [0, 1]. Ground truth (top), estimates
of artificial neural network (middle), and estimates of physics-guided
neural network (bottom). Both algorithms achieve the results that are
close to exact, however PGNN can be characterized by a significantly

smaller error as presented in Fig. 5

More information about the quality of the estimation is
shown in Fig. 5, which compares the mean squared error at each
point in the region for both ANN and PGNN. Thanks to the
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physical consistency, MSE of the model has been reduced by
several orders of magnitude, therefore a simple network trained
on a small dataset appeared to be surprisingly effective. In case
of PGNN, achieved results are very close to exact, with MSE
around 10−5 while clear ANN reaches an approximate error on
the level of 10−1. Thus, although both algorithms approximate
a solution of the Poisson’s equation successfully, the perfor-
mance of PGNN is significantly better. In order to obtain simi-
lar results without physics-guided relation in the loss function,
the network would have to be more complex and trained on
much larger dataset, leading to an increase in cost and time of
the experiment.

Fig. 5. Comparison of achieved MSE between ANN (top) and PGNN
(bottom) showing an increase of performance by several orders of
magnitude. Results using physics-inspired loss function are very close
to exact, with MSE around 10−5 while clear ANN reaches an approx-

imate error on the level of 10−1

5. BURGER’S DIFFERENTIAL EQUATION
As another example, let us consider the Burger’s equation bas-
ing on a study of M. Raissi et al. [30,31] who show the work of
PGNN for continuous time models. Burger’s formula is consid-
ered as a fundamental differential equation and can be derived
from the Navier-Stokes equations [45] for the velocity field by
dropping the pressure gradient term. Similarly as in case of the
Poisson’s example, in the following sections of this chapter we
present a theoretical background, training process and results of
experiments for Burger’s equation.

5.1. Problem description and physics-guided relation
In one space dimension, the Burger’s equation along with
Dirichlet boundary conditions can be written as:

ut +uux − (0.01/π)uxx = 0,
u(0,x) =−sin(πx),

u(t,−1) = u(t,1) = 0, and x ∈ [−1, 1], t ∈ [0, 1].
(11)

In this case f (t,x) is defined as:

f := ut +uux − (0.01/π)uxx . (12)

This representation can be processed by approximating
u(t,x) with a deep neural network. Similarly to the Poisson’s
example, we apply a physics-guided relationship, resulting in a
common mean squared error loss:

MSE = MSEu +MSE f ,

where MSE f is a physical loss.
(13)

Eventually, after substitutions, the overall loss function can
be given as:

MSE =
1

Nu

Nu

∑
i=1

(û(ti,xi)−u(ti,xi))
2 +

1
Nf

Nf

∑
j=1

f (t j,x j)
2. (14)

In this notation, Nu denotes the number of initial and bound-
ary training data on u(t,x) and Nf specifies the number collo-
cations points for f (t,x). Similarly, the MSEu corresponds to
the initial and boundary conditions while MSE f enforces the
structure imposed by equation (11) at a finite set of collocation
points and is therefore considered a physical loss. The shared
parameters of the neural network for u(t,x) and f (t,x) can be
learned by minimizing the loss function.

5.2. Neural Network Architecture and dataset
Similarly as in the case of the Poisson’s equation, our goal is
to illustrate the operation of PGNN on a simple model of the
neural network and limited data in order to emphasize the ad-
vantages of physics-inspired loss function. For this purpose, we
use a very similar neural architecture as in Section 4.2 with mi-
nor modifications that slightly improved the effectiveness for
this specific task.

We consider a simple fully-connected model depicted in
Fig. 6. The architecture consists of three hidden layers having
32, 16 and 32 neurons respectively, which give a total number
of 1201 trainable parameters. Hyperbolic tangent (tanh) [46] is
used as an activation function while kernels are initialized using
He normal [47]. Similarly to the Poisson’s example, loss func-
tions are optimized with Broyden–Fletcher–Goldfarb–Shanno
(BFGS) algorithm [44]. Nevertheless, for larger datasets and
mini-batches, a stochastic gradient descent (SGD) [39] might
be more effective.

As already motivated, we rely on the datasets where the to-
tal number of training points is relatively small (a few hundred
up to a few thousand points). As a reference, Table 2 presents
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physical consistency, MSE of the model has been reduced by
several orders of magnitude, therefore a simple network trained
on a small dataset appeared to be surprisingly effective. In case
of PGNN, achieved results are very close to exact, with MSE
around 10−5 while clear ANN reaches an approximate error on
the level of 10−1. Thus, although both algorithms approximate
a solution of the Poisson’s equation successfully, the perfor-
mance of PGNN is significantly better. In order to obtain simi-
lar results without physics-guided relation in the loss function,
the network would have to be more complex and trained on
much larger dataset, leading to an increase in cost and time of
the experiment.

Fig. 5. Comparison of achieved MSE between ANN (top) and PGNN
(bottom) showing an increase of performance by several orders of
magnitude. Results using physics-inspired loss function are very close
to exact, with MSE around 10−5 while clear ANN reaches an approx-

imate error on the level of 10−1

5. BURGER’S DIFFERENTIAL EQUATION
As another example, let us consider the Burger’s equation bas-
ing on a study of M. Raissi et al. [30,31] who show the work of
PGNN for continuous time models. Burger’s formula is consid-
ered as a fundamental differential equation and can be derived
from the Navier-Stokes equations [45] for the velocity field by
dropping the pressure gradient term. Similarly as in case of the
Poisson’s example, in the following sections of this chapter we
present a theoretical background, training process and results of
experiments for Burger’s equation.

5.1. Problem description and physics-guided relation
In one space dimension, the Burger’s equation along with
Dirichlet boundary conditions can be written as:

ut +uux − (0.01/π)uxx = 0,
u(0,x) =−sin(πx),

u(t,−1) = u(t,1) = 0, and x ∈ [−1, 1], t ∈ [0, 1].
(11)

In this case f (t,x) is defined as:

f := ut +uux − (0.01/π)uxx . (12)

This representation can be processed by approximating
u(t,x) with a deep neural network. Similarly to the Poisson’s
example, we apply a physics-guided relationship, resulting in a
common mean squared error loss:

MSE = MSEu +MSE f ,

where MSE f is a physical loss.
(13)

Eventually, after substitutions, the overall loss function can
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In this notation, Nu denotes the number of initial and bound-
ary training data on u(t,x) and Nf specifies the number collo-
cations points for f (t,x). Similarly, the MSEu corresponds to
the initial and boundary conditions while MSE f enforces the
structure imposed by equation (11) at a finite set of collocation
points and is therefore considered a physical loss. The shared
parameters of the neural network for u(t,x) and f (t,x) can be
learned by minimizing the loss function.

5.2. Neural Network Architecture and dataset
Similarly as in the case of the Poisson’s equation, our goal is
to illustrate the operation of PGNN on a simple model of the
neural network and limited data in order to emphasize the ad-
vantages of physics-inspired loss function. For this purpose, we
use a very similar neural architecture as in Section 4.2 with mi-
nor modifications that slightly improved the effectiveness for
this specific task.

We consider a simple fully-connected model depicted in
Fig. 6. The architecture consists of three hidden layers having
32, 16 and 32 neurons respectively, which give a total number
of 1201 trainable parameters. Hyperbolic tangent (tanh) [46] is
used as an activation function while kernels are initialized using
He normal [47]. Similarly to the Poisson’s example, loss func-
tions are optimized with Broyden–Fletcher–Goldfarb–Shanno
(BFGS) algorithm [44]. Nevertheless, for larger datasets and
mini-batches, a stochastic gradient descent (SGD) [39] might
be more effective.

As already motivated, we rely on the datasets where the to-
tal number of training points is relatively small (a few hundred
up to a few thousand points). As a reference, Table 2 presents
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physical consistency, MSE of the model has been reduced by
several orders of magnitude, therefore a simple network trained
on a small dataset appeared to be surprisingly effective. In case
of PGNN, achieved results are very close to exact, with MSE
around 10−5 while clear ANN reaches an approximate error on
the level of 10−1. Thus, although both algorithms approximate
a solution of the Poisson’s equation successfully, the perfor-
mance of PGNN is significantly better. In order to obtain simi-
lar results without physics-guided relation in the loss function,
the network would have to be more complex and trained on
much larger dataset, leading to an increase in cost and time of
the experiment.

Fig. 5. Comparison of achieved MSE between ANN (top) and PGNN
(bottom) showing an increase of performance by several orders of
magnitude. Results using physics-inspired loss function are very close
to exact, with MSE around 10−5 while clear ANN reaches an approx-

imate error on the level of 10−1
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As another example, let us consider the Burger’s equation bas-
ing on a study of M. Raissi et al. [30,31] who show the work of
PGNN for continuous time models. Burger’s formula is consid-
ered as a fundamental differential equation and can be derived
from the Navier-Stokes equations [45] for the velocity field by
dropping the pressure gradient term. Similarly as in case of the
Poisson’s example, in the following sections of this chapter we
present a theoretical background, training process and results of
experiments for Burger’s equation.
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In one space dimension, the Burger’s equation along with
Dirichlet boundary conditions can be written as:

ut +uux − (0.01/π)uxx = 0,
u(0,x) =−sin(πx),

u(t,−1) = u(t,1) = 0, and x ∈ [−1, 1], t ∈ [0, 1].
(11)

In this case f (t,x) is defined as:

f := ut +uux − (0.01/π)uxx . (12)

This representation can be processed by approximating
u(t,x) with a deep neural network. Similarly to the Poisson’s
example, we apply a physics-guided relationship, resulting in a
common mean squared error loss:
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where MSE f is a physical loss.
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cations points for f (t,x). Similarly, the MSEu corresponds to
the initial and boundary conditions while MSE f enforces the
structure imposed by equation (11) at a finite set of collocation
points and is therefore considered a physical loss. The shared
parameters of the neural network for u(t,x) and f (t,x) can be
learned by minimizing the loss function.

5.2. Neural Network Architecture and dataset
Similarly as in the case of the Poisson’s equation, our goal is
to illustrate the operation of PGNN on a simple model of the
neural network and limited data in order to emphasize the ad-
vantages of physics-inspired loss function. For this purpose, we
use a very similar neural architecture as in Section 4.2 with mi-
nor modifications that slightly improved the effectiveness for
this specific task.

We consider a simple fully-connected model depicted in
Fig. 6. The architecture consists of three hidden layers having
32, 16 and 32 neurons respectively, which give a total number
of 1201 trainable parameters. Hyperbolic tangent (tanh) [46] is
used as an activation function while kernels are initialized using
He normal [47]. Similarly to the Poisson’s example, loss func-
tions are optimized with Broyden–Fletcher–Goldfarb–Shanno
(BFGS) algorithm [44]. Nevertheless, for larger datasets and
mini-batches, a stochastic gradient descent (SGD) [39] might
be more effective.

As already motivated, we rely on the datasets where the to-
tal number of training points is relatively small (a few hundred
up to a few thousand points). As a reference, Table 2 presents
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physical consistency, MSE of the model has been reduced by
several orders of magnitude, therefore a simple network trained
on a small dataset appeared to be surprisingly effective. In case
of PGNN, achieved results are very close to exact, with MSE
around 10−5 while clear ANN reaches an approximate error on
the level of 10−1. Thus, although both algorithms approximate
a solution of the Poisson’s equation successfully, the perfor-
mance of PGNN is significantly better. In order to obtain simi-
lar results without physics-guided relation in the loss function,
the network would have to be more complex and trained on
much larger dataset, leading to an increase in cost and time of
the experiment.

Fig. 5. Comparison of achieved MSE between ANN (top) and PGNN
(bottom) showing an increase of performance by several orders of
magnitude. Results using physics-inspired loss function are very close
to exact, with MSE around 10−5 while clear ANN reaches an approx-

imate error on the level of 10−1
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ing on a study of M. Raissi et al. [30,31] who show the work of
PGNN for continuous time models. Burger’s formula is consid-
ered as a fundamental differential equation and can be derived
from the Navier-Stokes equations [45] for the velocity field by
dropping the pressure gradient term. Similarly as in case of the
Poisson’s example, in the following sections of this chapter we
present a theoretical background, training process and results of
experiments for Burger’s equation.

5.1. Problem description and physics-guided relation
In one space dimension, the Burger’s equation along with
Dirichlet boundary conditions can be written as:

ut +uux − (0.01/π)uxx = 0,
u(0,x) =−sin(πx),

u(t,−1) = u(t,1) = 0, and x ∈ [−1, 1], t ∈ [0, 1].
(11)

In this case f (t,x) is defined as:
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This representation can be processed by approximating
u(t,x) with a deep neural network. Similarly to the Poisson’s
example, we apply a physics-guided relationship, resulting in a
common mean squared error loss:
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where MSE f is a physical loss.
(13)
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In this notation, Nu denotes the number of initial and bound-
ary training data on u(t,x) and Nf specifies the number collo-
cations points for f (t,x). Similarly, the MSEu corresponds to
the initial and boundary conditions while MSE f enforces the
structure imposed by equation (11) at a finite set of collocation
points and is therefore considered a physical loss. The shared
parameters of the neural network for u(t,x) and f (t,x) can be
learned by minimizing the loss function.

5.2. Neural Network Architecture and dataset
Similarly as in the case of the Poisson’s equation, our goal is
to illustrate the operation of PGNN on a simple model of the
neural network and limited data in order to emphasize the ad-
vantages of physics-inspired loss function. For this purpose, we
use a very similar neural architecture as in Section 4.2 with mi-
nor modifications that slightly improved the effectiveness for
this specific task.

We consider a simple fully-connected model depicted in
Fig. 6. The architecture consists of three hidden layers having
32, 16 and 32 neurons respectively, which give a total number
of 1201 trainable parameters. Hyperbolic tangent (tanh) [46] is
used as an activation function while kernels are initialized using
He normal [47]. Similarly to the Poisson’s example, loss func-
tions are optimized with Broyden–Fletcher–Goldfarb–Shanno
(BFGS) algorithm [44]. Nevertheless, for larger datasets and
mini-batches, a stochastic gradient descent (SGD) [39] might
be more effective.

As already motivated, we rely on the datasets where the to-
tal number of training points is relatively small (a few hundred
up to a few thousand points). As a reference, Table 2 presents
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its physics-guided relation. The subsection 4.2 shows the archi-
tecture of neural network used and explains its training process.
In the subsection 4.3 results of experiments and comparisons
between ANN and PGNN are depicted.

4.1. Problem description and physics-guided relation
The Poisson’s equation in combination with Dirichlet boundary
conditions can be written as:

−∇2u(x) = f (x) on area Ω,

u(x) = g(x) on area ∂Ω.
(4)

The function f of spatial variables is treated as known.
The Poisson’s equation can be also written explicitly for space
with a given dimension d. In case of this work we consider a
two-dimensional space (d = 2), therefore it takes form of a par-
tial differential equation:

∂ 2

∂x2
1

u(x1,x2)+
∂ 2

∂x2
2

u(x1,x2) = f (x1,x2), (5)

where for purpose of our work:

u(x1,x2) = sin(πx1)cos(πx2), (6)

f (x1,x2) = 2π2 sin(πx1)cos(πx2). (7)

The equation is considered on the area Ω = [0,1]2

For boundary conditions, the loss function can be written as:

loss = MSE(û−g) . (8)

After applying physics-guided relationship, resulting from the
Poisson’s equation, modified loss function takes a following
representation:

loss = MSE(û−g)+MSE
(
∇2û− f

)

where MSE
(
∇2û− f

)
is considered a physical loss.

(9)

Eventually, after substitution of the Mean Squared Error
(MSE), the overall loss can be presented as:

loss(û;θ) =
1

Nbou

Nbou

∑
i=1

(û−g)2 +
1

Nint

Nint

∑
j=1

(
∇2û− f

)2
. (10)

To explain this equation better, we could say that the algo-
rithm approximates some certain u(x) using a neural network
û(x,θ), where θ is a stacked vector of the algorithm parameters
(weights), which we adjust in the training process. Furthermore,
Nbou and Nint mean a number of boundary as well as interior
(physics-inspired) data points respectively. More details on the
dataset and training process of the model are presented in Sec-
tion 4.2. Importantly, the functions f and g are a known true, as
given in (4) and further explained in (6) and (7). To be precise,
we want to minimize the error of our algorithm (10), therefore
our ultimate goal is to find such an approximate u(x) that both
parts of the equation are minimized.

4.2. Neural Network Architecture and dataset
The goal of this work is not to experiment with the architec-
ture of the neural network by introducing complex layers, such
as e.g., Convolutions, Long Short-Term Memory (LSTM), or
Gated Recurrent Units (GRU). Various implementations of ex-
otic physics-guided neural networks on the layer structure side
were already presented in Section 2, an example of which may
be autoencoders or generative models. Our goal is to show the
possibilities of PGNNs in a way that is accessible to the reader,
therefore we assume to emphasize the impact of the modified
cost function on the algorithm’s result rather than the novel net-
work architectures.

Secondly, we show that the considered differential equations
can be solved using relatively simple neural networks in terms
of the class of their layers and the number of learnable param-
eters, assuming the addition of a physical formula to the cost
function. The results obtained in this way appeared to be char-
acterized by satisfactory accuracy, which is why modifying the
structure of the algorithm would not bring any greater benefit
in terms of performance. In fact, an increased complexity of the
algorithm could lead to negative consequences such as making
the training process more difficult, e.g., by extending its time
and cost. We can say that when choosing the type of an algo-
rithm we refer directly to the Occam’s razor principle [41] and
do not complicate our approach beyond the absolute necessity.

For the selected Poisson’s problem we consider a set of fully-
connected neural networks with different number of hidden lay-
ers and units. We did not observe any significant increase in
performance of the models with more than three dense layers.
In fact, accuracy of the architecture with 16 units in each cell
appeared to be empirically optimal. Nevertheless, differences
between workloads bigger than three hidden layers appeared
to be minimal, therefore we decided to limit our study to the
model presented in Fig. 3.

The depicted architecture uses three hidden layers and sig-
moid activation functions [42] combined with Xavier initializa-

Fig. 3. Architecture of a fully-connected neural network used to solve
Poisson’s partial differential equation. The model consists of three hid-
den layers, each of which is activated with the sigmoid function. Qual-
ity measure between the approximated and true solutions is calculated
on a single output, considering two inputs in the given Poisson’s for-
mula. Experimentally, the model appeared to guarantee the best results

on the given task
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where MSEf  is a physical loss.
Eventually, after substitutions, the overall loss function can 

be given as:
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Fig. 6. Architecture of a fully-connected neural network used to solve
Burger’s partial differential equation. The model consists of three hid-
den layers, each of which is activated with the hyperbolic tangent.
Quality measure between the approximated and true solutions is cal-
culated on a single output, considering two inputs t and x in the given

Burger’s formula

sample data with dimensions 100× 256 for t and x values re-
spectively. Specifically, given a set of Nu = 100 randomly dis-
tributed initial and boundary data, we learn the latent solution
u(t,x) considering 256 points. The presented floating-point val-
ues are stored in the matrices exported to the Matlab file format
with number of columns and rows corresponding to the dataset
size Nu and Nf .

Table 2
Example rounded training data for the Burger’s task. Matrix takes
100×256 dimensions for t and x values respectively. Considering uni-
formly spaced Nu = 100 initial and boundary data, we learn the latent
solution u(t,x) by training the weights of a neural network given in
Fig. 6, thanks to the minimization of mean squared error loss (10).
Presented real data is visualized in Fig. 7 and 8 for the three selected

snapshots

x
t

0.00 0.01 0.02 ... 0.97 0.98 0.99

–1.00 0 0 0 ... 0 0 0

–0.99 0.03 0.02 0.02 ... 0.01 0 0

–0.98 0.05 0.04 0.03 ... 0.02 0.01 0

–0.97 0.08 0.07 0.06 ... 0.03 0.02 0.01

–0.96 0.1 0.09 0.08 ... 0.04 0.03 0.02

... ... ... ... ... ... ... ...

0.99 –0.03 –0.02 –0.02 .... –0.01 0 0

1.00 0 0 0 ... 0 0 0

5.3. Results
Physical information in loss function is optimized while train-
ing the neural network on set of 100 randomly distributed data
given in Table 2. In order to observe the operation of PGNN, we
optimize the loss function (13) on two experiments: with and
without the physical information. A detailed assessment of the
predicted solution u(t,x) for PGNN is presented in Fig. 7. In an

analogous way, the results of conventional ANN trained without
the MSE f counterpart in equation (13) are depicted in Fig. 8. In
particular, we present a comparison between the obtained re-
sults and the previously known (exact) solutions at three differ-
ent timesteps t = 0.25, 0.50, 0.75. The results for each of the
considered time instances were generated considering 256 data
points.

Fig. 7. Solution of the Burgers’ nOnlinear partial differential equation
using the PGNN. Comparison of the predicted solutions u(t,x) and
ground truth corresponding to the three temporal snapshots. The algo-
rithm is able to accurately follow differences in the form of sharpening

the sine wave in successive instances of time

Using only limited initial and boundary data, the physics
guided neural network can accurately capture the nonlinear be-
havior of the Burgers’ equation. Right after t = 0.4 a sharp in-
ternal layer starts to develop, which is visible on middle and
bottom plots. This solution is usually very demanding to be
precisely solved with classical numerical methods because it
required a spatio-temporal discretization of equation (11). We
are therefore able to determine that although a small dataset
used, predictions of a model with physical loss are precisely
matching the expectations.

8 Bull. Pol. Acad. Sci. Tech. Sci. 69(6) 2021, e139391



9

Physics-guided neural networks (PGNNs) to solve differential equations for spatial analysis

Bull. Pol. Acad. Sci. Tech. Sci. 69(6) 2021, e139391

Physics-guided neural networks (PGNNs) to solve differential equations for spatial analysis

An interesting feature of term MSE f in equation (13) is its
capability to act as a regularization mechanism that penalizes
solutions that do not satisfy the Burger’s equation. Therefore,
we observe that a model without physics-inspired information
(Fig. 8) cannot guarantee reliable results. Moreover, the exam-
ple prove that one of a key advantages of physics-guided neural
networks is their effectiveness when trained on small datasets.
This property makes usage of PGNNs important for applica-
tions where the cost of data acquisition might be expensive or
sometimes even impossible.

Fig. 8. Results of the ANN analogous to Fig. 7 given for the PGNN.
Despite the identical training process, the lack of a physically inspired
factor in the cost function makes the model unable to achieve a satis-
factory performance for the presented problem. After successive mo-

ments of time its results become random

6. CONCLUSION AND FUTURE WORK
In this work, we showed that neural networks can be used to
learn complex solutions of partial differential equations for spa-
tial analysis. Moreover, we benefited from scientific relations
included in the loss functions and applied Physics-Guided Neu-
ral Networks to solve Poisson’s and Burger’s equations. In both

cases, thanks to modifications in cost formula, the accuracy of
models increased, although their training process was identi-
cal for ANN and PGNN examples. These observations lead to
advantages that can be widely used in all applications where
it is possible to find a physical relation in the data. Thanks to
PGNNs, predictions of models are not only optimal but also
scientifically consistent. Presented results show that the combi-
nation of data science models with domain specific equations
give the best results in terms of accuracy while simultaneously
allowing to explain the deduction process and thus eliminate
possible contradictions with logic or science which often hap-
pen in machine learning.

The primary goal of this publication was to emphasize the
concept of PGNN basing on two examples of partial differen-
tial equations. Nevertheless, applications of this technology can
be broadly extended to a number of theoretical and practical
examples such as presented in Section 2. Moreover, it is possi-
ble to directly use a presented method of solving Burger’s and
Poisson’s equations by adding custom modifications. Neverthe-
less, we must remember that presented methods should not be
interpreted as replacements of classical numerical methods for
solving partial differential equations mainly due to their robust-
ness and computational efficiency. Techniques such as finite el-
ements or spectral methods [48], although their age, are still
widely used in many applications.

Development of PGNNs is a relatively new field of AI, tak-
ing into account a dynamic evolution of this domain. Neverthe-
less, further papers and constantly new applications of physics-
based loss functions start to gain on popularity. This publication
aims to popularize PGNNs and explain how to utilize scientific
knowledge contained in the cost functions, basing on theoreti-
cal examples. We hope that this contribution will stimulate fu-
ture work on applications of PGNNs and data-driven scientific
computing.

Repository with code for this project is public and fully ac-
cessible at: github.com/Borzyszkowski/Experimental-PGNNs.
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