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Deep networks for image super-resolution
using hierarchical features
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Abstract. To better extract feature maps from low-resolution (LR) images and recover high-frequency information in the high-resolution (HR)
images in image super-resolution (SR), we propose in this paper a new SR algorithm based on a deep convolutional neural network (CNN). The
network structure is composed of the feature extraction part and the reconstruction part. The extraction network extracts the feature maps of LR
images and uses the sub-pixel convolutional neural network as the up-sampling operator. Skip connection, densely connected neural networks
and feature map fusion are used to extract information from hierarchical feature maps at the end of the network, which can effectively reduce
the dimension of the feature maps. In the reconstruction network, we add a 3×3 convolution layer based on the original sub-pixel convolution
layer, which can allow the reconstruction network to have better nonlinear mapping ability. The experiments show that the algorithm results in
a significant improvement in PSNR, SSIM, and human visual effects as compared with some state-of-the-art algorithms based on deep learning.
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1. INTRODUCTION
Single image super-resolution (SISR) is the process of obtain-
ing an HR image from a single LR image, which has been
widely used in the field of security surveillance, medical im-
ages, satellite images, etc. [1–3]. Because there are multiple so-
lutions to map from LR images to HR images, SR is an ill-posed
problem. Especially when the up-sampling scale is large, it is
difficult to recover high-frequency details in the reconstructed
image. For the high-frequency information of reconstructed im-
ages, it is imperative to obtain the low-frequency information in
the broad scope of the LR images.

In recent years, with the development of deep learning and
the abundance of image datasets, deep learning based SR mod-
els have achieved excellent accuracy results and attracted wide
attention of scholars. Notably, the deep convolution neural net-
work (CNN) model completely outperforms the shallow CNN
model. The deeper network model has a wider receptive field
and can recover high-frequency information of the HR image
by using low-frequency information in a wider spatial range of
an LR image, which makes the edges in the HR image sharper.
The receptive field is usually increased by the convolution lay-
ers with the convolution kernel larger than 1× 1 or a pooling
layer. Since the pooling layer will lose pixel information, the
convolution layer is usually used to deepen the network to ob-
tain a large receptive field for the SR task.

Dong et al. [4] propose a fully CNN-based method called
SRCNN to learn the mapping between LR image blocks and
HR image blocks. The SRCNN consists of three convolu-
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tional layers with filter sizes of 9× 9, 1× 1 and 5× 5, re-
spectively. The first convolution layer maps LR image blocks
to high-dimensional vectors. Then, using another convolution
layer, the LR high-dimensional vectors are mapped to HR
high-dimensional vectors. Finally, the final HR image is recon-
structed using a high-dimensional vector of HR image blocks.
These three steps are based on different principles but can be
done with the same CNN. Nevertheless, only one CNN is used
to obtain the mapping from the LR image to the feature map,
and the ability of feature extraction is limited. In addition, be-
cause the entire network has only three convolutional layers,
nonlinear mapping capability is limited.

Kim et al. present the VDSR [5] on the basis of SRCNN. All
filters of convolutional layers are set to 3×3. The receptive field
of the network is proportional to the depth. The receptive field is
(2D+1)× (2D+1) when the depth is D. Hari et al. found that
the SR method based on a forward propagation network can
not completely solve the problem of interdependence between
LR and HR images at a large scale. Therefore, a deep back-
projection network (DBPN) [6] is designed, which can achieve
better performance in large-scale reconstruction. Because the
depth of VDSR is too deep and the parameters of the network
are excessive, it is difficult to train. Kim et al. [7] came up with
a deeply-recursive convolutional network (DRCN) to recurse
the single convolution layer of the mapping part. The output
feature map of each recursion is connected to the reconstruction
network through the skip connection to obtain the intermediate
reconstruction result. Finally, The HR image can be obtained by
weighted summation of all intermediate reconstruction results.
The DRCN uses recursive techniques in the inference network
to avoid introducing too many parameters in the model. Al-
though the pre-operation of SRCNN, VDSR and DRCN only
uses bicubic interpolation (BI), it still increases computational
complexity and introduces artificial noise.
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Tai et al. [8] proposed a memory block structure and built
the MEMNET. With the increase of network depth, the feature
maps of different convolutional layers have different receptive
fields. Therefore, the feature maps in deep networks are hier-
archical. Objects in different images have different scales, and
the hierarchical feature map also provides more information for
reconstruction. Based on the above theory, Zhang et al. [9] pre-
sented the RDN model, which introduces dense connections to
make full use of feature maps at different levels.

Yamanaka et al. [10] constructed the DCSCN network, in
which the whole network model is divided into two parts: the
feature extraction network and the reconstruction network. All
convolutional layers of the feature extraction network are con-
nected to the output of the feature extraction network by means
of skip connection. All feature maps are concatenated and out-
put to the reconstruction network. Chen et al. [11] propose
a content-guided deep residual network for single image SR.
The network built a guided residual block through a convolu-
tion network. To train a deeper SR reconstruction network, Lim
et al. [12] constructed the EDSR, which removes the BN layer
in the residual network and introduces the residual scaling fac-
tor to make the training of the model more stable and to achieve
remarkable results. Yang et al. [13] constructed a novel im-
age SR network of multiple attention mechanism (MAMSR),
which includes a channel attention mechanism and a spatial
attention mechanism. Chen et al. [14] presented an extended
layer named enhanced cycle residual block (CRB), and then
developed a lightweight network with CRB as the feature infer-
ence layer. It improves feature expression ability by alternating
and multiplexing convolutional layers without increasing pa-
rameters. Although the deeper convolution neural network can
bring about a larger receptive field, this will also increase the
amount of calculation required, make the training difficult and
reduce efficiency. In addition, the feature information obtained
by each channel plays a different and important role in detail
recovery during the SR process. Yang et al. [15] developed
a multi-branch attention SR model, which can boast excellent
performance.

In this paper, to better extract feature maps from LR images
and recover high-frequency information in the HR images, we
propose a new SR algorithm based on CNN using hierarchical
features.

2. DCSCN ALGORITHM
The model of DCSCN [10] can be divided into two parts, which
are the feature extraction network and the reconstruction net-
work. It is shown in Fig. 1. The feature extraction network of
DCSCN is a directed acyclic structure. The output of the previ-
ous CNN is used as the input of the next CNN. The feature map
of each convolution layer is directly connected to the output
of the feature extraction network by means of skip connection.
The output feature map of the feature extraction network can be
expressed as [F1,F2, . . . ,Fi].

In DCSCN, 7 CNNs with filter size of 3× 3 are used in the
feature extraction network. The number of filters in each CNN
is reduced from 96 to 32. The detailed DCSCN network model
is shown in Table 1.

Table 1
Number of filters in DCSCN model

Net
Feature extraction network Reconstruction network

1 2 3 4 5 6 7 A1 B1 B2 L

DCSCN 96 76 65 55 47 39 32 64 32 32 4

cDCSCN 32 26 22 18 14 11 8 24 8 8 4

DCSCN constructs a parallel CNN structure similar to Net-
work in Network. The output feature maps of two paths in
parallel are concatenated, which is expressed as [FA,FB]. The
dimension of [FA,FB] is reduced to the dimension of HR by
a 1× 1 CNN. Because the input and output of the network are
highly similar, DCSCN introduces a residual network to con-
nect the input LR image to the output of the reconstructed net-
work through the BI operation. Then the output of the network
is r = ŷ− x.

Fig. 1. Structure of DCSCN network
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The output of DCSCN is ŷ = r − x. We adopt the mean
squared error between the predicted output and the ground truth
as the loss function.

3. THE PROPOSED METHOD
In this section, we describe the ideas for designing our network
structure and the details for training the network.

3.1. Model structure
The proposed network of this paper is divided into two parts:
the feature extraction network and the reconstruction network.
The feature extraction network is divided into the feature ex-
traction part and the feature fusion part. The feature extraction
part adopts i identical convolutional layers. The feature fusion
part is composed of a 1×1 CNN and a 3×3 CNN. The recon-
struction network consists of an up-sample operator and a con-
volution layer (Fig. 2).

The output of CNN in the feature extraction network can be
represented as:

Fi = σ
(
Wi[F1,F2, . . . ,Fi−1]+Bi

)
, (1)

where Fi is the output feature map of the i-th layer, Wi is the fil-
ter of the i-th layer, Bi is the bias, σ denotes activation function
PReLU, and [F1,F2, . . . ,Fi−1] is the input of layer i, which is the
concatenation of the outputs of the previous layer.

The depth of the network in the SR task has deepened in
the past few years. The structure of feature maps of different
layers has different levels with different receptive fields, which
is called hierarchical. SRCNN and VDSR only use the feature
maps of the last layer of the network, which do not make good
use of the information of the feature map of the middle con-
volution layer. The hierarchical feature maps can provide more
clues for the reconstruction of the HR image, which is advan-
tageous for obtaining better reconstruct accuracy. All feature
maps of layers in our feature extraction part are concatenated
as [F1,F2, . . . ,Fi], i.e. output to the feature fusion part.

Because the dimension of the feature map [F1,F2, . . . ,Fi]
is too excessive, computational complexity is significantly in-
creased. To solve this problem, we introduce the 1×1 CNN to

adaptively control the information saved in FDF , which can be
given as:

FDF = σ
(
W ∗ [F0,F1, . . . ,Fi]+b

)
, (2)

where W is the G CNN filters with size 1×1× (G× i), and σ

is the activation function of PReLU.
The convolution layer of 1× 1 CNN integrates information

from different channels of the feature map. Then the 3×3 con-
volution is used to extract feature maps from fused hierarchical
feature maps. The output of the entire feature extraction net-
work is expressed as Fout.

After the feature maps are extracted in the feature extrac-
tion network with LR spatial size, the sub-pixel convolutional
neural network is adopted as the up-sample operator, which is
expressed as IUP = FL(Fout) = PS(WL ∗ f L−1(Fout) + bL). Fi-
nally, a 3× 3 CNN is used to get the final HR image ISR =
σ(W ∗ IUP +b).

3.2. Feature extraction network
Feature extraction is crucial for SR tasks. How to extract the
low-level local features and preserve the useful texture infor-
mation has been the focus of SR research.

The feature extraction operation usually uses the CNN cas-
cade to obtain the feature maps of different receptive fields. The
feature maps obtained by the different layers have different re-
ceptive fields and contain the image information with a different
scale. Many traditional SR methods, such as VDSR, SRCNN
and DRCN, are one-way structures which achieve good recon-
struction accuracy. However, they do not make full use of the
information contained in all the feature maps of the feature ex-
traction network in the model.

MemNet [10] proposes the short-term memory to describe
the phenomenon showing that a CNN layer is only affected by
the previous connected layer directly in a single-path network.
Some other methods, such as RED [16] and SRResNET [17],
use a skip connection to connect the feature map of a CNN
to a specific convolutional layer. MemNet [10] introduces re-
stricted long-term memory to describe the phenomenon that
one CNN could be affected by one particular previous CNN.
Based on the above, MEMNET constructs the structure of the

Fig. 2. Proposed network structure
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memory block and densely connects it, which is described as
long-term memory. The DCSCN adopts a similar structure to
connect the feature maps of each CNN in the feature extrac-
tion network to the end of the feature extraction network and
to concatenate them. Then the weights are adaptively learned
to adjust the retention information of hierarchical feature maps.
Such a structure enables the feature maps on different levels
to be used in the reconstructive process. However, the CNN in
the feature extraction network is still only affected by only one
specific previous CNN. At the stage of feature extraction, the
information contained in the hierarchical feature maps cannot
be fully utilized to enhance the reconstructive effect.

The feature extraction network in our network adopts the idea
of densely connected networks [18], which connects the feature
map of one CNN in the feature extraction part to each subse-
quent CNN. It is beneficial to the forward propagation of the
feature map and the backpropagation of the gradients. Mean-
while, the CNN in the feature extraction part can also utilize the
information of the hierarchical feature maps with the hierarchi-
cal receptive filed. The dense connection enables the low-level
feature map to become the input of the CNNs at later positions
in the network. As a result, the input of the CNN itself contains
the information of the low-level feature map. According to the
above analysis, it is not necessary to decrease the number of the
filter in the light of the gradual increase of model depth. The
number of filters in the feature extraction part of our method is
fixed to G.

Because all feature maps in the feature extraction part are
concatenated, the dimension of feature maps is too large. If
[F1,F2, . . . ,Fi] is directly output to the reconstruction network,
the calculation complexity is too heavy and real-time perfor-
mance is poor. It is difficult to apply convergence in training.
Considering that the computation of 1× 1 CNN is only one-
ninth of 3×3 CNN, we use the 1×1 convolution at the end of
the feature extraction network to reduce the size of the feature
maps from G× i to G. With just a small amount of information
lost, it greatly reduces computational complexity and fuses the
information in feature maps across channels. In addition, the
1×1 convolution can enhance the mapping ability of the entire
network.

3.3. Reconstruction network
The up-sample operator in the classical model is mainly divided
into the following three categories: 1. The LR image is directly
input into the network following BI operation. The input image
already has the same spatial size of the HR image. 2. The de-
convolution layer is used as the up-sample operator [19]. The-
oretically, using the specific deconvolution layer after training
will get better results than using a prefixed up-sample operator.
3. We can use a large number of CNN in an LR image to get
a large number of feature maps, and then the sub-pixel convo-
lutional layer is used to change the spatial size and dimension
of the feature maps.

In our method, we chose the sub-pixel convolutional neural
network to be the reconstruction network.

Since 1×1 CNN has reduced the dimension of feature maps
in the feature extraction network, the parallel structure is not

indispensable. We chose a sub-pixel convolutional layer [20] to
reconstruct iup. In ESPCN [20], the output of the sub-pixel con-
volutional layer is directly used as the reconstruction result. In
our method, a 3×3 convolutional layer is added. The dimension
of iup is C, which hardly increases computational complexity.
The reconstructed network has better nonlinear mapping ability
so that it can provide better reconstruction results.

3.4. Training
The deep learning network can be trained to get the map from
LR to HR. The expected output of the network is as close as
possible to the ground truth. In SR methods based on deep
learning, both loss function and model structure have a signifi-
cant influence on the SR task. In the training phase, the quality
of the network structure and loss function will directly affect
whether the model can converge to the expected mapping. Also,
the computational complexity of the model will affect the real-
time performance of the reconstruction.

A single RTX2080Ti graphics card (11GB memory) was
used in training. Ubuntu 18.4 system, Pytorch 1.1.0, CUDA
10.0, and cuDNN 7.5.0 are all exploited as deep learning frame-
works. The training dataset is defined as {x(i),y(i)}N

i=1, where
N represents the number of training images. The process of
training is to find optimal parameters θ so that the function
ŷ = f (xiθ) and yi of the model are as close as possible. The
definition of the loss function has a critical impact on the train-
ing model and the optimal solution of the model parameters.
Intuitively, MSE can be an excellent loss function for obtaining
high PSNR. Our method chooses MSE as the primary item of
the loss function, which is given as:

l(θ) =
1

2N

N

∑
i=1

∥∥∥y(i)− ŷ(i)
∥∥∥2

. (3)

To avoid over-fitting, the L2 norm of the CNN filters is fur-
ther added to the loss function as a regularization term. The final
loss function is given as:

L(θ) =
N

∑
i=1

1
N

∥∥∥y(i)− ŷ(i)
∥∥∥2

+β‖θ‖2, (4)

where β is constant.

4. EXPERIMENTS
BSD100 [21] is a data set provided by the University of Cali-
fornia, Berkeley. It is mainly used in image segmentation and
contour detection. Because of the complex content and rich
scenes of images in the data sets, BSD100 is also often used
in the test set of image SR reconstruction. To verify the valid-
ity of the model, we take SET5 [22], SET14 [23], BSD100,
Urban100 [24] and DIV2K [25] dataset as the test image.
We chose BI, Aplus [26], SelfExSR [27], SRCNN [4], Lap-
SRN [28], DRCN [7], DRRN [29], VDSR [5], MemNet [10],
TSCN [30], EDSR [12] and DBPN [6] as the comparison al-
gorithm, and performed detailed comparative experiments with
PSNR, SSIM and human visual effect.
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4.1. Preprocessing
The recent DIV2K dataset [25] published by Timofte is an HR
(2k resolution) image dataset for image restoration. The DIV2K
contains 800 training images, 100 validation images, and 100
test images. In this paper, DIV2K is selected as the training
dataset of the network.

Since the SR task is not sensitive to the direction of the train-
ing image, the training images are horizontally and vertically
reversed and rotated 90 degrees to augment the dataset. There-
fore, the training dataset in our method is preprocessed to con-
tain 3200 images.

4.2. Implementation details
In our model, the filter size of all convolutional layers except
for the 1× 1 convolutional layer is set to 3× 3. The depth i of
the feature extraction part is set to 8. The number of convolu-
tion filters G is set to 64. The CNN with filter size 3×3 in the
model is padded with 0 to keep the spatial size of the feature
map unchanged. The up-sample operator uses subpixel convo-
lutional neural network [20] to obtain the HR image from the
fused feature map.

In the initialization of CNN, the bias term and the PReLU
are set to zero. ADAM algorithm is used as the optimizer and
the initial learning rate is set to 0.002. During the training pro-
cess, the learning rate is divided by two while the loss is not
descended in five continuous epochs. When the learning rate is
lower than 0.00002, the entire training process is stopped.

A single RTX2080Ti graphics card (11GB memory) is used
for the training. Ubuntu 18.4 system, Pytorch 1.1.0, CUDA 10.0
and cuDNN 7.5.0 are all exploited as deep learning frameworks.

4.3. Model convergence
Our deep SR model performs well in convergence, as shown in
Fig. 3. In our model, the mean square error is chosen as the loss
function. The PSNR increases rapidly in 10 epochs after train-
ing. Then, it fluctuates considerably between 10 and 40 epochs.
We believe that this is due to the retention and abandonment of
different levels of feature maps caused by the 1×1 convolution
layer in the weight updating process. Overall, with the increase
of epoch, PSNR continues to improve and remains stable until
50 epochs. This reflects the fast convergence performance.

Fig. 3. Convergence of our method

4.4. Feature extraction and fusion
Given an input image, using our pre-training model, we can use
different thresholds to get visual results and compare them with
DCSCN. The experimental results are shown in Fig. 4.

Fig. 4. Image sample in feature fusion and feature extraction

It can be seen that the feature extraction of the DCSCN algo-
rithm exhibits a high level of randomness, resulting in the lack
of some details of the characters identified in the final feature
fusion. Although our model adopts i convolution layers with the
same number as DCSCN in the feature extraction part, it can
add the spatial correlation of predicted features through train-
ing, which can provide more details in the final feature fusion.

4.5. Comparison of objective criteria
The peak signal-to-noise ratio (PSNR) is an essential metric for
quantitatively evaluating the accuracy of an SISR task, which
is adopted as one of the indicators of reconstruction accuracy.
The PSNR is defined as:

PSNR = 10log10
MN∥∥ f − f̂

∥∥2 ,

where M, N is the image spatial size, f is the ground truth, and f̂
is the output reconstructive image provided by our algorithm. In
the experiment, the BI, SRCNN, DRCN, VDSR, DCSCN and
our algorithm are used to reconstruct the image on the same
test set.

For the visual effect observed by the human eye, the lumi-
nance component is more critical. Therefore, in our experi-
ments, the RGB image is converted to Ycbcr in the first place.
Only the luminance component is reconstructed by the pro-
posed algorithm. The blue-difference and the red-difference
chroma components adopt BI for reconstruction. Finally, the
reconstructed luminance component, blue-difference and red-
difference chroma components are converted back to RGB
space to obtain the reconstructed HR image.
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Table 2 shows PSNR and SSIM results of the comparison
experiments on Set5, set14, B100, urban100 and div2k data sets
when the magnification scale is ×2, ×3, and ×4. Red and blue
indicate the best and second-best performance, respectively. It
can be seen from the table that our algorithm has achieved the
best performance in most cases, especially when the scale is
×4. In a few cases, PSNR and SSIM of our model is slightly
lower than that of EDSR.

Figure 5 shows the performance comparison between our al-
gorithm and some SR models of different sizes. Those are im-
plemented in the magnification factor of×4 on Manga 109 [31].
As can be seen from the Figure, when compared with the exist-
ing algorithms EDSR, RDN and DBPN, our model has obvious
advantages in PSNR, and the parameters of our model are not
too many. Therefore, the results show that the size of our model
is small but the effect provided is excellent.

Table 2
Comparison of the reconstruction effects of our method and several state-of-the-art SISR methods on Set5, Set14, B100, Urban100 and DIV2K.

Red and blue indicate the best and second-best performance

Scale Method
Set5

PSNR/SSIM
Set14

PSNR/SSIM
B100

PSNR/SSIM
Urban100

PSNR/SSIM

DIV2k
validation

PSNR/SSIM

×2

BI 33.66 / 0.9299 30.24 / 0.8688 29.56 / 0.8431 26.88 / 0.8403 31.01 / 0.9393
Aplus [26] 36.54 / 0.9544 32.28 / 0.9056 31.21 / 0.8863 29.20 / 0.8938 32.89 / 0.9570

SelfExSR [27] 36.50 / 0.9536 32.22 / 0.9034 31.17 / 0.8853 29.52 / 0.8965 – / –
SRCNN [4] 36.66 / 0.9542 32.45 / 0.9067 31.36 / 0.8879 29.51 / 0.8946 33.05 / 0.9581

LapSRN [28] 37.44 / 0.9581 32.96 / 0.9117 31.78 / 0.8941 30.39 / 0.9093 – / –
DRCN [7] 37.63 / 0.9588 33.04 / 0.9118 31.85 / 0.8942 30.75 / 0.9133 – / –

DRRN [29] 37.74 / 0.9591 33.23 / 0.9136 32.05 / 0.8973 31.23 / 0.9188 – / –
VDSR [5] 37.53 / 0.9587 33.03 / 0.9124 31.90 / 0.8960 30.76 / 0.9140 33.66 / 0.9625

MemNet [10] 37.78 / 0.9597 33.28 / 0.9142 32.08 / 0.8978 31.31 / 0.9195 – / –
TSCN [30] 37.88 / 0.9602 33.28/ 0.9147 32.09 / 0.8985 31.29 / 0.9198 – / –
DBPN [6] 38.09 / 0.9600 33.85 / 0.9190 32.27 / 0.9000 32.55 / 0.9324 – / –
EDSR [12] 38.11 / 0.9602 33.92 / 0.9195 32.32 / 0.9013 32.93 / 0.9351 – / –

Ours 38.24/0.9611 33.99 / 0.9201 32.34 / 0.9014 32.94 / 0.9349 35.42 / 0.9718

×3

BI 30.39 / 0.8682 27.55 / 0.7742 27.21 / 0.7385 24.46 / 0.7349 28.22 / 0.8906
Aplus [26] 32.58 / 0.9088 29.13 / 0.8188 28.29 / 0.7835 26.03 / 0.7973 29.50 / 0.9116

SelfExSR [27] 32.64 / 0.9097 29.15 / 0.8196 28.29 / 0.7840 26.46 / 0.8090 – / –
SRCNN [4] 32.75 / 0.9090 29.29 / 0.8215 28.41 / 0.7863 26.24 / 0.7991 29.64 / 0.9138
DRCN [7] 33.82 / 0.9226 29.76 / 0.8311 28.80 / 0.7963 27.15/ 0.8276 – / –

DRRN [29] 34.03 / 0.9244 29.96 / 0.8349 28.95 / 0.8004 27.53 / 0.8378 – / –
VDSR [5] 33.66 / 0.9213 29.77 / 0.8314 28.82 / 0.7976 27.14 / 0.8279 30.09 / 0.9208

MemNet [10] 34.09 / 0.9248 30.00 / 0.8350 28.96 / 0.8001 27.56 / 0.8376 – / –
TSCN [30] 34.18 / 0.9256 29.99 / 0.8351 28.95 / 0.8012 27.46 / 0.8362 – / –
EDSR [12] 34.65 / 0.9282 30.52 / 0.8462 29.25 / 0.8093 28.80 / 0.8653 – / –

Ours 34.73/0.9292 30.51 / 0.8469 29.29 / 0.8104 28.86 / 0.8657 32.07 / 0.9212

×4

BI 28.42 / 0.8104 26.00 / 0.7027 25.96 / 0.6675 23.14 / 0.6577 26.66 / 0.8521
Aplus [26] 30.28 / 0.8603 27.32/ 0.7491 26.82 / 0.7087 24.32 / 0.7183 27.70 / 0.8736

SelfExSR [27] 30.30 / 0.8620 27.38/ 0.7516 26.84 / 0.7106 24.80 / 0.7377 – / –
SRCNN [4] 30.48 / 0.8628 27.50 / 0.7513 26.90 / 0.7103 24.52 / 0.7226 27.78 / 0.8753

LapSRN [28] 31.52/ 0.8854 28.08 / 0.7687 27.31 / 0.7255 25.21 / 0.7545 – / –
DRCN [7] 31.53 / 0.8854 28.03 / 0.7673 27.24 / 0.7233 25.14 / 0.7511 – / –

DRRN [29] 31.68 / 0.8888 28.21 / 0.7721 27.38 / 0.7284 25.44 / 0.7638 – / –
VDSR [5] 31.35/ 0.8838 28.02 / 0.7678 27.29 / 0.7252 25.18/ 0.7525 28.17 / 0.8841

MemNet [10] 31.74 / 0.8893 28.26 / 0.7723 27.40 / 0.7281 25.50 / 0.7630 – / –
TSCN [30] 31.82/ 0.8907 28.28 / 0.7734 27.42 / 0.7301 25.44 / 0.7644 – / –
DBPN [6] 32.47 / 0.8980 28.82 / 0.7860 27.72 / 0.7400 26.38 / 0.7946 – / –
EDSR [12] 32.46 / 0.8968 28.80 / 0.7876 27.71 / 0.7420 26.64 / 0.803 – / –

Ours 32.52 / 0.8975 28.85 / 0.7880 27.79 / 0.7431 26.58 / 0.8044 31.52 / 0.8925
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Fig. 5. Performance of different size models in PSNR with
magnification factor of ×4 on manga 109

4.6. Comparison of visual effect
Figures 6 and 7 present the comparison experiments of images
named “baby” and “butterfly” in Set5 with ×2 magnification
factor. The first column is the original image. From the second
column to the fifth column, there are the reconstructive images
made by Bicubic, SRCNN, DRCN, VDSR, TSCN and our al-
gorithm, respectively. The first row is the images in HR spatial
size. The second row is the images of the zoomed local area.
By enlarging some parts of the image, more texture details can
be observed.

Fig. 6. SR results of “baby” with magnification factor of ×4

Fig. 7. SR results of “butterfly” with magnification factor of ×4

From the “baby” image, we can find that our algorithm pro-
vides competitive accuracy as compared with some state-of-
the-art algorithms such as SRCNN, DRCN, VDSR and TSCN.
Bicubic is a less accurate method. It is almost impossible to
recognize the eyelash texture in the visual observation from the
image reconstructed by Bicubic. From the “butterfly” image,
the black and white textures of the butterfly’s wing shown by

our method are clear and sharp. There is no essential difference
from the ground truth.

Figures 8 and 9 present the comparison experiments of
“Lenna” and “comic” images in Set 14 with the magnification
factor of ×4. Through the figures, in the complex texture areas
such as hair and so on, our algorithm provides a good recon-
struction effect, which proves that the idea of the dense connec-
tion connecting low-level feature maps to the end of the feature
extraction part to preserve detailed information is effective.

Fig. 8. SR results of “Lenna” with the magnification factor of ×4

Fig. 9. SR results of “comic” with the magnification factor of ×4

4.7. Analysis and discussion
From the detailed experiments, we can see that the effect of our
model is excellent, which is mainly due to the following three
points.
• The output of each convolution layer in the feature extrac-

tion network is connected to each subsequent convolution
layer, which makes full use of the feature map of different
levels in the hierarchical feature extraction part.

• Feature map fusion: At the end of the feature extraction net-
work, a 1×1 CNN is used to integrate other channel infor-
mation. Since the input of the 1×1 CNN is the concatena-
tion of all the feature maps of all convolution layers in the
feature extraction network, the most important task of the
cross-channel is to integrate the feature maps of different
levels with a different receptive field. Then, we use a 3×3
CNN to extract the feature map from the fused feature map.

• Sub-pixel convolution is used as the up-sampling operator
to reconstruct the HR image.

5. CONCLUSION
In this paper, we constructed an improved single image SR al-
gorithm based on deep learning. Firstly, our feature extraction
network can make full use of the feature map of different levels
in the hierarchical feature extraction part. Then, the model can
integrate the feature maps of different levels with a different
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receptive field. Finally, in the reconstruction network, the sub-
pixel convolutional neural network is adopted to reduce compu-
tational complexity, which provides better reconstructive accu-
racy than some state-of-the-art methods. Detailed experiments
show that our model outperforms DRCN, VDSR, TSCN and
other classical networks in both PSNR and SSIM. In addition,
our model performs better on human visual perception.

Compared with the DCSCN model, our model is more minia-
turized and efficient, but it is less generalized for some scenes.
In addition, our model can only be reconstructed at a specific
magnification, which limits its application.

Our future work will focus on real-world image degradation
models and image degradation models for special scenes. In
addition, we will design a reconstruction model that can achieve
any multiple, so as to further expand the application scope of
SR technology.
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