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Electric arc models with non-zero residual conductance
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Abstract: This paper describes modifications of the Mayr and Cassie models of the electric
arc. They include the phenomena of increased heat dissipation and non-zero residual con-
ductance when the current passes through zero. The modified models are combined into
a new hybrid model connecting them in parallel and activated by a weight function. Two
cases of functional dependence of models on current intensity and instantaneous conduc-
tance are considered. Mathematical models in differential and integral forms are presented.
On their basis, computer macromodels are created and simulations of processes in circuits
with arc models are performed. The families of static and dynamic arc voltage and current
characteristics are presented.
Key words: Cassie model, electric arc, hybrid model, Mayr model

1. Introduction

The Mayr and Cassie mathematical models of the electric arc are usually described by
ordinary linear differential equations. Due to their limited possibilities to approximate dynamic
arc characteristics in wide ranges of current excitation, they are sometimes combined into a hybrid
model [1]. However, this approach hinders the physical interpretation of simulation results and
complicates the methods of experimental determination of parameters and functions of nonlinear
models [2].

Mayr and Cassie models are special cases of the more general Pentegov model [3]. In this
model, the virtual state current iθ is introduced representing thermal states (temperature) of
the thermal plasma. Due to the simplifying assumptions made, the resulting Pentegov model
contains a time constant, which makes it different from the models taking into account the
non-linear physical effects in the arc [4]. As a result of the weakening of its input assumptions,
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a more general version of the Mayr model was created – the Pentegov model with a non-linear
damping function [5].

In connection with the observed effects of local deformation of static and dynamic voltage
and current characteristics [6], sometimes additional expressions are introduced to previously
developed mathematical models of the arc [7]. However, this behavior can lead to a disturbance
in the equation of the arc energy balance. Therefore, it is advisable to allow for the effects of
characteristics deformation by introducing appropriate expressions at the initial stage of creating
mathematical models [8]. The modified models so obtained are distinguished by the appearance
of new quantities in the form of residual conductance and additional dissipation power [9]. Further
extensions of the applications of these modified models can be achieved by combining them into
a hybrid model.

In most cases, mathematical models in differential form are used to create macromodels of
electric arcs [1–3]. In this way, their sequential structure is represented, consisting of a plasma
column and thin electrode areas. However, for simulating the operating conditions of devices with
highly distorted arcs (e.g. a gliding arc with variable column length [10]) and with higher voltage,
integral models are preferred.

2. Modified Mayr mathematical model and its differential
and integral forms

The input assumptions for creating the modified Mayr model are similar to those adopted for
the classical model [3]. They can be presented as follows:

– Ohm’s law
i
u
=

iθ
U
= g, (1)

– power balance equation
dQ
dt
+Uiθ + PdisM (iθ ) = ui, (2)

– enthalpy distribution of the plasma column relative to its conductance

exp
(

Q
Qp

)
=

g

gp
, (3)

– static characteristics of the column on the assumption PdisM (iθ ) = 0

g = G1M +
i2θ

PM
, (4)

where: i, u, g are the instantaneous values of current, voltage and conductance; iθ is the virtual
state current;U is the static voltage-current characteristic; G1M is the residual conductance value
corresponding to instantaneous power failure, Q is the instantaneous plasma enthalpy value; PM

is the constant power of the Mayr model, PdisM (iθ ) is the dissipation power dependent on the
state current. The base quantities are Qp enthalpy and gp conductance. Determining conductance
using the state current is equivalent to determining using the instantaneous current. In fact, it is
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g = i/u = iθ/U (iθ ). After substituting the expressions (1), (3) and (4) into the power balance
Eq. (2) and after transformations, the modifiedMayr model is obtained in the form of a differential

θM (iθ )
dg
dt
+ g =

i2 + PMG1M
PM + PdisM (iθ )

, (5)

where the damping function is determined by the relationship

θM (iθ ) =
Qp

PM + PdisM (iθ )
, (6)

and the quantity θM (iθ ) represents the damping function dependent on the state current. If
PdisM (iθ ) = const or PdisM (iθ ) � PM , then the damping function can be approximately taken as
a constant quantity θM (iθ ) = θM = const.

The G1M value affects the angle of the tangent to the voltage-current characteristic at the
beginning of the coordinate system (I, U). Let symbol IM =

√
PMGM represent the current,

which is the abscissa of the arc ignition point. The dissipation power is very often assumed to
be dependent on the current PdisM (i) [11] and only sometimes the dependence of conductance
PdisM (g) is used. This leads to differential equations with slightly different forms.

Equation (5) can be converted to an integral form

g = g0 exp


1
θM

t∫
0

(
i2 + PMG1M

PM + PdisM (iθ )
1
g
− 1

)
dτ


. (7)

Two cases can be considered here:
– if G1M = 0 S, then

g = g0 exp


1
θM

t∫
0

(
ui

PM + PdisM (iθ )
− 1

)
dτ


, (8)

– if PdisM (iθ ) = 0 W, then

g = g0 exp


1
θM

t∫
0

(
ui

PM
− 1 +

G1M
g

)
dτ


. (9)

3. Modified Cassie mathematical model and its differential
and integral forms

The input assumptions for creating the modified Cassie model are similar to those adopted
for the classical model [3]. They can be presented as follows:

– Ohm’s law (1),
– power balance equation

dQ
dt
+UI + PdisC (iθ ) = ui, (10)
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– distribution of plasma enthalpy in relation to its conductance

Q
Qp
=

g

gp
, (11)

– static characteristics of the column with the assumption PdisC (iθ ) = 0

g = G1C +
I

UC
, (12)

where: G1C is the residual conductance corresponding to instantaneous power failure, UC is
the Cassie’s constant voltage value, PdisC (iθ ) is the instantaneous value of dissipated power
depending on the current. After substituting expressions (1), (11) and (12) into power balance
Eq. (10) and after appropriate transformations, a modified Cassie model can be obtained in the
form of a differential equation

θC
dg2

dt
+ (g − G1C )2 =

i2 − PdisC (iθ )g
U2
C

, (13)

where the time constant is determined by

θC =
Qp

2gpUC
. (14)

As can be seen, this is a non-linear model. Unlike the classic Cassie model, there may be (if
PdisC (iθ ) = 0) W a reduction of the ignition voltage to zero. The G1C value affects the angle of
the tangent to the voltage-current characteristic at the beginning of the coordinate system (I, U).
Here, too, the dissipation power dependence on the PdisC (iθ ) current intensity is often used [11].
Only sometimes PdisC (g) conductance dependence is used [9]. This leads to differential equations
with slightly different forms.

Equation (13) can be converted to an integral form

g = g0 exp


1
2θC

t∫
0

*.
,

u2 − PdisC (iθ )
g

U2
C

−

(
1 −

G1C
g

)2+/
-

dτ

. (15)

Two cases can be considered here:
– if G1C = 0 S, then

g = g0 exp


1
2θC

t∫
0

*.
,

u2 − PdisC (iθ )
g

U2
C

− 1+/
-

dτ

, (16)

– if PdisC (iθ ) = 0 W, then

g = g0 exp


1
2θC

t∫
0

*
,

u2

U2
C

−

(
1 −

G1C
g

)2
+
-

dτ

. (17)
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4. Modified hybrid mathematical model and its differential
and integral form

In order to create a hybrid model, two passive components are connected in parallel with the
conductances described by the modified Mayr (5) and Cassie (13) models with the assumption
G1C = 0 S

gM = g =
i2 + PMG1M

PM + PdisM (iθ )
− θM

dg
dt
, if |i | < I0 , (18)

gC = g =
ui − PdisC (iθ )

U2
C

− 2θC
dg
dt
, if |i | ≥ I0 , (19)

where I0 is the current, which corresponds to a smooth switching between models. Models are
activated by the weight function ε(iθ )

g = ε(◦)gM + [1 − ε(◦)] gC . (20)

This function takes the boundary values ε(0) = 1 and ε(∞) = 0. The argument to this function
is most typically the instantaneous current, resulting in the relationship ε(i). Sometimes due to
the time shift of the arc dynamic characteristics relative to the current, it is more advantageous to
use the conductance g as an argument of the weight function ε(g). The modified hybrid model
can be presented in the differential form

g = ε(iθ )
i2 + PMG1M

PM + PdisM (iθ )
+ [1 − ε(iθ )]

ui − PdisC (iθ )
U2
C

− θ(iθ )
dg
dt
, (21)

or after introducing I2
M = PMGM the following can be obtained

g = ε(iθ )
i2 + I2

M

PM + PdisM (iθ )
+ [1 − ε(iθ )]

ui − PdisC (iθ )
U2
C

− θ(iθ )
dg
dt
. (22)

If the damping function is dependent on the instantaneous current, we obtain

θ(i) =



θM, if i < I0

2θC, if i ≥ I0
, (23)

and if it is dependent on the conductance g we obtain

θ(g) =



θM, if g < G0

2θC, if g ≥ G0
. (24)

The double value of the time constant 2θC results from the transformation of the originalCassie
linear model [1]. Based on the results of physical experiments [4] and computer simulations [1],
it can be assumed that inequality occurs θM � 2θC .

Due to the weight function, the residual conductance in the Cassie submodel (G1C = 0 S) was
omitted. In the case of simplified sub-models, assuming the condition (PdisM = 0 W, PdisC = 0 W)
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and comparing static characteristics (4) and (12), one can obtain the formula for the switching
current of the sub-models

I0 =
1
2
*.
,

PM

UC
+

√(
PM

UC

)2
− 4PMG1M

+/
-
. (25)

If, at the intersection point of the static characteristics of the sub-model, the influence of the
residual conductance of the Mayr sub-model (G1M = 0 S) is additionally omitted, then we obtain
a simple relationship I0 = PMU−1

C . The point (I0, UC ) will correspond to the G0 conductance of
the switching between the sub-models

G0 =
I0

UC
. (26)

The differential model, (22), can be converted to an integral form

g = g0 exp



t∫
0

1
θ(iθ )


ε(iθ )

ui + I2
M/g

PM + PdisM (iθ )

+ [1 − ε(iθ )]
u2 − PdisC (iθ )/g

U2
C

− 1


dτ


. (27)

Depending on the type of electric arc and the required accuracy of approximation, the function
ε may have a different analytical form. In [1], the weight function obtained using the Gaussian
curve was assumed

ε′(i) = exp *
,
−

i2

I2
0

+
-
. (28)

It corresponds to weight function in the form

ε′′(g) = exp
(
−
g

g0

)
. (29)

Due to the significant difference in the time values of sub-models (5) and (13) and the strong
physical non-linearity of the damping function [4], it is approximated by the function θ (iθ ). It
can be expressed by dependence [1]

θ ′(i) = θi0 + θi1 exp (−αi |i |) ≈



θi1, if |i | is low
θi0, if |i | is large

, (30)

where αi > 0 s, θi1 > θi0 > 0 s are the constant approximation coefficients. A variant of the
damping function often more similar to real physical phenomena can be given in the following
form:

θ ′′(g) = θg0 + θg1 exp
(
−αgg

)
≈



θg1, if g is low
θg0, if g is large

, (31)
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where αg > 0 s, θg1 > θg0 > 0 s are the constant approximation coefficients. In practice, it is
usually assumed to simultaneously depend on two functions of the hybrid model (i.e. the weight
and damping functions) either on current or on conductance.

In quasi-static states of the electric arc burning while the current is being gradually reduced,
after it reaches the critical value of Imin, loss of stability and quenching of the arc occurs. If
external factors supporting ionized plasma in the inter-electrode area do not work (e.g. auxiliary
arc, strong laser radiation, high electric field intensity), then the residual conductance values are
zero (G1M = 0 S, G1C = 0 S).

5. Families of model static voltage-current characteristics of the modified
Mayr model of the electric arc

On the basis of assumptions (1) and (4) of the modified Mayr model, a formula for the
voltage on the column can be obtained, when no distortions on the part of the dissipated power
PdisM (iθ ) = 0 occur, corresponding to the static characteristics when iθ = I

U =
I

G1M +
I2

PM

. (32)

Curves of static characteristics of the modified Mayr model (32) are shown in Fig. 1. The
impact of gradual changes in PM power and residual conductance G1M is considered here. The
range of current changes is from 0 to 20 A. It can be seen that an increase in the PM parameter
leads to an increase in characteristics and a slight shift to the right, which results in an increase in
arc power and voltage (ignition) extremes. It is achieved with slightly higher currents. However,
an increase in G1W conductance reduces the ignition voltage. This is accompanied by a shift to
the right of the extreme voltage values.

However, under the conditions of increased power dissipation, Formula (5) is obtained

U =
I (PM + PdisM (I))

I2 + PMG1M
. (33)

So, Formula (32) is a special case of Formula (33).
Assume that the residual conductance G1M = 0 S. Then Formula (33) simplifies to the form

UI = PM + PdisM (I). (34)

Assume static voltage-current characteristics in the form

U =
PM

I
+ aM1I + aM2I2, (35)

where constant coefficients are expressed in units: ai1 in Ω, ai2 in VA−2. Then the characteristics
of additional dissipated power will be described by

PdisM (I) = I
(
aM1I + aM2I2

)
. (36)
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(a) (b)
Fig. 1. Model static voltage-current characteristics families described by Formula (29): (a) depending
on changes in the PM parameter (G1M = 0.01 S); (b) depending on changes in the G1M parameter

(PM = 500 W)

The G1M residual conductance has a significant impact on the shape of the voltage-current
characteristics in the range of very small current values. However, raising these characteristics
is accompanied by an increased PdisM dissipation power in the range of strong current [6].
Therefore, if you consider Formula (36), then from (33) you can get the explicit form of static
characteristics

U =
I
[
PM + I

(
aM1I + aM2I2

)]
I2 + PMG1M

. (37)

Figure 2 shows the graphs of model static characteristics (37) of the modified Mayr model.
Here, the effects of gradual changes of selected parameters were taken into account: PM power,
residual conductance G1M and approximation coefficients of additional dissipated power aM1
and aM2. The range of current changes is from 0 to 20 A. It can be seen that the increase in the
PM power index leads to an increase in extreme voltage values and their shift towards higher
currents, which results in an increase in arc power. An increase in residual conductance leads to
a decrease in extreme voltage values, which in turn leads to a reduction in power in the range of
weaker currents. The increase in the value of the aM1 factor causes the voltage curves to rise in
the range of strong currents. At the same time, these characteristics become close to linear. The
extreme voltage value only increases slightly. The increase of the aM2 coefficient also causes the
increase of the characteristics in the high-current range. At the same time, these characteristics
become close to parabolic. In comparison with the previous case, the extreme voltage value is
even smaller.
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(a) (b)

(c) (d)

Fig. 2. The families of model static voltage-current characteristics of the modified Mayr model described by
Formula (36): (a) depending on changes in the parameter PM (G1M = 0.005 S, aM1 = 0.1 V, aM2 = 0.2Ω);
(b) depending on changes in residual conductance GM (PM = 500 W, aM1 = 0.1 V, aM2 = 0.2 Ω);
(c) depending on changes in the approximation parameter aM1 (PM = 500 W,G1M = 0.001 S, aM2 = 0Ω);
(d) depending on changes in the approximation parameter aM2(PM = 500 W, G1M = 0.001 S, aM1 = 0 V)

6. Families of model static voltage-current characteristics of the modified
Cassie model of the electric arc

On the basis of Formulas (1) and (12) the assumed dependence on the voltage of the modified
Cassie model can be obtained, representing the static characteristics for iθ = I, when there is no
distortion on the part of the dissipated power from the column

U =
I

G1C +
I

UC

. (38)
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Graphs of model static characteristics, determined by Formula (38), of the modified Cassie
model are shown in Fig. 3. The impact of gradual changes inUC voltage and residual conductance
G1C is included here. The range of current changes is from 0 to 200 A. As can be observed, the
gradual increase in voltage UC leads to an increase in characteristics while maintaining the effect
of reducing the ignition voltage. In contrast, the increase in residual conductance causes a decrease
in the angle of the tangent to the static characteristic at the beginning of the coordinate system
while maintaining the voltage value in the high-current range.

(a) (b)

Fig. 3. Model static voltage-current characteristics families of the modified Cassie model described by
Formula (37): (a) depending on changes in the UC parameter (G1C = 0.01 S); (b) depending on changes in

the G1C parameter (U1C = 50 V)

If the additional dissipating power is taken into account, then it is possible to obtain the
implicit formula for the static voltage of the arc column on the basis of (13).

(
I
U
− G1C

)2
=

I2 − PdisC (I)
I
U

U2
C

. (39)

Thus, Formula (38) is a special case of (39) in the absence of additional dissipation. Since
the analysis of Formula (39) is quite complex, we will consider its simple cases.

Suppose the residual conductance is G1C = 0 S. Then Formula (39) becomes simplified as

(
I
U

)2
=

I2 − PdisC (I)
I
U

U2
C

. (40)

Let the given static characteristics of the arc model have a general form

U = UC +Ud (I). (41)

Then after substituting (41) into (40) and solving this equation with respect to PdisC (I) we get

PdisC (I) =
2UC +Ud (I)
UC +Ud (I)

Ud (I)I, (42)
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which indicates the possibility that the impact of modifying the model static voltage-current
characteristics on the additional dissipated power is more complicated than it follows from
Mayr model. Using this relationship ensures that the arc column’s power balance is satisfied
Pcol (I) = PC (I) + Pdis (I).

Let’s assume static voltage-current characteristics in a special form

U (I) = UC + aC1I + aC2I2, (43)

where constant coefficients are expressed in units: aC1 in Ω, aC2 in VA−2. Then, based on (41),
the characteristics of additional dissipated power will be approximated by the relationship

PdisC (I) =
2UC + aC1I + aC2I2

UC + aC1I + aC2I2

(
aC1I + aC2I2

)
I . (44)

The G1C residual conductance has a significant impact on the shape of the model voltage-
current characteristics in the range of very small current values. However, increasing these
characteristics in the range of strong current is accompanied by increased PdisC dissipation
power [5].

Figure 4 shows families of model static voltage-current and power-current characteristics. To
obtain them, dependencies (43) and (44) were used. They indicate that it is possible to approximate
the characteristics of high-current arcs using the formulas presented.

(a) (b)

Fig. 4. Electrical characteristics of the arc described by the modified Cassie model with increased dissipation
power: (a) model voltage-current characteristics; (b) power-current characteristics (G1C = 0 S,

aC1 = 0.001 Ω, aC2 = 0.002 VA−2)

The formula determining the static characteristics of a hybrid model depends on the form of
the weight function and is fairly complex. In the case of increased dissipation power, described
by functional dependency (36) or (44), it becomes even more complicated. Therefore, in further
considerations the problem of analytical determination of static characteristics of such models
was omitted.
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7. Results of simulation tests of dynamic states in a circuit
with modified models of electric arc

Simulations were carried out of to test the approximation potential of the proposed modified
mathematical models of the electric arc. To this end, macromodels of the arc were created in
several versions. In two equivalent versions, either the differential form or the integral form
of the mathematical model was used. Non-linear functions (ε, θ) in these macromodels were
dependent on either the electric current iθ or the arc column conductance value g. A mixed
dependence of non-linear functions on g and iθ was also used. The sum of the electrode voltage
drops UAC = 16 V. A current source generating a 50 Hz sine wave was used as forcing in the arc
circuit. For the modified Mayr model, the current of 20 A was used, and for the modified Cassie
model and the modified Mayr–Cassie model, the current of 200 A was used. The calculations
were made using the standard trapezoids rule method of numerical integration (ode23t mod
sttiff/Trapezoidal) with a variable step (max. step size 10−4, min step size 10−6).

Unlike static characteristics, currents with a variable flow direction are most often used to
display dynamic characteristics. If we use alternating current (and not the state current iθ ) in the
formulas for mathematical models of the arc, then its properties should be taken into account in
the functions determining the additional dissipated power (PdisM ( |i |), PdisC ( |i |)).

Figure 5 shows the families of dynamic voltage-current characteristics obtained using the
modified Mayr model in equivalent differential (5) and integral (7) forms. It can be seen that
the increase in PM power leads to a change in the shape of the characteristics while maintaining
their central symmetry. The ignition voltage and RMS voltage increase. The increase in G1M
residual conductance causes changes in the shape of the characteristics, still preserving the
central symmetry. A reduction in ignition voltage and arc RMS voltage is obtained. An increase
in the aM1 approximation coefficient leads to loop deformation, with the central symmetry being
preserved. Fragments of voltage characteristics rise, especially in the range of stronger currents.
The ignition voltage increases slightly. In the case of aM2 increase, the ignition voltage increases
only slightly. However, the largest increase in the instantaneous voltage value occurs in the range
of stronger currents. To obtain the characteristics shown in Figs. 5(a) and 5(b), macromodels were
created based on the differential models. Macromodels created on the basis of equivalent models
in the integral form were used to obtain the characteristics shown in Figs. 5(c) and 5(d).

Figure 6 shows the families of dynamic voltage-current characteristics obtained using the
modified Cassie model in the equivalent differential (13) and integral (15) forms. It can be
seen that the increase in voltage UC leads to a change in the shape of the characteristics while
maintaining their central symmetry. The ignition voltage and RMS voltage increase. The increase
in G1C residual conductance causes changes in the shape of the characteristics, preserving the
central symmetry. A reduction in ignition voltage and arc RMS voltage is obtained. An increase
in the approximation coefficient aC1 leads to loop deformation while maintaining their central
symmetry. Curves rise, especially in the stronger current range. The ignition voltage increases
slightly. In the case of aC2 increase, the shape the characteristics changes, maintaining their
central symmetry. The ignition voltage in the low current range increases slightly. However,
the largest increase in the instantaneous voltage value occurs in the range of stronger currents.
It may even exceed the ignition voltage in the low current range. To obtain the characteristics
shown in Figs. 6(a) and 6(b), macromodels based on differential models were used, and for
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(a) (b)

(c) (d)

Fig. 5. Families of dynamic voltage and current characteristics of an electric arc described by the modified
Mayr model: (a) in the differential form with parameters (G1M = 0.01 S, aM1 = 0.1 V, aM2 = 0.1 Ω,
θM = 5 · 10−4 s); (b) in the differential form with parameters (PM = 500 W, aM1 = 0.1 V, aM2 = 0.1 Ω,
θM = 3 · 10−4 s); (c) in the integral form with parameters (PM = 600 W, G1M = 0.001 S, aM2 = 0 V,
θM = 5 · 10−4 s); (d) in the integral form with parameters (PM = 500 W, G1M = 0.001 S,aM1 = 0.1 V,

θM = 2 · 10−4 s)

the characteristics shown in Figs. 6(c) and 6(d) macromodels were created based on equivalent
models in the integral form.

Figure 7 shows the families of dynamic voltage-current characteristics obtained using the
modified Mayr–Cassie hybrid model in the equivalent differential (22) and integral (27) forms.
The values of nonlinear functions ε′, θ ′ depended on the current according to (28) and (30). It
can be observed that the increase in PM power leads to a change in the shape of the characteristics
while maintaining their central symmetry. First of all, the ignition voltage is increased. Increasing



832 Antoni Sawicki Arch. Elect. Eng.

(a) (b)

(c) (d)

Fig. 6. Families of dynamic voltage and current characteristics of an electric arc described by a modified
Cassiemodel: (a) in the differential formwith parameters (G1C = 0.01 S, aC1 = 0.001 V, aC2 = 0.00015Ω,
θC = 2 · 10−4 s); (b) in the differential form with parameters (UC = 80 V, aC1 = 0.001 V, aC2 = 0.0001Ω,
θC = 2 · 10−4 s); (c) in the integral form with parameters (UC = 80 V, G1C = 0.01 S, aC2 = 0 Ω,
θC = 2 · 10−4 s); (d) in the integral form with parameters (UC = 80 V, G1C = 0.01 S, aC1 = 0.1 V,

θC = 2 · 10−4 s)

the UC voltage causes changes in the shape of the characteristics while maintaining their central
symmetry. An increase in ignition voltage andRMSvoltage is obtained. The value of the additional
dissipated power depended on the current intensity as expressed by Formulas (36) and (44).
Constant and relatively small values of aM1 and aM2 coefficients were used. However, the aC1
and aC2 coefficients changed significantly. As a result of the simulations, analogous results were
obtained as in the case of the Cassie model in the high-current range. To obtain the characteristics
shown in Figs. 7(a) and 7(b), macromodels based on models in the differential form were used,
whereas to obtain the characteristics shown in Figs. 7(c) and 7(d), macromodels were created
based on equivalent models in the integral form.
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(a) (b)

(c) (d)

Fig. 7. Voltage-current dynamic characteristics of an electric arc described by a modified Mayr–Cassie
hybrid model: (a) in the differential form with parameters (UC = 50 V, G1M = 0.001 S, aM1 = 0.01 V,
aM2 = 0.01 Ω, aC1 = 0.001 V, aC2 = 0.0001 Ω, θ0 = 1 · 10−5 s, θ1 = 2 · 10−4 s, α = 0.001); (b) in
the differential form with parameters (PM = 500 W, G1M = 0.001 S, aM1 = 0.01 V, aM2 = 0.01 Ω,
aC1 = 0.001 V, aC2 = 0.0001 Ω, θ0 = 1 · 10−5 s, θ1 = 2 · 10−4 s, α = 0.001); (c) in the integral form
with parameters (PM = 500 W, UC = 80 V, G1M = 0.0001 S, aM1 = 0.01 V, aM2 = 0.01 Ω, aC2 = 0 Ω,
θ0 = 1 · 10−5 s, θ1 = 2 · 10−4 s, α = 0.001); (d) in the integral form with parameters (PM = 500 W,
UC = 80 V, G1M = 0.0001 S, aM1 = 0.01 V, aM2 = 0.01 Ω, aC1 = 0 V, θ0 = 1 · 10−5 s, θ1 = 2 · 10−4 s,

α = 0.001)

8. Conclusions

1. In the classic Mayr and Cassie mathematical models, rigorous simplifying assumptions are
made that limit the applicability of these models for the approximation of the experimental
characteristics of the electric arc.

2. The introduction of changes at the final stage of creating modified mathematical models
of the electric arc causes violation of the basic input condition in the form of an energy
balance.



834 Antoni Sawicki Arch. Elect. Eng.

3. When such changes are introduced at the initial stage of creating modified mathematical
models of the electric arc, the basic input condition in the form of energy balance is not
affected.

4. When modifications are introduced at the initial stage of creating the Mayr model using the
residual conductance GM1 or the corresponding IM current, it is possible to prescribe the
ignition voltage.

5. When modifications are introduced at the initial stage of creating the Cassie model using
the residual conductance GC1, it is possible to reduce the arc ignition voltage to zero and
at the same time to prescribe the angle of the tangent to the voltage-current characteristic
at the beginning of the coordinate system.

6. Taking into account the phenomenon of increasing the power dissipated from an arc in the
given ranges of plasma current variation will allow a better approximation of experimental
data using modified mathematical models.

7. The hybrid model, combining modified Mayr and Cassie sub-models offers extended pos-
sibilities of the approximation of dynamic arc characteristics in a wide range of current
variation.
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