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 In perovskite solar cells, series of symmetrical and asymmetrical imino-naphthalimides were 

tested as hole-transporting materials. The compounds exhibited high thermal stability at the 

temperature of the beginning of thermal decomposition above 300 °C. Obtained imino-

naphthalimides were electrochemically active and their adequate energy levels confirm the 

application possibility in the perovskite solar cells. Imino-naphthalimides were absorbed 

with the maximum wavelength in the range from 331 nm to 411 nm and emitted light from 

the blue spectral region in a chloroform solution. The presented materials were tested in the 

perovskite solar cells devices with a construction of FTO/b-TiO2/m-TiO2/perovskite/ 

HTM/Au. For comparison, the reference perovskite cells were also performed (without hole-

transporting materials layer). Of all the proposed materials tested as hole-transporting 

materials, the bis-(imino-naphthalimide) containing in core the triphenylamine structure 

showed a power conversion efficiency at 1.10% with a short-circuit current at 1.86 mA and 

an open-circuit voltage at 581 mV.  
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1. Introduction 

1,8-Naphthalimide is a common system in the compounds 

with a wide range of valuable properties, used in cellular 

imaging, organic electronics, as well as exhibiting a broad 

spectrum of biological activity [1–4]. Such a broad 

spectrum of applications is influenced by the structure of 

the aromatic imide which is associated with a high electron 

affinity, good charge carrier mobility, high thermal and 

oxidative stability, as well as the ability to interact with the 

DNA strand (intercalation). The use of 1,8-naphthalimides 

in organic electronics includes both light-emitting diodes 

[5,6], photovoltaic cells [7–9] or field-effect tran-sistors 

[10]. It should be emphasized that the compounds 

described so far, used in organic electronics, mainly 

include derivatives substituted at the 4-position of the 

naphthalimide ring [11]. However, little is known about the 

physicochemical properties of 3-substituted naphthal-

imides, while many reports confirm their high antitumor 

activity [2,4,12,13]. According to the literature reports, the 

use of 4-substituted naphthalimides in perovskite solar 

cells (PSCs) improved devices efficiency. These 

compounds were used as the effective electron extraction 

layer [14,15]. However, triphenylamine, fluorine or 

biphenyl derivatives have found application as hole-

transporting materials (HTMs) in the PSCs [16–20]. PSCs 

with the imino-triphenylamine compound acting as a hole-

transporting material have showed the power conversion 

efficiency at 14.37% [21] and 6.68% [22]. The compounds, 

such as oxenates [23], thiophene-based molecules [24] or 

9,9-bifluorenylidene derivative [25], were also used for 

PSCs as hole transporting materials with a similar device 

design as presented in this work. All investigated solar 

cells have showed approximately the same or higher 

efficiency (PCE), reaching a value even of 7.33% [25]. 

Moreover, it can be stated, that the efficiency of the 

developed perovskite devices, despite their low efficiency, 

seem to be a good alternative to other optoelectronic 

devices, such as bulk heterojunction solar cells (BHJ)  

[26–28], where various groups of chemical compounds 

were tested. *Corresponding author at: mateusz.korzec@us.edu.pl 
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In the research carried out so far, the synthesis of a 

series of imino- and -ketoenamino derivatives of 1,8-

naphthalimides and the complete characteristics of these 

compounds, defining the scope of their use, among others 

in bioimaging [29] or in organic electronics, have been 

presented [30,31]. Research also included the synthesis and 

characterization of the new bis-(imino-naphthalimides) with 

electroluminescent properties [32]. 

In this paper, the research results aimed at determining 

the ability of synthesized symmetrical and asymmetrical 

imine derivatives of 1,8-naphthalimide to conduct positive 

charges, which were tested in perovskite photovoltaic 

cells, have been presented.  

2. Experimental 

2.1. Characterization methods 

All used materials are commercially available. The 

NMR characterization was performed using a Bruker 

AC400 spectrometer 400 MHz. A Vario EL III apparatus 

was used to perform an elemental analysis. The absorption 

and emission measurements were taken on a PerkinElmer 

Lambda Bio 40 UV-VIS spectrometer and a Varian Carry 

Eclipse spectrometer. A PerkinElmer Pyris 1 TGA (heating 

rate of 10 °C/min and 20 cm3/min of the nitrogen steam) 

was used to register thermal parameters (thermal stability 

from thermogravimetric analysis). Electrochemical inves-

tigations were measured using an Eco ChemieAutolab 

PGSTAT128n potentiostat with one-compartment cell 

(platinum was acting as a working electrode, 0.1 M 

Bu4NPF6 electrolyte salt in dichloromethane solution, 

ferrocene couple (Fc/Fc+) was used as the internal 

standard). 

2.2. PSC preparation  

A fluorine doped tin oxide (FTO) glass was acting as 

an electrode. After cleaning, the blocking later (b-TiO2) by 

the spin-coating method was deposited on the FTO. The 

mesoporous (m-TiO2) layer by the screen-printed method 

was deposited on the blocking later. The perovskite layer 

was made using a two-step method. The imino-

naphthalimides solutions were spin-casted on the 

perovskite layer, and the second electrode was a gold (Au) 

electrode deposited by thermal evaporation. The current-

voltage characteristics (I-V) were taken using a PET Photo 

Emission TechInc. model SS 200AA class solar simulator. 

For all I-V measurements, the conditions were to achieve: 

25 °C, 1000 W/m2, AM1.5. Preparations of the PSCs are 

described in the paper [25].  

3. Results and discussion  

The compounds were obtained in a three-step reaction, 

starting from the available 3-nitro-1,8-naphthalic anhydride 

(see Fig. 1) [29–32]. In the first step, the anhydride was 

condensed with amines, such as hexylamine or 

benzylamine in the ethanol solution [Fig. 1. I)].  

−NH2 group was then reduced to the amine using a  

10% Pd/C catalyst and hydrazine in ethanol [Fig. 1. II)]. 

The obtained amines were condensed with commercially 

available aldehydes [Fig. 1. III)], such as: 5-bromosalicylic, 

9H-fluorene, biphenyl, triphenylamine, or a triple-bond 

dialdehyde [32]. The structure and purity of the presented 

compounds were confirmed by the 1H and 13C NMR 

analysis and an elemental analysis. Full description was 

given in the previous works [29–32].  

The absorption (UV-Vis) and photoluminescence (PL) 

measurements were performed in a chloroform solution 

with a concentration of 10−5 mol/dm3. The UV-Vis and PL 

spectra are presented in Fig. 2, while the data are collected 

in Table 1. The compounds in the chloroform solution 

were absorbed in the range from 270 nm to 415 nm. The 

absorption band with the maximum (λmax) in the range of 

331–345 nm corresponds to the π→π* electron transition 

in the naphthalimide core. On the other hand, the bands 

with λmax above 360 nm are related to the charge transfer 

(CT) transition between the core (at the 3-C position) and 

naphthalimide [30–32].  

 

Fig. 1. Scheme of the synthesis and structure of the target compounds 

– naphthalimides (1–5). 
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Fig. 2. UV-Vis (a) and PL spectra (b) of the 1,8-naphthalimide 

derivatives in the chloroform solution.  
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One of the materials essential properties, determining 

the possibility of their use in the organic electronics is the 

energy band gap. It can be determined, i.a., based on 

electronic spectra [33]. For the analysed compounds, the 

estimated optical energy gaps calculated using the Tauc 

method [34] are summarized in Table 1. In addition, the 

energy gaps were determined from electrochemical 

measurements using the cyclic voltammetry (CV) method. 

The compounds showed irreversible or quasi-reversible 

oxidation/reduction processes [30–32]. The determined 

energy band gap values for bis-(imino-naphthalimides)  

(3–5) were below 2 eV [32], while iminonaphthalimides 

(1, 2) had the energy bandgap above 2 eV [30,31]. This 

same tendency was found in the optical energy gap 

calculated using the Tauc method (Table 1), i.e., 

compounds 1 and 2 have a greater gap value than 

compounds 3–5.  

The differences between band gaps estimated from 

optical absorption spectra and electrochemical measure-

ments can be attributed to the interface barrier between the 

solution and the electrode [35]. The tested compounds 

have electrochemical energy gaps at an appropriate level to 

be used as components of PSCs.  

Thermal studies of the obtained 1,8-naphthalimide 

derivatives were performed using thermogravimetry (TG). 

The compounds showed high thermal stability, determined 

based on a temperature of a 5% weight loss (T5%). For 

compounds 3–5 (Fig. 1) [32], the T5% temperature was: 

387 °C (3), 285 °C (4) and 426 °C (5) (see Fig. 3). On the 

other hand, unsymmetrical naphthalimides showed 

stability above 300 °C [30,31].   

The synthesized 1,8-naphthalimide derivatives were 

tested as holes transporting materials (HTMs) in the PSCs. 

The two types of devices were prepared: the reference solar 

cell without HTM layer and devices with a sandwich 

configuration: FTO/b-TiO2/m-TiO2/perovskite/HTM/Au 

(Fig. 4). Determined photovoltaic parameters based on the 

current-voltage (I-V) characteristics of the solar cells are 

presented in Table 2. The perovskite layer was obtained 

Table 2.  

Photovoltaic parameters of the tested perovskite solar cells. 

Device structure Isc [mA] Jsc [mA/cm2] Voc [mV] FF [–] PCE [%] IP EA Eg 

FTO/b-TiO2/m-TiO2/perovskite/Au 
0.451 ± 0.01 1.791 ± 0.02 2021 ± 24 0.261 ± 0.00 0.101 ± 0.02  

– – – 
0.362 ± 0.04 1.422 ± 0.14  2172 ± 17 0.252 ± 0.00  0.082 ± 0.01 

FTO/b-TiO2/m-TiO2/perovskite/1/Au 
0.801 ± 0.07  3.201 ± 0.28  5981 ± 20 0.341 ± 0.01  0.681 ± 0.06  

−6.29 −3.58 2.71 
0.592 ± 0.01  2.352 ± 0.03  6262 ± 19 0.302 ± 0.00  0.472 ± 0.03  

FTO/b-TiO2/m-TiO2/perovskite/2/Au 
0.681 ± 0.00  2.731 ± 0.02  5401 ± 21  0.321 ± 0.01  0.501 ± 0.03  

−5.72 −3.37 2.35 
0.672 ± 0.02  2.682 ± 0.07  4942 ± 49  0.262 ± 0.00  0.362 ± 0.04  

FTO/b-TiO2/m-TiO2/perovskite/3/Au  
0.291 ± 0.01  1.141 ± 0.05  6991 ± 62  0.401 ± 0.05  0.331 ± 0.07  

−5.51 −3.72 1.79 
0.242 ± 0.01 0.962 ± 0.03 7102 ± 4  0.392 ± 0.04  0.282 ± 0.03  

FTO/b-TiO2/m-TiO2/perovskite/4/Au 
0.101 ± 0.01  0.391 ± 0.06  6891 ± 27 0.371 ± 0.03  0.101 ± 0.02  

−5.80 −3.83 1.97 
0.072 ± 0.00  0.292 ± 0.01  6332 ± 1 0.352 ± 0.01  0.072 ± 0.00  

FTO/b-TiO2/m-TiO2/perovskite/5/Au 
1.861 ± 0.03  7.441 ± 0.11  5811 ± 14 0.241 ± 0.01  1.101 ± 0.02  

−5.63 −3.87 1.76 
2.162 ± 0.18  8.632 ± 0.73  5912 ± 53  0.152 ± 0.00  0.832 ± 0.15  

Isc is the short-circuit current, Jsc is the short-circuit current density, Voc is the open-circuit voltage, FF is the fill factor, PCE is the efficiency of a 
photovoltaic cell, 1forward scan, 2backward scan. Cells active area is of 0.25 cm2. IP (ionization potential) and EA (electron affinities) taken from 

cyclic voltammetry. IP  = −5.1−  Eox(onset)·|e
–|, EA  =  −5.1− Ered(onset)·|e

–|, Eg = Eox(onset)  −  Ered(onset). 

 

 

Table 1.  

UV-Vis and PL properties of the imino-1,8-naphthalimides  

in the chloroform solution. 

Code 
max [nm] 

(ε·104) 

Eg
Tauc 

[eV] 

em 

[nm] 

Δ 

[nm] 

1 331(2.1); 340(2) 3.4 486 146 

2 336(3.9) 3.0 478 142 

3 340(9.1) 2.8 503 163 

4 345(9.8); 376(8.8) 2.9 470 94 

5 345(8.6); 411(9.8) 2.6 501 90 

Concentration of the solutions c = 10–5 mol/dm3, ε is the absorption 

coefficient [dm3 mol–1 cm−1]. em is the emission maximum wavelength, 

registered for the last max, Δ is the Stokes shift. Eg
Tauc is the energy 

band gap estimated by the Tauc method (direct band gap). 

 

 

Fig. 3. TGA thermograms of the compounds 1–5.  

 

 

 

 

 

 

 

 

 

 

Fig. 2. (a) UV-Vis and (b) PL spectra of the 1,8-

naphthalimide derivativesin thechloroform solution. 
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Fig. 4. Sandwich configuration of the prepared PSCs: reference 

cell (a) and with HTM layer (b). 
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using a two-step method [25]. HTM layer was doped  

with lithium bis-(trifluoromethanesulfonyl) imide (Li-TFSI)  

at a concentration of 17.5 μL. Li-TFSI is a common  

p-dopant of the hole transport layer which increases the 

conductivity [36]. 

Measurements were carried out under standard 

conditions (STC). Active area of the tested cells was of 

0.25 cm2. Presented results were obtained for the champion 

device from measurements of five series of devices. Solar 

cell containing a 1,8-naphthalimide derivative with the 

triphenylamine structure 5 was characterized by the 

highest conversion efficiency (PCE  = 1.10%) and the 

highest Jsc (1.86 mA) and Voc (581 mV), I-V characteristic 

is presented in Figs. 5–7. Solar cells, in which the 

synthesized compounds were tested, showed higher PCE 

values compared to the reference cell, except for the 1,8-

naphthalimide imine derivative with an ethynyl bridge (4). 

An increase in the open circuit voltage was observed for all 

devices compared to the solar cell without HTM, which 

may indicate low voltage losses at the junction (Table 2). 

The forward and backward electrical measurements allow 

to observe the I-V hysteresis. An important issue is to 

understand and counteract the hysteresis behaviour which 

is confirmed by many scientific papers focusing on 

understanding this phenomenon [37]. In the forward scans, 

the PCE was higher than in the backward scans, and the 

differences between PCE from forward and backward 

measurements were in the range from 0.03% to 0.27%. The 

device with compound 5 (acting as HTM) exhibited the 

highest conversion efficiency in the forward scan and at the 

same time, the biggest difference between both scans 

(∆PCE = 0.27%). The understanding of the doping 

mechanism is also an important factor. Considering the 

literature data, the reactions involved in the doping process 

are discussed with regard to a spiro-OMeTAD doped with 

Li+ TFSI− [38]. Abate et al. [39] claim that the pristine 

spiro-OMeTAD reacts with O2 after exposition of the thin 

film to air or heat and a weakly bound complex is formed. 

The TFSI− anion stabilizes the oxidized Spiro-OMeTAD. 

The rest of the lithium ions (Li+) can react with oxygen 

(O2
−). A spectrum-dependent mechanism for oxidation of 

Spiro-OMeTAD with LiTFSI was proposed by Wang et al. 

[40]. Even though the doping mechanism in the case of 

Spiro-MeOTAD was examined, some questions are still 

not resolved. Based on the compounds described in this 

paper, during the oxidation process, radical cations were 

produced, and two possible doping mechanisms can occur 

(proposed mechanism for compound 5 with a donor TPA 

group): 

1) HTM5(TPA) + O2 → HTM5(TPA)· + O2
· − 

HTM5(TPA)· + O2
· − + Li + TFSI − →   

HTM5(TPA)· + TFSI − + LixOy  

2) Perovskite + O2 → Perovskite· + O2
· −  

Perovskite· + O2
· − + HTM5(TPA) →   

Perovskite + HTM5(TPA)· + O2
· −  

HTM5(TPA)· +O2
· − + Li· + TFSI − →   

HTM5(TPA)· + TFSI − + LixOy  

It should be stressed that it is only a proposed mechanism 

and for its confirmation further investigations are needed.  

  

 

 

  

  

 

4. Conclusions

  The symmetrical  and  asymmetrical  imine  derivatives 
of  1,8-naphthalimide,  whose  ability  to  transport  positive 
charges was tested in the PSCs, is presented in this paper. 
Also, synthesis,  thermal,  electrochemical, and  optical 
properties in  the  chloroform  solution which  were  the 
subject  of  several  previous  works  devoted  to  these 
compounds are  presented  here.  The  influence  of the 
chemical  structure  on  properties,  including  the  ability  to

 

Fig. 5. I-V characteristic of the PSC device with compound 5 as a 

hole transporting material. 

 

Fig. 6. I-V characteristic of the PSC devices without HTM and 

with compounds 1,2,5 in forward scan.  

 

Fig. 7. I-V characteristic of the PSC devices with compounds 3  

and 4 in forward scan.  
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electroluminescence (structures 3–5) [32] and, as shown in 
this paper, the possibility to act as a hole transporting  mate- 

rial, was observed. Based on  the photovoltaic  parameters, 
it  can be concluded that  the presence  of the triphenylamine  
structure  5  has  a  beneficial  effect on  the PCE values.
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