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Abstract 
 

The purpose of this paper was to develop a methodology for diagnosing the causes of die-casting defects based on advanced modelling, to 

correctly diagnose and identify process parameters that have a significant impact on product defect generation, optimize the process 

parameters and rise the products’ quality, thereby improving the manufacturing process efficiency. The industrial data used for modelling 

came from foundry being a leading manufacturer of the high-pressure die-casting production process of aluminum cylinder blocks for the 

world's leading automotive brands. The paper presents some aspects related to data analytics in the era of Industry 4.0. and Smart Factory 

concepts. The methodology includes computation tools for advanced data analysis and modelling, such as ANOVA (analysis of variance), 

ANN (artificial neural networks) both applied on the Statistica platform, then gradient and evolutionary optimization methods applied in 

MS Excel program’s Solver add-in. The main features of the presented methodology are explained and presented in tables and illustrated 

with appropriate graphs. All opportunities and risks of implementing data-driven modelling systems in high-pressure die-casting processes 

have been considered. 
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1. Introduction 
 

Nowadays, the majority of manufacturing industries aim to 

increase their competitiveness by providing products in 

accordance with customer requirements, so in the highest quality, 

at the right price and available in the timeframe desired by the 

customer. Similarly, with foundries, where the main aspects 

influencing their competitiveness are the quantity and quality of 

the produced castings [1]. Thus, the objective is to produce 

castings that have no manufacturing defects, such as leakage. 

Previously, there was no concentration on the analysis of the 

pressure tightness of castings, as it was believed that the decrease 

in pressure tightness was directly related to casting porosity. 

However, from the whole list of specific properties that a casting 

must present, such as strength, plasticity, fatigue resistance, 

chemical compatibility and others, pressure tightness has been 

found to be probably the most common and the most important 

[2]. The presence of defects in castings, detected in the production 

process, is one of the main reasons for increasing the cost of 

production and therefore worsening the competitiveness of 

foundries [3]. For a medium-sized foundry, reducing the number 

of defects by only 1% leads to savings of several million PLN per 

year [4].  In order to maintain competitiveness and meet the 

increasing quality requirements, foundries have started to develop 

industrial data analysis, which also has a significant impact on 

process efficiency and optimization [5]. Additionally, in the 
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beginning of the second decade of the XXI century, the interest in 

processing large data sets and the development of applications of 

data mining and machine learning methods in the production and 

manufacturing sector increased significantly. This was caused by 

the new concept of Industry 4.0, which also concerns the 

optimization of ways of working, new technologies and ways of 

functioning of a given traditional manufacturing company in the 

modern digital reality. This concept became already a reality in 

many fields of industry, including foundries [6]. In the foundry 

industry, the Smart Factory, according to its main objectives, may 

be able to efficiently control the process, so as to diagnose 

defective products assessed in real-time, thus becoming more 

reactive. It could therefore take action before a potential hazard 

occurs, in the example, attempt to diagnose a product defect even 

before it occurs, by new predicting ability [7]. On the basis of a 

diagnosed casting defect, the machine could correct certain 

parameters and, through this self-adjustment, prevent its 

occurrence. However, this task is complicated by the fact that the 

foundry process is widely recognized as one of the most complex 

in the manufacturing industry, because of many diversified 

processes related to the preparation of primary products and 

processing of final products [8]. 

Regarding the basis of the Industry 4.0 concept, considering 

the level of advancement of foundry process automatization and 

their data collection capabilities, it can be noted that high-pressure 

die-casting foundries (HPDC) probably represent the highest level 

[7]. Additionally, die casting is one of the main manufacturing 

processes in the automotive industry [9], as it requires high 

precision in the production of geometrically complex non-ferrous 

castings such as aluminum [10], [11]. It is characterized by the 

highest quality part production with the highest dimensional 

accuracy and reduced cost per part [12]. Selected castings, such as 

safety-critical automotive components, are 100% quality 

controlled in the further stages of production, as in their case the 

consequences of failure are severe, and the additional cost 

associated with quality control is high but also justified [2]. 

However, this process is highly dependent on individual process 

parameters affecting casting quality, so it is necessary to obtain 

their optimal combinations to minimize the formation of casting 

defects [10]. It should also be taken into account that the die 

casting process is considered to be inflexible, with low 

adaptability to changes introduced in the technological properties 

of the product designs implemented to evolve and progress the 

process [15]. Therefore, it is important to constantly monitor 

process parameters and adapt them to changing requirements 

based on expert knowledge, which can significantly affect product 

quality [13], [14]. 

Due to their casting properties [17], aluminum alloys are 

widely used in the production of components [16] such as engine 

blocks, structural components of vehicles: stringers, shock 

absorbers, tank lid frames, in the automotive industry. Foundries 

have to meet the increasing demands of customers in terms of 

safety, so they have to constantly improve the quality of their 

products [7]. This can be achieved by discovering the relation 

between process parameters and the appearance of a defect in the 

casting, by advanced modelling and analyzing this limited part of 

industrial data. 

The amount of data available that describes the production 

process determines the possibility of discovering hidden 

relationships in the data. The cooperating HPDC foundry database 

currently collects most of the parameters of the die casting 

process, storing approximately sixty thousand new data sets each 

month. The data consists of parameters, most of which can be 

manipulated from the operator panels and are the most important 

parameters describing the die casting process. In order to improve 

processes, the company is working on the development of IT 

systems capable of registering signals coming from machines and 

process parameters, as well as on the creation of algorithms for 

castings quality prediction, castings defect detection for process 

control and selection of proper parameters for its optimization. 

This paper describes a methodology for data analysis as part of 

the company's objectives mentioned above. 

 

 

2. Research methodology  
 
 

2.1. Characteristic and preparation of high-

pressure die-casting data sets 
 

Collecting industrial data from the foundry process, i.e., the 

stage of creating a representation of a given phenomenon is very 

difficult because a standard casting production process consists of 

approximately a hundred parameters that can have a significant 

influence on the product. Discovering the dependencies between 

these parameters is highly complicated and almost impossible, 

especially in the case of parameters coming from different stages 

of casting production. Data related to the casting from the 

AlSi9Cu3(Fe) aluminum alloy cylinder blocks included various 

process parameters related to temperatures, velocities, pressures, 

alloy temperature and chemical composition etc. The first 

selection of relevant parameters was made by process engineers 

on the basis of expert knowledge and included a wide range of 

variables. In the real process data, there were collected over 

10000 samples of examined castings and the total number of 

variables was 59. Another important element was to decide which 

values treat as dependent variables (resultant or output signals) 

and which as independent variables (input signals). The 

dependent variable in the collected data was leakage detected by 

the high-pressure testing. 

After the initial selection of significant parameters, a data 

analysis methodology was developed and was divided into four 

stages. The first stage is data preprocessing, that is, data cleaning, 

covering filling in missing values, improving accuracy by 

detecting outliers, removing redundant data and repetitions. 

Created graphs of the variables flow showed a break of the curve 

at the boundary value, indicating two quantitatively and 

qualitatively different leakage ranges. It is important to note that 

the data has a low representation of critical values, as out of 

10094 samples, only 70 samples report a casting defect, which is 

0.7% of the data results and makes further analysis very difficult. 

This presents the important research problem of strong data 

imbalance, as on the one hand a large amount of data is available, 

but on the other hand, there is a small representation of some 

critical values. These rare cases can be ignored by some data-

driven models. Based on graphs of the variables flow, five data 

sets were created, each contained a different number of 
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observations and with a different proportion of records with 

smaller values of the dependent variable:  

1) the first set contained all observations,  
2) the second set contained 70 observations with extreme 

leakage values, i.e., greater than or equal to 7.5,  
3) the third set contained observations of the output close to 

normal, with increased occurrence of elevated leakage 
values,  

4) the fourth set containing 140 observations, half of them 
obtained from set 2 and the other half from set 3, from its 

upper range (selected to determine what influences the 
increase in leakage values to an undesirable level),  

5) the fifth set containing 140 observations, half of them 

obtained from set 2 and the other half from set 3, selected 
randomly.  

The input process parameters were discretized on the basis of 

visual frequency of occurrence in characteristic ranges of values 

(typical, increased, decreased). The second stage is the main 

selection of the relevant variables that are most relevant for 

diagnosing the formation of casting defects. This stage is 

important for the effective control of casting quality, especially 

when some parameters are forced, and also for the selection of 

variables that will be used in the following stages of the research. 

The third stage included the construction of an advanced model 

driven by data with the output variable containing information 

about a possible defect in the casting, and parameters of the 

casting process as input variables. This stage was important 

because it can be used to support the diagnosis of castings defect, 

and it was also the input to the next stage of research. The fourth 

stage consisted of multivariate optimization of process parameters 

for a maximum and minimum value of casting defect, to 

determine what exactly determines the formation of a casting 

defect, or lack thereof. 

 

 

3. Results of data modelling and 

analysis 
 

3.1. Data pre-processing  
 

Data preprocessing is performed to improve data quality and 

prepare data for further analysis. This is a necessary step and 

requires process knowledge to correctly classify the sample as a 

measurement error, an outlier or a valid process-relevant value. In 

this step, focus was placed on suspicious data that could be 

erroneous values caused by sensor faults, machine error codes, 

miscalculated data, format errors or outliers that could provide a 

view of the problem. During this step, we confirmed 

characteristics of industrial data such as, imperfect data quality, 

variety of types of variable distributions, imbalance in value 

representation, correlations between different process parameters.  

The first of the mentioned characteristics, imperfect data 

quality, was related to the presence of missing, outliers, 

duplicated, imprecise, or incorrect values, visible in the graphs as 

well as and hidden incorrectness such as values reasonable from 

the point of view of the variable value range, but which were 

found to be error codes of the measuring equipment. The second 

feature of industrial data is the variety of types of distributions of 

the variables such as near normal (Gauss) distribution, near 

Gamma distribution and others. The third feature of industrial 

data is the imbalance in the representation of values, described 

earlier. The fourth feature is the correlations between process 

parameters, which were found by analyzing the correlation 

coefficients: linear Pearson and non-parametric Spearman, for all 

input variables. The main finding was the large number of highly 

and very highly correlated input variables, which amounted to 25, 

or about 44% of the total number of input variables. Through the 

correlation analysis, the following main types of correlation 

sources were noticed [7]: natural correlations, for example 

between water temperature and water flow, these types of 

correlations can be replaced by a single variable, more important 

from the point of view of casting quality, intentional correlations, 

which means dependent on the human factor, should be 

completely eliminated, and random correlations, which means 

caused by the occurrence of certain values at the same time, they 

should be avoided or their analysis should be deeper. In the case 

of modelling the relations between input and output variables, 

dealing with data where the number of records representing 

critical process output values is small, some correlations between 

input and output variables may be coincidental. These correlations 

may obscure important physical dependencies in the process, due 

to their weakness and complexity. Values of some input variables 

may be intentionally entered by staff as a reaction to values of 

other variables or simply based on their individual experiences, 

leading to 'local' correlations with outputs appearing in the data. 

Ultimately, the input-output process model can thus easily reflect 

non-existent correlations.  This type of analysis has led to the 

concept of real relationships in the process being obscured by 

accidental or artificially introduced relations in the data, which the 

models will indicate as equally valid. Identifying such "parasitic" 

variables is difficult.  In this study, their effect was reduced by 

dividing the process data into five test sets with different ranges 

of the output variable (see 2.1). 

The input and output data were then discretized for each of 

the five data sets. The interval ranges were determined by visually 

assessing, sorted according to the values, assumed by a given 

parameter (typical, increased and decreased values), the flow 

diagrams for each of the process parameters and adjusted on the 

basis of the histogram analysis and the graph of the number of 

observations in each interval, in order to detect the influence of 

the process parameters on the leakage value.  
 

 

3.2. Significance analysis 
 

Usually, the selection of input variables for data-driven 
modelling is supported by an analysis of their significance 

(importance), using some statistical tools such as ANOVA or 
Kruskal-Wallis test and advanced machine learning models [18]. 

The idea of the statistical approach is that if in groups of data 
records containing different levels of an input variable also the 

output values are significantly different, then this input variable 
should be considered significant in terms of its influence on the 

output data. The reverse reasoning can also be applied: if for 
groups of records containing different levels of an output variable, 

we also observe significantly different values of that input 
variable, then it should be considered as significant. In both cases, 
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it is possible to identify only potentially significant variables. 

Furthermore, only one input variable at a particular moment is 
considered, and simultaneous actions of several process 

parameters (including synergistic or competitive ones) are not 
taken into account. Therefore, the initial reduction of the 

dimensionality of the model by removing insignificant variables 
should be carried out with caution. As a consequence, 

insignificant variables may be present in the training data rather 
than those that actually affect the process performance. It should 

be noted that if insignificant variables are discovered, their 

possible change could be carried out without quality 
consequences of the produced castings in order to reduce quality 

control costs. 
In the present paper, significance analysis of the input 

variables was performed to identify the variables that are most 
significant and, based on these, to create a plan for advanced data-

driven modelling to diagnose the causes of casting defects. The 
analysis was implemented on the Statistica platform. ANOVA 

analysis of variance in 4 variants was used to select significant 
variables. The first variant is a classical one-way ANOVA, used 

to determine the impact of characteristic levels of process 
parameters, i.e., inputs in the data. A significant problem was the 

application of this type of analysis for data sets that do not have 
distributions resembling normal distributions, however, according 

to [19] with a larger number of points it is possible to apply 
ANOVA. The expression for F-statistic, calculated by comparing 

two variances, s1 and s2, by dividing them (1), can be considered 
as a certain measure of the significance of a variable, especially 

when comparing the significance of different input variables.  
 

 (1) 

 

The second variant is the Kruskal-Wallis Test, or one-way 

ANOVA in the rank version, used when the dependent variable 
has a distribution other than the normal distribution. The third 

variant is the classical reversed ANOVA, which allows, in the 
present paper, to determine whether there is a strong variation in 

any of the process parameters in the high- and low-leakage 
groups, which may suggest its relations with the casting defect 

formation. The fourth variant is reversed rank ANOVA, also 
known as reversed Kruskal-Wallis test, which can be used 

regardless of the lack of distributions close to normal 
distributions. 

The analysis of 1680 calculations resulted in two statistical 

parameters: in the case of ANOVA (direct and reversed) the F and 
p statistics were obtained, and in the case of the Kruskal-Wallis 

test (direct and reversed) the H and p statistics were obtained. 
Based on these values, three criteria of variables were created for 

each data set by selecting variables where the p-value was less 

than 0.05. The ‘basic’ criterion included variables determined 

according to the results of the Kruskal-Wallis test (results for set 3 
are presented in Fig.1.), the ‘extended’ criterion according to the 

results of the ANOVA rank test, and the ‘maximum’ criterion 
according to the results of all the above analyses.  The numbers of 

qualified variables are presented in Fig.2. The analysis confirmed 
the effectiveness of the reliability of the method, as for example 

for the fifth set the number of significant variables was reduced 
by 81% compared to the initial number.  

 
Fig. 1. Criteria of selection the statistically significant 

variables for diagnosing the causes of die-casting defects, based 

on the Kruskal–Wallis test critical p-value for the 3rd dataset 
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Fig. 2. Number of significant input variables for each criterion 

related to the initial number of variables based on the Kruskal–
Wallis test (direct and reversed) and on the ANOVA analysis 

(direct and reversed) 
 

 

3.3. Advanced data modelling 
 
In this case, the application of artificial neural networks able 

to illustrate hidden and complex dependencies found in 
production data is reasonable [20]. When creating a modelling 

plan using artificial neural networks, it should be kept under 
consideration that determining the right number of hidden layers 

and the number of neurons hidden in each layer is a general 

problem and a kind of challenge for the artificial neural network 

designer.  
In the present work, 590 neural models were created from 

MLP-type one-way networks with one hidden layer and with the 
number of neurons in the hidden layer varying from 7 to 23 for 

large datasets and from 2 to 5 for small datasets. In [21], it was 
concluded that there is no reason to use more than one hidden 

layer as it does not increase the quality of the result but only 
complicates the model. It is important to be aware of the main risk 

to the generalization ability of the network, resulting from its 
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overfitting to less important details that are irrelevant to the 

solution of the problem. Testing sets are created to control this 
problem [22]. However, it is important to remember that process 

data (especially from foundries) can have data deficiencies. It is 
also difficult to select the best quality data set from them in order 

to select data for testing and validation (completely independent) 
sets. Therefore, these sets are often omitted from the network 

learning process if there is no need to create them. However, in 
the presented paper the quality of predictions for models using a 

testing set was also checked. A very important point was to test 

the stopping of learning by specifying a testing set equal to 0%, 
10%, 15%, or 20%. Two output activation functions were used - 

tangent and linear. All calculations were performed using 
Statistica software.  

Example results of modelling of the first set according to the 
basic criterion with the highest number of observations are 

presented in Fig. 3. and Fig. 4. The research leads to the following 
conclusions: in very few cases the network is able to learn if we 

separate a testing set, but sometimes the network is able to do it, 
as we can see in Fig.5. This raises the question which models are 

the best to use for further analysis, whether to use those that have 
better generalization ability because the network was stopped for 

an error growth for new data, or to use those models that gave 
better results but their generalization ability was poor because 

stopping of the learning was not applied. The most promising 
results were obtained for modelling in the big datasets for the 

third set, according to the extended criterion. In this set the root 
mean square error (RMSE) reached even 0.85 for tests without 

learning stop, the model was containing 23 neurons and a tangent 
and linear activation functions at the output. The most promising 

results were obtained for modelling in the small datasets for the 

fourth set, according to the maximum criterion. In this set the 
RMSE reached even 0.4 for tests without learning stop, the model 

was containing 4 neurons and tangent and tangent activation 
functions at the output. In the cases of a model with 0% of the 

values in the test set, the best results were obtained with the 
smallest RMSE value (so probably with over-fitting).  

 

 
Fig. 3. First set modelling results, in the basic criterion, and 

tanh-tanh activation function 

 
Fig. 4. First set modelling results, in the basic criterion, and 

tanh-lin activation function 

 

 
 

Fig. 5. Fifth set modelling results, in the basic criterion, with 2 

hidden neurons and 20% values in the test set 
 

 

3.4. Multidimensional optimization of process 

parameters 
 

The developed strategy for querying the best models to obtain 

information on the causes of defects in order to determine what 
exactly influences the formation of a defect in casting, or its lack, 

included multivariate optimization of process parameters for 
maximum and minimum defect values, using a gradient (with 

multi-start) and evolutionary methods. 
The optimalisation was started by repeating the modelling of 

artificial neural networks for the best models, with simultaneous 
storage of weights and programming of the model response. The 

optimization of the process parameters for the minimum value of 
leakage, so a casting without a defect, and the maximum value of 

leakage, so casting with a defect, was possible thanks to this. The 
optimalisation included both: the absolute best models but 

characterized by a lack of the ability to generalize (especially 
obtained without a test set), as well as models characterized by a 

higher mean square error of prediction but with the ability to 

generalize (containing test sets), in order to determine what 
determines the formation of a product defect. All optimization 
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calculations were performed using MS Excel program's Solver 

add-in. 
The results of the analysis of the five data sets according to 

the basic criterion indicate that in most cases the 
multidimensional optimization of process parameters is not able 

to illustrate exactly what influences the formation of the defect in 
casting or, more precisely, which values of process parameters 

influence the production of defective castings. However, in 
several cases, it was possible to obtain such an answer (fig. 6). In 

the graph, it can be observed that higher values of the independent 

variable (process parameter “multiplication delay”, expressed in 
milliseconds) favor the leakage. Multiplication is a crucial action 

in the process, aimed at reduction of the castings shrinkage 
porosity through forced feeding of the liquid alloy into solidifying 

casting. This parameter defines the moment when the 
multiplication starts and its importance obtained from the 

modelling is not surprising. Most probably, if the feeding starts 
too late it may appear ineffective due to high fraction of the 

solidified metal in the casting. In [7] the same parameter was 
found as a statistically significant influence on the material’s 

properties. This result implies that this process parameter 
certainly has an influence on the leakage occurrence and should 

be treated by foundry employees as critical.  
 

 
Fig. 6. Results of “multiplication delay” process variable 

optimization, based on results from advanced modeling (without 
test set, with 19 neurons in the hidden layer, tangent, and linear 

output activation functions) for the first set, according to the basic 
criterion 

 
However, the observed dependencies must be further 

analyzed because the analysis was conducted for serial 
production, therefore not only the influence of specific parameters 

and their optimum values on the dependent variable should be 

taken into account, but also the variability of these process 

parameters.  Fixed parameters are determined in the product 

development phase and change only slightly during the process, 
whereas dependent parameters are also determined in the product 

phase but are susceptible to change, for example by external 
conditions [7].  
 

 

4. Conclusions and future work 

perspectives 
 

The Key Performance Indicator (KPI) that can be found in the 
manufacturing industry developing according to Industry 4.0. the 

concept is to secure the company competitiveness through 
reducing number of defected products and rise the process of 

machine efficiency. Additionally, in manufacturing companies 
working according to lean methodology, emphasis is placed on 

the constraint triangle, which illustrates the main pillars important 

to the customer, that is, top product quality, short production time 
(lead time) and low price. A deterioration in the performance of 

any one pillar results in a reduction in performance in the other 
two. It is important, to focus on discovering the causes of product 

defects because an increase in production quality will have a 

positive impact on delivery times and on reducing costs for the 

final customer, thus increasing the competitiveness of the 
company. 

Advanced data-driven soft modelling methods based on 
datasets from the die casting process were the basis of the 

proposed methodology. Data came from a real industrial process 
and was obtained in cooperation with the foundry. The main goal 

of this paper was to discover the causes of leakage in high 
pressure die casting process by using advanced data-driven 

modelling techniques to determine the relative significance of 
input variables.  

The proposed methodology consisting of data preprocessing, 
significance analysis, advanced modelling, and multidimensional 

optimization of process parameters for minimum and maximum 

casting defect values, could be an element that influences the 
creation of an autonomous virtual operator [7]. Optionally, after 

further research, it may have an influence on developing the 
machine's ability to make decisions based on input parameters 

before the casting defect occurs. This would save material and 
reduce scrap production.  Optionally, making decisions by the 

machine based on input parameters, after the defect has occurred. 
This would abandon costly quality tests in line with the Industry 

4.0 concept. 
In conclusion, the analyses carried out can be an important 

reference for high-pressure die-casting foundries. According to 
the article [7], the foundry practice is not only limited to a proper 

data analysis but in the first stage, to the description of all process 
parameters, which should be collected by the foundry. Therefore, 

the developed methodology can support the decision-making 
processes of determining the influence of certain process 

variables’ values on the quality of cast parts and be a useful 
starting point for HPDC foundries. Further studies are still being 

carried out to assess more precisely the selection of relevant 

parameters. Further analyses are needed because generally 

recognized tools for handling imperfect data may be not 

satisfactory to apply in the foundry industry to predict the quality 
of the casting.  Whereas the modelling results presented in this 

article may contribute to the next stages of research. 
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