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Different linear control laws for fractional chaotic maps
using Lyapunov functional
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Ahlem GASRI and M. Mossa AL-SAWALHA

Dynamics and control of discrete chaotic systems of fractional-order have received con-
siderable attention over the last few years. So far, nonlinear control laws have been mainly
used for stabilizing at zero the chaotic dynamics of fractional maps. This article provides a
further contribution to such research field by presenting simple linear control laws for stabiliz-
ing three fractional chaotic maps in regard to their dynamics. Specifically, a one-dimensional
linear control law and a scalar control law are proposed for stabilizing at the origin the chaotic
dynamics of the Zeraoulia-Sprott rational map and the Ikeda map, respectively. Additionally, a
two-dimensional linear control law is developed to stabilize the chaotic fractional flow map. All
the results have been achieved by exploiting new theorems based on the Lyapunov method as
well as on the properties of the Caputo h-difference operator. The relevant simulation findings
are implemented to confirm the validity of the established linear control scheme.
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1. Introduction

Discrete Fractional Calculus (DFC) has turned out to be a hotspot research
topic in recent years [1–4]. The primary definition of the fractional-order operator
in its discrete sense was first presented in [5], where the operator was derived
by discretizing a continuous-time fractional operator. Successively, several types
of difference operators have been proposed, including some h-difference opera-
tors of fractional-order, which represent further general extensions of difference
operators of fractional-order [6–10].

The introduction of different discrete fractional operators has led to the pub-
lication of several papers regarding the nonlinear Fractional-order Discrete Sys-
tems (FoDSs) and their chaotic behaviors [11–18]. For example, in [11] the
standard and the fractional sine maps have been analyzed in light of investi-
gating their chaotic dynamics, whereas in [12] the presence of chaos in the
logistic map of fractional-order has been addressed. In [13] chaotic attractors
in the fractional Hénon map have been found, whereas in [14] the chaotic be-
havior of the delayed logistic map of fractional-order has been studied. In [15]
a novel model of the generalized hyperchaotic Hénon map of fractional-order
has been presented, while in [16] the hyperchaotic dynamics of the double-
scroll map of fractional-order have been addressed. In [17], several chaotic
attractors for a new generalized version for the Hénon map of three dimen-
sions have been reported, whereas in [18] the symmetry properties of frac-
tional maps with fixed points located on closed curves have been investigated.
With the discovery of chaos in fractional maps, numerous endeavours have
been dedicated to inspect many control methods proposed for effectively sta-
bilizing the chaotic dynamics at the origin [19]. Some interesting results have
been recently published regarding this challenging topic [20–27]. For exam-
ple, in [20] control methods for three fractional chaotic maps (i.e., the Wang
map, the Rössler map and the Stefanski map) have been studied. In [21] the
fractional form of the Grassi-Miller map has been presented, along with a con-
trol law for stabilizing its dynamics. In [22] the control properties of a three-
dimensional fractional map without equilibria have been investigated. Similarly,
in [23] bifurcations and control of a quadratic fractional map without equilib-
rium points have been studied. In [24] the chaotic dynamics of the fractional
Zeraoulia-Sprott rational map have been investigated. Additionally, in [24] a sta-
bilization scheme based on the Lyapunov method has been illustrated. In [25],
novel control laws for stabilizing three different maps of fractional-order have
been established. Namely, the three maps considered in [25] are the fractional
flow map, the fractional Lorenz map and the fractional Lozi map. In [26], the
Ikeda map of fractional-order has been studied in term of its chaotic behav-
ior, along with a stabilization method that exploits the stability properties of
linear FoDSs.
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It is worth noting that all the stabilization methods developed so far for
fractional maps have exploited nonlinear control laws [20–26]. This article aims
to provide a contribution to the research field by offering very simple linear
control laws for stabilizing at the origin the chaotic dynamics of somewell-known
FoDSs. These maps, defined through using the Caputo h-difference operator,
include the fractional Ikeda map, the fractional Zeraoulia-Sprott rational map
and the fractional flow map. However, the remaining of this article is ordered
in the following manner. In the next section, certain fundamental notions on the
Caputo h-difference operator are reported. Afterward in Section 3, with the aim
of stabilizing the dynamics of the fractional Ikeda map at zero, a novel theorem
is proved by a scalar control law, while in order to stabilize the fractional chaotic
Zeraoulia-Sprott map at zero, a novel linear control law of one dimension is
established in Section 4. The objective is achieved by exploiting a novel theorem
based on a suitable Lyapunov function. In Section 5, another novel theorem is
proved, which assures the stabilization of the fractional flow map via establishing
a new linear control law two dimensions. Note that, by virtue of the linearity
of the control laws proposed herein, the conceived control schemes require less
control effort with respect to the nonlinear techniques developed to date. Finally,
simulation results are reported through the paper for the purpose of showing the
correctness of the established scheme.

2. Basic tools

This part summarizes briefly some fundamental notions related to the Caputo
h-difference operator.

Definition 1 [7] The δth-order h-sum of the function Ψ : (hN)r → R is out-
lined as:

h∆
−δ
r Ψ(t) =

h
Γ(δ)

t
h−δ∑
τ= r

h

(t − Υ(τh))(δ−1)
h Ψ(τh), Υ(τh) = (τ + 1)h, (1)

where r ∈ R, δ > 0, t ∈ (hN)r+δh, and the h-falling factorial function can be
expressed as:

t (δ)
h = hδ

Γ

( t
h
+ 1

)
Γ

( t
h
+ 1 − δ

) ,
where t ∈ R and (hN)r+(1−δ)h = {r + (1 − δ)h, r + (2 − δ)h, · · · } .
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Definition 2 [9] The Caputo-like difference operator of order δ > 0 of the
function Ψ : (hN)r → R is outlined as:

C
h∆

δ
rΨ(t) = ∆−(n−δ)

r ∆
n
Ψ(t), (2)

where δ < N, t ∈ (hN)r+(n−δ)h, and where ∆Ψ(t) =
Ψ(t + h) − Ψ(t)

h
and

n = dδe + 1.

Next, an effective theorem, reported in [19], will be briefly illustrated with the
aim to identify the stability conditions of the zero equilibrium point for the FoDS
written in the form:

C
h∆

δ
rΨ(t) = g (t + δh,Ψ(t + δh)) , (3)

where g is a nonlinear function, t ∈ (hN)r+(1−δ)h, and Ψ(t) =
(
ψ1(t), ψ2(t),

. . . , ψn(t)
)T .

Theorem 1 Suppose that ψ = 0 is an equilibrium point of the nonlinear FoDS
given in (3), then this point will be asymptotically stable if ∃ a positive definite
and decrescent scalar function V (t,Ψ(t)), in which C

h∆
δ
r V (t,Ψ(t)) ¬ 0 and t ∈

(hN)r+(1−δ)h.

In what follows, a useful inequality associated with the Lyapunov functions is
introduced for completeness.

Lemma 1 [19] The following inequality:
C
h∆

δ
r

(
Ψ

T (t)Ψ(t)
)
¬ 2ΨT (t + δh)C

h ∆
δ
rΨ(t), (4)

holds ∀t ∈ (hN)r+(1−δ)h, where 0 < δ ¬ 1.

3. Scalar control law

This part intends to prove a novel theorem established for stabilizing the
dynamics of the fractional Ikeda map at zero through establishing a scalar control
law. Referring to the fractional Ikeda map, it was introduced in [26] using the
δ-Caputo delta difference operator. Herein, by exploiting the Caputo h-difference
operator, the following fractional model is proposed:

C
h∆

δ
r u(t) = 1 +

[
u(t + δh) cos θ(t + δh) − v(t + δh) sin θ(t + δh)

]
η

− u(t + δh),
C
h∆

δ
r v(t) =

[
u(t + δh) sin θ(t + δh) + v(t + δh) cos θ(t + δh)

]
η

− v(t + δh),

(5)
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in which (hN)r+(1−δ)h, 0 < δ ¬ 1, and η is an arbitrary parameter. For the
purpose of revealing the dynamic characteristic of the intendedmap, the following
formulas are numerically set out:

un = u0 +
hδ

Γ(δ)

`=n∑
`=0

Γ(n − ` + δ)
Γ(n − ` + 1)

(
1 +

(
u(` + 1) cos θ(` + 1)

− v(` + 1) sin θ(` + 1)
)
η − u(` + 1)

)
,

vn = v0 +
hδ

Γ(δ)

`=n∑
`=0

Γ(n − ` + δ)
Γ(n − ` + 1)

((
u(` + 1) sin θ(` + 1)

+ v(` + 1) cos θ(` + 1)
)
η − v(` + 1)

)
,

(6)

where u0, v0 are the initial states. Here, the two implicit equations given in (6)
are employed to explore the chaotic behavior of the Ikeda map in its fractional-
order. When η = 0.9, h = 0.1, and u0 = 0, v0 = 0, then the fractional-order
Ikeda map will show chaotic behaviour. Figure 1, however, shows the chaotic
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Figure 1: The diagram of bifurcation and the LLEs plots vs. the parameter η. a) The dia-
gram of bifurcation. b) The LLEs. c) Chaotic attractor for η = 0.9
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attractor obtained by simulating the two implicit equations given in (6) with the
predictor corrector method proposed in [28], along with the Largest Lyapunov
Exponents (LLEs) and the bifurcation diagram that are obtained through changing
the parameter η from 0 to 0.9. In view of such figure, the chaotic behavior of the
fractional Ikeda map given in (5) can be highlighted obviously by taking η = 0.9.

In the same context, we intend immediately to propose a controller for stabi-
lizing the chaotic trajectories of the state-variables at zero in the Ikeda map (5) in
its fractional order. This objective can be achieved by adding one linear term in
the first state of the proposed fractional-order map. In other words, the fractional
Ikeda map (5) can be controlled by tracking Theorem 2.
Theorem 2 The following scalar control law:

C = −1, (7)

can control the fractional Ikeda map reported in (5).
Proof. The controlled fractional Ikeda chaotic map is described by:

C
h∆

δ
r u(t) = 1 +

[
u(t + δh) cos θ(t + δh) − v(t + δh) sin θ(t + δh)

]
η

− u(t + δh) + C,
C
h∆

δ
r v(t) =

[
u(t + δh) sin θ(t + δh) + v(t + δh) cos θ(t + δh)

]
η

− v(t + δh),

(8)

where C is the proposed controller. Subtracting system (7) from system (5) yields
following FoDS:

C
h∆

δ
r u(t) =

[
u(t + δh) cos θ(t + δh) − v(t + δh) sin θ(t + δh)

]
η

− u(t + δh),
C
h∆

δ
r v(t) =

[
u(t + δh) sin θ(t + δh) + v(t + δh) cos θ(t + δh)

]
η

− v(t + δh).

(9)

Now, we should prove that the trivial solution of (9) is globally asymptotically
stable. If so, we will deduce immediately that all the states of the controlled
system given in (8) will definitely converge towards zero. Actually, this task can
be performed using Lyapunov method that summarized before by Theorem 1. To
see this, the following Lyapunov function has to be considered:

V =
1
2

(
u2(t) + v2(t)

)
, t ∈ (hN)r+(1−δ)h. (10)

Consequently, applying the fractional Caputo difference operator on (10) leads
us to the following assertion:

C
h∆

δ
r V =

1
2

C

h
∆
δ
r u2(t) +

1
2

C

h
∆
δ
r v

2(t). (11)
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Using Lemma 1 yields:
C
h∆

δ
r V ¬ u(t+δh)C

h ∆
δ
r u(t) + v(t+δh)C

h ∆
δ
r v(t)

=
[
u2(t+δh) cos θ(t+δh) − u(t+δh)v(t+δh) sin θ(t+δh)

]
η − u2(t+δh)

+
[
v(t+δh)u(t+δh) sin θ(t+δh) + v2(t+δh) cos θ(t+δh)

]
η − v2(t+δh)

= ηu2(t+δh) cos θ(t+δh) − u2(t+δh) + ηv2(t+δh) cos θ(t+δh) − v2(t+δh)

¬ (η − 1)u2(t+δh) + (η − 1)v2(t+δh) < 0, (That is because η = 0.9).
This means that an efficient stabilization for all states of system (5) is occurred at
the origin using the scalar control law (7).

For the purpose of confirming the validity of the established controller, the
phase-space and the evolution of all states of the controlled system (8) are plotted
as shown in Fig. 2. Such plots clearly show a stabilization at zero occurred for
all chaotic dynamics of the fractional Ikeda map given in (5) by using the scalar
control law given in (7).
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Figure 2: A stabilization of all states of the fractional Ikeda map (5) using the control
law (7) with η = 0.9 and δ = 0.9

4. One-dimensional linear control law

In what follows, an efficient linear control law of one dimension is established
through setting up a novel theorem relies on suitable picking of Lyapunov function
for the purpose of stabilizing the chaotic dynamics of the fractional Zeraoulia–
Sprott rationalmap at zero. This two-dimensionalmap has been introduced in [24]
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using the δ-Caputo delta difference operator. Herein, through enacting the Caputo
h-difference operator, the dynamics of such map will be described as:

C
h∆

δ
r u(t) =

−ρu(t + δh)
1 + v2(t + δh)

− u(t + δh),

C
h∆

δ
r v(t) = u(t + δh) + (β − 1)v(t + δh),

(12)

where t ∈ (hN)r+(1−δ)h. Actually, due to the presence of numerous chaotic at-
tractors of this map that are typically generated through the quasi periodic route
to chaos, it can be classified as more rich in it dynamics than that of the previous
maps. However, in the light of theorem proposed in [29], the equivalent implicit
discrete formulas of system (12) can be written in the form:

un = u0 +
hδ

Γ(δ)

n∑
`=0

Γ(n − ` + δ)
Γ(n − ` + 1)

(
−ρu(` + 1)

1 + v2(` + 1)
− u(` + 1)

)
,

vn = v0 +
hδ

Γ(δ)

n∑
`=0

Γ(n − ` + δ)
Γ(n − ` + 1)

(
u(` + 1) + (β − 1)v(` + 1)

)
,

(13)

where u0, v0 are initial states. Considering parameter’s value β = 0.6 and varying
ρ from 0 to 4 generate the diagram of bifurcation together with the LLEs depicted
in Fig. 3. Different dynamic behaviors, including chaos periodic windows, can
be ascertained in map (12). From which it can be seen that the system under
consideration has a positive LLE when ρ takes highest values, indicating that
the system has indeed a chaotic attractor, as shown in Fig. 3c for ρ = 3.8. Now,
we intend to present a new theorem demonstrates a one-dimensional controller
proposed for controlling the fractional Zeraoulia–Sprott map given in (12).

Theorem 3 The linear control law:

L(t) = −v(t) − ρu(t), (14)

can control the fractional Zeraoulia–Sprott chaotic map reported in (12).

Proof. Combining map (12) together with the time-varying control parameter L
implies the following controlled map:

C
h∆

δ
r u(t) =

−ρu(t + δh)
1 + v2(t + δh)

− u(t + δh) + L(t + δh),

C
h∆

δ
r v(t) = u(t + δh) + (β − 1)v(t + δh).

(15)
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Figure 3: The diagram of bifurcation and the LLE plots vs. the parameter ρ. a) The dia-
gram of bifurcation. b) The LLE. c) Chaotic attractor for ρ = 3.8

If one substitutes law (14) into (15), a simplified form of dynamics will be
obtained. That is;

C
h∆

δ
r u(t) =

−ρu(t + δh)
1 + v2(t + δh)

− (ρ + 1)u(t + δh) − v(t + δh),

C
h∆

δ
r v(t) = u(t + δh) + (β − 1)v(t + δh).

(16)

By taking the Lyapunov function V in which V =
1
2

(
u2(t) + v2(t)

)
, and then

by exploiting Lemma 1, it follows that C
h∆

δ
r V =

1
2

C

h
∆δr u2(t) +

1
2

C

h
∆δr v

2(t). This
consequently leads to the following assertions:

C
h∆

δ
r V ¬ u(t + δh)C

h ∆
δ
r u(t) + v(t + δh)C

h ∆
δ
r v(t)

=
−ρu2(t + δh)
1 + v2(t + δh)

−
(
ρ + 1

)
u2(t + δh) − u(t + δh)v(t + δh)

+ v(t + δh)u(t + δh) +
(
β − 1

)
v2(t + δh)

¬
ρu2(t + δh)

1 + v2(t + δh)
−

(
ρ + 1

)
u2(t + δh) +

(
β − 1

)
v2(t + δh)

¬ ρu2(t + δh) −
(
ρ + 1

)
u2(t + δh) +

(
β − 1

)
v2(t + δh)

= −u2(t + δh) +
(
β − 1

)
v2(t + δh).
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Since β−1 is negative, it simply follows thatC
h∆

δ
r V < 0. Hence, it can be concluded

that the controlled states of the fractional map (12) are indeed stabilized at the
origin by the linear control law (14).

For the purpose of highlighting the validity of the conceived scheme, the plots
of the phase-space together with the states’ evolution for the controlled map (15)
are demonstrated in Fig. 4. These plots clearly highlight that all chaotic states of
the fractional Zeraoulia–Sprott map (12) are stabilized at zero using very simple
one-dimensional linear control law reported in (14).
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Figure 4: A stabilization of all states of the fractional Zeraoulia-Sprott map (12) using
the control law (14) with ρ = 3.8, β = 0.6 and δ = 0.9

5. Two-dimensional linear control law

In this section, a simple two-dimensional linear control law is proposed for
stabilizing the dynamics of a fractional flow map. The objective will be achieved
by developing a novel theorem based on the Lyapunovmethod. Herein, differently
from the δ-Caputo delta difference operator that has been used in [25], the Caputo
h-difference operator is adopted for obtaining the following fractional model of
the flow map:

C
h∆

δ
r u(t) = v(t + δh) + (λ − 1)u(t + δh),

C
h∆

δ
r v(t) = µ + u2(t + δh) − v(t + δh),

(17)
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where t ∈ (hN)r+(1−δ)h. In particular,when r = 0, the equivalent implicit formulas
will be in the form:

un = u0 +
hδ

Γ(δ)

n∑
`=0

Γ(n − ` + δ)
Γ(n − ` + 1)

(v(` + 1) + (λ − 1)u(` + 1)),

vn = v0 +
hδ

Γ(δ)

n∑
`=0

Γ(n − ` + δ)
Γ(n − ` + 1)

(µ + u2(` + 1) − v(` + 1)).

(18)

Figure 5, however, shows the bifurcation diagram obtained by simulating the two
equations given in (18) on λvn-plane, along with the chaotic attractor. From such
figure, one can see that the flow map of fractional-order given in (17) exhibits a
chaotic behaviour over most of the range [−0.12, 0.02[ for µ = −1.17. Note that
the states’ evolution of such map, which adopts the Caputo h-difference operator
in its construction, are absolutely different from those of the map reported in [25],
being the latter has been established on the basis of the δ-Caputo delta difference
operator. In consequence of this development, the next task focuses on stabilizing
all states of the fractional flow map and hence eliminating its chaotic motion by
adding two linear terms to the first and the second equations of such map. In fact,
this controller will force all trajectories, generated by system (17), to be tended
to the zero equilibrium point. This target can be achieved through next theorem.

Figure 5: (a) Bifurcation versus the system’s parameter λ. (b) Chaotic attractor of the
fractional-order flow map
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Theorem 4 The dynamics of the fractional flow map converge asymptotically to
the origin in view of the following control law:

χ1(t) = −(b + λ)u(t),

χ2(t) = −µ − u(t),
(19)

where |v(t) | ¬ b, ∀t ∈ (hN)r+(1−δ)h.

Proof. The fractional flow map under controlled can be outlined as:
C
h∆

δ
r u(t) = v(t + δh) + (λ − 1)u(t + δh) + χ1(t + δh),

C
h∆

δ
r v(t) = µ + u2(t + δh) − v(t + δh) + χ2(t + δh).

(20)

Consequently, system (20) will be as:
C
h∆

δ
r u(t) = v(t + δh) − (b + 1)u(t + δh),

C
h∆

δ
r v(t) = u2(t + δh) − v(t + δh).

(21)

As a result of using the Lyapunov function V =
1
2

(
u2(t) + v2(t)

)
together with

Lemma 1, we obtain the following assertions:
C
h∆

δ
r V ¬ u(t + δh)C

h ∆
δ
r u(t) + v(t + δh)C

h ∆
δ
r v(t)

= u(t + δh)v(t + δh) − (b2 + 1)u2(t + δh)

+ v(t + δh)u2(t + δh) − v2(t + δh) − u(t + δh)v(t + δh)

= −(b + 1)u2(t + δh) + v(t + δh)u2(t + δh) − v2(t + δh)

¬ −(b + 1)u2(t + δh) + |v(t + δh) | u2(t + δh) − v2(t + δh)

¬ −(b + 1)u2(t + δh) + bu2(t + δh) − v2(t + δh)

= −u2(t + δh) − v2(t + δh) < 0.

Thus, in view of Theorem 1, one might deduce that the trivial solution of system
(21) is globally asymptotically stable. Consequently, the controlled system given
in (20) has been indeed stabilized at zero by the two-dimensional linear control
law (19).

Remark 1 The existence of b is justified by the property of the boundness of the
states of chaotic maps. This constant can be found numerically easily.

For the purpose of showing the validity of the established controller, the plots of
the phase space together with the states’ evolution of the controlled map (20) are
demonstrated in Fig. 6.
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Figure 6: A stabilization of all states of the fractional flow map (17) using the control law
(19) with λ = −0.1 and δ = 0.9

6. Conclusion

So far, some nonlinear control laws have been mainly used for stabilizing the
chaotic dynamics of fractional maps at zero. This work has made a contribu-
tion in this research field by proposing simple linear control laws for stabilizing
the dynamics of some types of those fractional maps which have been estab-
lished in view of the Caputo h-difference operator, particulary the Ikeda map, the
Zeraoulia-Sprott rational map and the flow map. The objective has been achieved
by proving three new theorems based on assuming suitable Lyapunov functions.
By virtue of the linearity of the control laws proposed herein, the conceived
methods for stabilizing the chaotic dynamics at zero require less control effort
than that of those nonlinear techniques developed in literature to date. Finally,
some simulation findings have been implemented with the aim of highlighting
the validity of all proposed schemes.
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