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On theoretical and practical aspects
of Duhamel’s integral

Michał RÓŻAŃSKI, Beata SIKORA, Adrian SMUDA and Roman WITUŁA

The paper is a new approach to theDuhamel integral. It contains an overviewof formulas and
applications of Duhamel’s integral as well as a number of new results on the Duhamel integral
and principle. Basic definitions are recalled and formulas for Duhamel’s integral are derived via
Laplace transformation and Leibniz integral rule. Applications of Duhamel’s integral for solving
certain types of differential and integral equations are presented. Moreover, an interpretation
of Duhamel’s formula in the theory of operator semigroups is given. Some applications of
Duhamel’s formula in control systems analysis are discussed. The work is also devoted to the
usage of Duhamel’s integral for differential equations with fractional order derivative.

Key words: Duhamel’s integral, Duhamel’s principle, Duhamel’s formula, Laplace trans-
formation, semigroup of operators, Leibniz integral rule, Volterra integral equation, Caputo
fractional derivative

1. Introduction

Duhamel’s integral owes its name to a French mathematician Jean-Marie
Constant Duhamel who continued the ideas of Fourier and Laplace. While devel-
oping the theory of thermal conductivity, around the year 1830 he introduced a
procedure known today asDuhamel’s principle. It is a general method for obtain-
ing solutions to inhomogeneous linear evolution equations like the heat equation,
wave equation, or vibrating plate equation. The classical Duhamel principle al-
lows to reduce the Cauchy problem for an inhomogeneous partial differential
equation to Cauchy problem for corresponding homogeneous equation, which is
more simpler to handle. In the solution procedures Duhamel’s integral is usually
involved. Therefore, despite the fact that the Duhamel integral belongs to the
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classical dependencies encountered in the Laplace transformation theory, its role
and mathematical importance have significantly strengthened the use of in the
partial differential theory and the theory of semigroups of operators.

In the linear systems theory, the Duhamel convolution integral describes the
relation between a system’s output (response) and its output with the use of
the transfer function (kernel function). An application of Duhamel’s integral for
developing solution to heat conduction problems with time-dependent boundary
conditions by utilizing the solution to the same problem with time-independent
boundary conditions is presented in [31]. Usage of Duhamel’s integral in some
special load cases to single degree of freedom (SDOF)mass system is presented in
[23]. Duhamel’s integral with rooted kernel as the solution of heat equation inside
oscillating gas bubble with moving boundary is studied in [24]. Applications of
Duhamel’s integral can also be found in the field of fractional calculus [1, 7, 17,
26, 48–50].

It seems that this rapid development of the area of application of the formula
known as Duhamel’s integral was certainly not smooth from the mathematical
point of view. Hence the main purpose of this study is to review the more or less
known information about Duhamel’s integral on many levels of its applications.
There is no such study that would fill some “understatements” and “gaps” in the
literature.

The paper is organized as follows. In Section 2, we recall basic definitions
and derive formulas for Duhamel’s integral via Laplace transform and Leibniz
integral rule. Section 3 contains analytic applications of the Duhamel integral for
solving certain types of differential and integral equations. The method similar to
the classical Duhamel principle, but with different auxiliary equation is proposed.
Section 4 presents the adaptation of Duhamel’s formula in the theory of operator
semigroups. The basic concepts and facts are briefly outlined. Finally, after an
appropriate introduction, the semigroup version of Duhamel’s formula given by
S. Mischler was presented. Section 5 contains some examples of control systems
for which Duhamel’s integral can be applied. The usage of Duhamel’s integral to
equations with fractional order derivative ends our article.

2. Formulas for Duhamel’s integral

Let functions f , g : [0,∞) → R be Riemann-integrable on any closed interval
[0, t], t ­ 0. A convolution (one-sided) of functions f and g on the interval
[0,+∞) is the function defined as

( f ∗ g)(t) = f (t) ∗ g(t) =

t∫
0

f (τ)g(t − τ)dτ.
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It is easy to verify that the convolution is commutative. Moreover, if f and g
are originals, the convolution f ∗ g is also an original.

Let the convolution f ∗ g be differentiable. The derivative of convolution is
called Duhamel’s integral, i.e. Duhamel’s integral is defined by the formula

d
dt

( f ∗ g)(t) =
d
dt

t∫
0

f (τ)g(t − τ)dτ. (1)

Remark 1 It is enough that one of the functions f or g is differentiable, then the
convolution is differentiable.

Assume that f is differentiable on [0,∞), f ′ and g are Riemann-integrable
on any interval [0, t], t ­ 0, f ∗ g is differentiable on [0,∞), and f , g, f ′ ∗ g and
( f ∗ g)′ are originals. Applying the Laplace transform, the following formula for
Duhamel’s integral can be derived [10, 27, 37].

d
dt

( f ∗ g)(t) = ( f ′ ∗ g)(t) + f (0)g(t), (2)

where f (0) := lim
t→0+

f (t).

Moreover, if we additionally assume that g is differentiable on [0,∞), g′ is
Riemann-integrable on any interval [0, t], t ­ 0, and f ∗ g′ is the originals the
following alternative formula for Duhamel’s integral also holds

d
dt

( f ∗ g)(t) =
(

f ∗ g′
)

(t) + f (t)g(0), (3)

where g(0) := lim
t→0+

g(t).

Both equalities (2) and (3) are calledDuhamel’s formula and if all assumptions
mentioned after Remark 1 are satisfied, they can be used interchangeably.

Remark 2 The fact that the limits

lim
t→0+

f (t) and lim
t→0+

g(t)

exist and are finite follows from the assumptions that functions f ′ and g′, respec-
tively, are Riemann-integrable on any interval [0, t], t ­ 0.

We will derive formula (2) via the Laplace transform. We calculate the
Laplace transform of the convolution f ′ ∗ g using the Convolution Theorem
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for the Laplace transform and the theorem about original differentiation [9, 32]
we have

L[( f ′ ∗ g)(t)] = L[ f ′(t)]L[g(t)] =
[
sL[ f (t)] − f (0)

]
L[g(t)]

= sL[ f (t)]L[g(t)] − f (0)L[g(t)].
(4)

Moreover,

L

[
d
dt

( f ∗ g)(t)
]
= sL[ f (t)]L[g(t)] − ( f ∗ g)(0) = sL[ f (t)]L[g(t)], (5)

since, under the assumptions for (2), lim
t→0+

( f ∗ g)(t) = 0.
Combining formulas (4) and (5), we obtain the Laplace transform of

Duhamel’s integral

L

[
d
dt

(
f ∗ g

)
(t)

]
= L[

(
f ′ ∗ g

)
(t)] + f (0)L[g(t)].

Using the inverse Laplace transformation, on the basis of linearity and uniqueness,
we obtain the formula (2) on [0,∞).

Formula (3) can be derived analogously.
Another method of deriving the formula (2) is based on the Leibniz integral

rule. Below we present the theorem together with our authors’ proof.

Theorem 1 (Leibniz integral rule) If f , g, h(·, x) ∈ C1(I), I ⊂ R is a compact
interval, f (t) < g(t) for all t ∈ I, h(t, ·) ∈ C

(
[ f (t), g(t)]

)
for all t ∈ I, then for

t ∈ I the following formula holds

d
dt

g(t)∫
f (t)

h(t, x)d x =

g(t)∫
f (t)

∂

∂t
(
h(t, x)

)
d x + h(t, g(t))g′(t) − h(t, f (t)) f ′(t). (6)

Proof. Since h(t, ·) ∈ C
(
[ f (t), g(t)]

)
for all t ∈ I, the function h(t, ·) has the

primitive H (t, ·) over the range of variable t. Therefore
g(t)∫

f (t)

h(t, x)d x = H (t, x)��
x=g(t)
x= f (t) = H (t, g(t)) − H (t, f (t))

and, applying differentiating rules for functions of several variables, we have

d
dt

g(t)∫
f (t)

h(t, x)d x =
∂

∂t
H (t, u)��u=g(t) −

∂

∂t
H (t, v)��v= f (t)

+ h(t, g(t)) · g′(t) − h(t, f (t)) · f ′(t).

(7)
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Now we use the theorem of Hermann Amandus Schwarz that gives sufficient
conditions for equality of mixed partial derivatives [33, 34]. If the following
partial derivatives exist and they are continuous

∂

∂t

(
∂

∂u
H (t, u)

)
and

∂

∂u

(
∂

∂t
H (t, u)

)
,

over some region D ⊂ R2, then the partial derivatives are equal on D. It follows
that, if functions

∂

∂t
h(t, u) and

∂

∂u

(
∂

∂t
H (t, u)

)
(8)

exist and are continuous, then they are equal on D. Hence

g(t)∫
f (t)

∂

∂t
h(t, x)d x =

g(t)∫
f (t)

∂

∂x

(
∂

∂t
H (t, x)

)
d x =

∂

∂t
H (t, x)���

x=g(t)

x= f (t)

and, based on (7), we have (6). 2

Remark 3 Different proof of the Leibniz integral rule can be found, among
others, in monograph [19, 20, 29], where the Mean Value Theorem and the limit
transition theorem for the Riemann integral are applied [3].

Remark 4 Theorem 1 can be generalized to the case of vector functions. Nicolas
Bourbaki in [4] describes such generalization.

Let a, b, A, B ∈ R, a < b, A < B and let Y be a real Banach space.

Theorem 2 Assume that a function f : [a, b] × [A, B]→ Y is continuous, then a
function g : [A, B]→ R defined by the formula

g(α) :=
b∫

a

f (x, α)d x

is continuous. Let be given α0 ∈ (A, B). If the differential quotient

f (x, α) − f (x, α0)
α − α0
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is uniformly convergent on [a, b] for α → α0, then its limit is a continuous
function. The limit is the partial derivative of f at (x, α0), which we denote by
f ′α (x, α0). It folows that, if

g(α) − g(α0)
α − α0

=

b∫
a

f (x, α) − f (x, α0)
α − α0

d x,

then

g′(α0) =

b∫
a

f ′α (x, α)d x. (9)

Remark 5 The formula (9) is a simplified version of (6). The complete vector
equivalent of (6) is presented below by formulating stronger, but also more
general additional assumptions [4, 14].

Let η, ξ ∈ R, η < ξ, and X, Y be real Banach spaces. Moreover, let U ⊂ X
be non-empty open subset and let f : [η, ξ] ×U → Y be a continuous function
such that the partial derivative f ′α (x, α) – the partial Fréchet differential of f
– exists and is continuous on [η, ξ] × U. Assume that two auxiliary functions
a, b : U → [η, ξ] are of the class C1 and

G(α) :=
b(α)∫

a(α)

f (x, α)d x, α ∈ U .

Then G ∈ C1(U) and for any α ∈ U, h ∈ X, the following equality holds

dG(α)h =
(
db(α)h

)
f
(
b(α), α

)
−

(
da(α)h

)
f
(
a(α), α

)
+

*..
,

b(α)∫
a(α)

f ′α (x, α)d x
+//
-

h,
(10)

where dG(α), db(α) and da(α) are the partial Fréchet differentials of the respec-
tive functions. Under weaker assumptions, for X = R and when we consider the
derivative only in the pointα0 ∈ U, we obtain the form (6) of the formula (10),
where f ′α (x, α) is the partial Fréchet differential of f .

Remark 6 Formula (10) is the vector equivalent of formula (6).
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Now, we can derive formula (3) with the aid of the Leibniz integral rule. For
this purpose we make different assumptions for functions f and g. Let f ′ and g
are continuous on [0,+∞). Then, based on (6), we have

d
dt

( f ∗ g)(t) =
d
dt

t∫
0

f (τ)g(t − τ)dτ

=

t∫
0

∂

∂t
[ f (τ)g(t − τ)]dτ + f (τ)g(t − τ)��τ=0 · 0

′ + f (τ)g(t − τ)��τ=t · t
′

=

t∫
0

f (τ)g′(t − τ)dτ + f (t)g(0) = ( f ∗ g′)(t) + f (t)g(0).

In the same way one can derive the formula (3).
In the following numerical example we present an application of Duhamel’s

integral and formula (5) for finding the inverse Laplace transform of a given
function.

Example 1 Consider the function s3

(s2+1)2 . Its inverse Laplace transform is

L−1
[

s3

(s2 + 1)2

]
= L−1

[
s ·

s
s2 + 1

·
s

s2 + 1

]

=
d
dt

t∫
0

cos(t − τ) cos τdτ =
1
2

d
dt

t∫
0

(
cos t + cos(2τ − t)

)
dτ

=
1
2

d
dt

(t cos t + sin t) = cos t −
1
2

t sin t, t ­ 0.

(11)

Let us use other method to verify the result.

L−1
[

s3

(s2 + 1)2

]
= L−1

[
s(s2 + 1) − s

(s2 + 1)2

]
= L−1

[
s

s2 + 1
−

s
(s2 + 1)2

]

= L−1
[ s

s2 + 1

]
+ L−1

[
d
d s

(
1
2
·

1
s2 + 1

)]
= cos t −

1
2

t sin t, t ­ 0.

Calculation made in (11) also allow us to calculate the inverse Laplace trans-
forms of the following rational functions

Fk (s) =
sk

(s2 + 1)4 , where k = 1, 2, 3, 4, 5, 6, 7.
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Taking g(t) = cos t −
1
2

t sin t, h(t) =
1
2

(t cos t + sin t), for t ­ 0, we have

L−1[F7(s)] = L−1
[
s ·

s3

(s2 + 1)2 ·
s3

(s2 + 1)2

]
=

d
dt

(g ∗ g)(t)

=
1
48

(
(48 − 15t2) cos t + t(t2 − 57) sin t

)
,

L−1[F6(s)] = L−1
[

s3

(s2 + 1)2 ·
s3

(s2 + 1)2

]
= (g ∗ g)(t)

=
1
48

(
−t(t2 − 33) cos t + 3(5 − 4t2) sin t

)
,

L−1[F5(s)] = L−1
[
s ·

s2

(s2 + 1)2 ·
s2

(s2 + 1)2

]
=

d
dt

(h ∗ h)(t)

= −
1
48

t
(
−9t cos t + (t2 − 15) sin t

)
,

L−1[F4(s)] = L−1
[

s2

(s2 + 1)2 ·
s2

(s2 + 1)2

]
= (h ∗ h)(t)

=
1
48

(
t(t2 − 3) cos t + 3(1 + 2t2) sin t

)
,

L−1[F3(s)] = L−1
[

s2

(s2 + 1)2 ·
s

(s2 + 1)2

]

= L−1
[

s2

(s2 + 1)2 ·

(
−

1
2
·

1
s2 + 1

)′]
(t)

=

t∫
0

1
2

(τ cos τ + sin τ)
(t − τ)

2
sin(t − τ)dτ

=
1
48

t
(
−3t cos t + (3 + t2) sin t

)
,

L−1[F2(s)] = L−1
[

s
(s2 + 1)2 ·

s
(s2 + 1)2

]

= L−1
[(
−

1
2

1
s2 + 1

)′
·

(
−

1
2

1
s2 + 1

)′]
(t)

=
1
4

t∫
0

τ(sin τ)(t − τ) sin(t − τ)dτ =
1
48

(
−t(3 + t2) cos t + 3 sin t

)
,
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and

L−1[F1(s)] = L−1
[

s
(s2 + 1)4

]
= L−1

[
s

(s2 + 1)2 · s
(

1
s(s2 + 1)

−
s

(s2 + 1)2

)]

= L−1
[
s ·

s
(s2 + 1)2

(
1
s
−

s
s2 + 1

−
s

(s2 + 1)2

)]

(5)
=

d
dt

t∫
0

1
2

(t − τ) sin(t − τ)
(
1 − cos τ −

1
2
τ sin τ

)
dτ

= −
1
48

t
(
3t cos t + (t2 − 3) sin t

)
.

It is worth noting that a general formula for L−1
[

sm
(s2+1)n

]
, where m ∈ N0,

n ∈ N, m < 2n, requires the use of the Bessel functions of half integer order
(see [40]) and there are not simple calculations by hand. For example, we have

L−1
[

1
(s2 + 1)n

]
=

√
π

(n − 1)!

( x
2

)n− 1
2

Jn− 1
2
(x),

where Jn− 1
2
(x) is the respective Bessel function (see [38]), which may be ex-

pressed in the form
π
2∫

0

cos
(
x sin ϕ

)
cos2n−1 ϕdϕ

=
1
2

1∫
−1

(1 − u2)n−1 cos(xu)du =
√
π(n − 1)!

2
( x
2

)n− 1
2

Jn− 1
2
(x).

3. Analytic applications

3.1. Analytic solutions of linear differential equations

The Duhamel’s integral can be used to solve linear differential equations with
constant coefficients by solving an auxiliary differential equation with a function
equal to 1 [28,30]. More precisely, we have to solve the following linear ordinary
differential equation

anx (n) (t) + an−1x (n−1) (t) + . . . + a1x(t) = f (t), (12)
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with initial conditions

x(0) = x′(0) = . . . = x (n−1) (0) = 0, (13)

where a0, . . . , an−1, an ∈ R and f is continuous. Let us assume that we know the
solution of equation

any
(n) (t) + an−1y

(n−1) (t) + . . . + a1y(t) = 1 (14)

with initial conditions

y(0) = y′(0) = . . . = y(n−1) (0) = 0. (15)

If we go over to the Laplace transform, we obtain

P(t)L[x(t)] = L[ f (t)] (16)

for (12) and
P(t)L[y(t)] =

1
t

(17)

for (13), where P is a known polynomial of degree n in t. From (16) it follows
that

L[x(t)] =
L[ f (t)]

P(t)
and from (17) that

P(t) =
1

tL[y(t)]
,

whence
L[x(t)] = tL[y(t)]L[ f (t)].

According to (5) we have

L[x(t)] = L
[

d
dt

(y ∗ f )(t)
]
,

so
x(t) =

d
dt

(y ∗ f )(t).

Bearing in mind y(0) = 0, we find the solution x(t) of (12) with initial condition
(13) from the property (2) for Duhamel’s integral on the form

x(t) =
(
y′ ∗ f

)
(t) =

t∫
0

y′(t − τ) f (τ)dτ,

where y(t) is the solution of problem (14) with initial conditions (15).
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The above procedure is similar to the classical method of solving Bernoulli’s
differential equations

x′(t) + p(t)x = q(t)xα, α ∈ R \ {0, 1}. (18)

Firstly we reduce this equation to a linear differential equation by substituting
y = x1−α and then we often use the variational method of solving. On the other
hand, it can be solved directly by looking for a solution to differential equation
(18) as the product of two functions x(t) = u(t)v(t) regardless of the value of
α ∈ R (also for cases α = 0 and α = 1). In practice, the Duhamel’s formula is only
a trick and rather artificial in the technique of solving differential equations by
hand calculations using the Laplace transform. It can be successfully replaced by
direct proceedings with using the Convolution Theorem, which is neither typical
nor obvious, as evidenced by examples from the known literature [8,10,18,28,37].

We demonstrate this in the following examples. We look for solutions to the
considered differential equations in the class of originals.

The first example presents a method basing on the usage of Duhamel’s for-
mula.

Example 2 We find the solution of the following linear ordinary differential
equation with zero initial conditions

x′′(t) + x(t) =
1

2 + cos t
, x(0) = x′(0) = 0.

First we solve the auxiliary differential equation

y′′(t) + y(t) = 1, y(0) = y′(0) = 0.

We go over Laplace-operator equations

(s2 + 1)L[y(t)] =
1
s
,

sL[y(t)] =
1

s2 + 1
(19)

and
(s2 + 1)L[x(t)] = L

[
1

2 + cos t

]
,

which implies

L[x(t)] =
1

s2 + 1
L

[
1

2 + cos t

]

(19)
= sL[y(t)]L

[
1

2 + cos t

]
(5)
= L

[
d
dt

(
y(t) ∗

1
2 + cos t

)]
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and
x(t) =

d
dt

(
y(t) ∗

1
2 + cos t

)
. (20)

Hence, on the basis of Duhamel’s formula (2), we obtain

x(t) =
y(0)

2 + cos t
+

t∫
0

y′(t − τ)
1

2 + cos τ
dτ =

t∫
0

y′(t − τ)
1

2 + cos τ
dτ. (21)

From the formula (19) we get

L[y(t)] =
1

s(s2 + 1)
=

1
s
−

s
s2 + 1

and
y(t) = 1 − cos t,

which, based on formula (21), gives

x(t) =

t∫
0

sin(t − τ)
2 + cos τ

dτ

= sin t

t∫
0

cos τ
2 + cos τ

dτ + cos t

t∫
0

− sin τ
2 + cos τ

dτ

= sin t

t∫
0

(
1 −

2
2 + cos τ

)
dτ + cos t ln(2 + cos τ)��t0

= t sin t − 2 sin t

t∫
0

1
2 + cos τ

dτ + cos t ln
2 + cos t

3
(22)

but∫
1

2 + cos τ
dτ =

∫
1

1 + 2 cos2 τ

2

dτ =
∫

1

sin2 τ

2
+ 3 cos2 τ

2

dτ

=

∫
1

cos2 τ

2

(
tan2 τ

2
+ 3

) dτ =
2
√

3
3

arctan
tan

τ

2
√

3
+ C, C ∈ R,
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which implies

x(t) = (sin t)
(
t −

4
√

3
3

arctan
tan t

2
√

3

)
+ cos t ln

2 + cos t
3

. (23)

Remark 7 If the Duhamel formula were not used for formula (20), the calcula-
tions would be significantly complicated by the final computation of the derivative
of a function of a type such as (23). On the other hand, the direct application
of the Laplace transform to the original equation immediately leads to formula
(22), which significantly simplifies the calculations.

The next example presents a solutions obtained by using of the Convolution
Theorem only.

Example 3 We are looking for a solution to the following differential equation
in the class of originals

x′′(t) − 2x′(t) + x(t) =
tet

(t2 + 1)2 , (24)

x(0) = x′(0) = 0.
We assume that such solution x(t), t ­ 0, exists. First we find the Laplace
transforms of both sides of equation (24)

(s2 − 2s + 1)L[x(t)] = L
[

tet

(t2 + 1)2

]
,

which implies

L[x(t)] =
1

(s − 1)2L

[
tet

(t2 + 1)2

]
= L

[
tet ]L [

tet

(t2 + 1)2

]
.

Next, using the Convolution Theorem, we get

x(t) =

t∫
0

(t − τ)et−τ τeτ

(τ2 + 1)2 dτ = et

t∫
0

(t − τ)
(
−

1
2(τ2 + 1)

)′
dτ

= et



τ − t
2(τ2 + 1)

���
t

0
−

1
2

t∫
0

dτ
τ2 + 1


=

1
2

et[t − arctan t].

Note that x(t), t ­ 0, is the original, which confirms the correctness of our
assumption.
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3.2. Estimating solutions of certain types of integral equations

The Duhamel formula can be successfully used to estimate the norms of
solutions of LDE and selected integral equations. For example, let us consider
the Volterra integral equation of the second kind with convolution kernel [36]

F (t) +

t∫
0

K (t − τ)F (τ)dτ = G(t), (25)

where K andG are given functions. Let f (t) be a solution of the auxiliary equation

f (t) +

t∫
0

K (t − τ) f (τ)dτ = 1. (26)

Then for the solution F (t) of (25) the following relation holds true by Duha-mel’s
formula

F (t) =
d
dt

(
f ∗ G(t)

)
. (27)

Using this formula, in [36] authors reported an interesting relationship between
the respective norms of the functions F, f and G. They proved the following fact.

Theorem 3 If p > 1, f ∈ Lp(ρ) and G ∈ W1
p (γ) then we have F ∈ Lp(ω) and

‖F‖Lp (ω) ¬ ‖ f ‖Lp (ρ) ‖G‖W1
p (γ) , (28)

where

ω(t) =



t∫
0

ρ1/(1−p) (τ)γ1/(1−p) (t − τ)dτ



1−p

,

t ∈ [a, b], ρ is a positive and continuous function on [a, b], Lp(ρ) denotes the
Lebesgue space of complex valued measurable functions f on [a, b] such that
‖ f ‖Lp (ρ) < ∞, where

‖ f ‖Lp (ρ) :=
*..
,

b∫
a

| f (τ) |pρ(τ)dτ
+//
-

1/p

,

γ : [a, b] → R­0 and γ is absolutely continuous on [a, b]. The space W1
p (γ)

consists of those and only those functions G which can be represented in the form
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G(t) =
t∫

a
ϕ(τ)dτ, t ∈ [a, b] for some ϕ ∈ Lp(ρ). We note that if we define on

W1
p (ρ) a norm

‖G‖W1
p (ρ) :=

*..
,

b∫
a

�����
d
dτ

G(τ)
�����

p

ρ(τ)dt
+//
-

1/p

then the pair
(
W1

p (ρ), ‖ · ‖W1
p (ρ)

)
is a Banach space.

Remark 8 In some interesting cases of integral equations (25) and (26), relations
between functions F and f can be obtained in other, more specific form. For
example, consider the following generalization of Duc and Nhan [11, Example
4] integral equation

y(t) + ψ′(t)

t∫
0

y(τ)dτ = G(t)
*..
,

t∫
0

y(τ)dτ
+//
-

α

, (29)

where ψ : R­0 → R­0, ψ′(t) > 0 for all t ∈ R­0 and α ∈ R, α , 1. After
substitution

z(t) =

t∫
0

y(τ)dτ, t ∈ R­0,

the original integral equation (29) is reduced to the first-order linear nonhomo-
geneous ordinary differential equation (the Bernoulli differential equation)

z′(t) + ψ′(t)z(t) = G(t)
(
z(t)

)α . (30)

The solution of this one has the form

z(t) = eψ(0)−ψ(t) 1−α

√√√√√
(1 − α)

t∫
0

G(τ)e(1−α)(ψ(τ)−ψ(0)) dτ,

which implies the relation

z(t)
ζ (t)

=
1−α

√√√√√√√√√√√√√√√√√√√√√√√√
t∫

0

G(τ)e(1−α)(ψ(τ)−ψ(0)) dτ

t∫
0

e(1−α)(ψ(τ)−ψ(0)) dτ

(31)
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if ζ (t) denotes the solution of (30) for G(t) = 1. Identity (31) possesses the form
corresponding to relation (27) and is even more adequate to get an inequality of
the form (28). It should be remembered that for the appropriate solutions Y (t)
and y(t) of the integral equation (29), we have the dependencies

z(t) =

t∫
0

Y (τ)dτ and ζ (t) =

t∫
0

y(τ)dτ.

Furthermore, if z1(t) and z2(t) are the solutions of equation (29) forG(t) = G1(t)
and G(t) = G2(t), respectively, then by (30), the following relations hold

(
z1(t)

)1−α
−

(
z2(t)

)1−α
=

(
ζ (t)

)1−α

t∫
0

(
G1(τ) − G2(τ)

)
e(1−α)(ψ(τ)−ψ(0)) dτ

t∫
0

e(1−α)(ψ(τ)−ψ(0)) dτ

.

3.3. Linear systems approach

In this subsection, we propose the application of Duhamel’s integral to the
analysis of linear systems. Consider a linear system described by the following
n-th order linear differential equation

x (n) (t) + an−1x (n−1) (t) + · · · + a1x′(t) + a0x(t)

= bmu(m) (t) + bn−1u(m−1) (t) + · · · + b1u′(t) + b0u(t) (32)

for t ­ 0, with initial conditions

x(0) = · · · = x (n−1) (0) = u(0) = · · · = u(m) (0) = 0.

The function u is a given input (control) and x is unknown output (the response
of the system) that is, the solution to be found, a0, . . . , an−1 and b0, . . . , bm are
real constants. Let x and u be originals.

Applying the Laplace transform to equation (32), we have(
sn + an−1sn−1 + · · · + a1s + a0

)
X (s)

=
(
bmsm + bm−1sm−1 + · · · + b1s + b0

)
U (s),

where X (s) = L[x(t)] and U (s) = L[u(t)].
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Let us denote

Kx (s) = sn + an−1sn−1 + · · · + a1s + a0,

Ku(s) = bmsm + bm−1sm−1 + · · · + b1s + b0.

Hence Kx (s)X (s) = Ku(s)U (s) and the transfer function (kernel function) for
the system (32) takes the form

K (s) =
Ku(s)
Kx (s)

=
X (s)
U (s)

.

Now we write an auxiliary equation

x (n)
H (t) + an−1x (n−1)

H (t) + · · · + a1x′H (t) + a0xH (t) = H (t), (33)

with zero initial conditions, where H is the Heaviside function

H (t) =



0 for t < 0
1 for t ­ 0.

Applying the Laplace transform to equation (33), we have(
sn + an−1sn−1 + · · · + a1s + a0

)
XH = 1 · L[H (t)],

and the transfer function for the system (33) takes the form

KH (s) =
XH (s)
L[H (t)]

= sXH (s).

Hence
XH (s) =

KH (s)
s

.

The solution xH (t) = L−1[XH (t)] to equation (33) is called the indicial admit-
tance. Thus the solution to (32) is the following Duhamel’s integral

x(t) = L−1 [
sXH (s)(bmsm + · · · + b1s + b0)U (s)

]
=

d
dt

t∫
0

xH (τ)v(t − τ)dτ, (34)

where v(t) = L−1[(bmsm + · · · + b1s + b0)U (s)].
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Finally, using Duhamel’s formula (3), the solution to (32) takes the form

x(t) =

t∫
0

x′H (τ)v(t − τ)dτ + xH (0)v(t) =

t∫
0

x′H (τ)v(t − τ)dτ, (35)

taking into account zero initial conditions.
Alternatively,

x(t) =

t∫
0

xH (τ)v′(t − τ)dτ + xH (t)v(0)

t∫
0

xH (τ)v′(t − τ)dτ. (36)

The following example illustrates the procedure.

Example 4 Solve the initial value problem

x′′(t) − x′(t) = u′(t) + u(t)

x(0) = x′(0) = u(0) = u′(0) = 0

for

(a) u(t) = sin t,

(b) u(t) = et sinh 2t.

The auxiliary equation is

x′′H (t) − x′H (t) = H (t).

Let L[xH (t)] = XH (s). Using the Laplace transformation method to the above
equation, we obtain

XH (s) =
1

s2(s − 1)

and
xH (t) = et − t − 1, t ­ 0.

Hence x′H (t) = et − 1.

Ad (a) We calculate

v(t) = L−1
[
(s + 1)

1
s2 + 1

]
= sin t + cos t, t ­ 0.
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Hence, based on (35), the solution is

x(t) =

t∫
0

(eτ − 1)(sin(t − τ) + cos(t − τ))dτ

= et

t∫
0

(e−u − e−t )(sin u + cos u)du = et − sin t − 1, t ­ 0,

since ∫
e−u(sin u + cos u)du = −e−u cos u + const .

Ad (b) Here

v(t) = L−1
[
(s + 1)

2
(s − 1)2 − 4

]
= 2e3t, t ­ 0.

Therefore, using formula (35), the solution for t ­ 0 takes the form

x(t) = 2
t∫

0

(et−τ − 1)e3τdτ =
1
3

(e3t − 3et + 2).

4. Semigroups of operators

Currently, Duhamel’s formula has found an appropriate interpretation in the
theory of operator semigroups [12, 13, 35, 51]. This formally advanced approach
makes the Duhamel formula take on a new, fuller dimension.

Definition 1 A family {T (t)}t­0 of linear operators bounded on a real or complex
Banach space X is called a one-parameter strongly continuous semigroup or
semigroup of C0 class if it satisfies the conditions:

1)
(
∀t, s ∈ R­0

) (
T (t + s) = T (t)T (s)

)
,

2) T (0) = idX,

3)
(
∀x ∈ X

) (
function R­0 3 t 7→ T (t)x is continuous with respect to usual

topology on R
)
.

In the last case we say that
ξx (t) := T (t)x

defined on (x, t) ∈ X × R­0 is strongly continuous.
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Families of operators of the form {eAt }t­0, where A ∈ Mn(C), n ∈ N, are
standard examples of one-parameter strongly continuous semigroups.

Theorem 4 Let {T (t)}t­0 be a family of linear operators bounded on a Banach
space X over R or C, satisfying the conditions 1) and 2) from definition (1). Then
the following conditions are equivalent:

1) the family {T (t)}t­0 is a semigroup of C0 class,

2) lim
t→0+

T (t)x = x for all x ∈ X,

3) there exist δ ∈ R>0, M ∈ R, M ­ 1 and a dense affine variety D ⊂ X such
that

(a) ‖T (t)‖ ¬ M for all t ∈ [0, δ],
(b) lim

t→0+
T (t)x = x for all x ∈ D.

Theorem 5 For each strongly continuous semigroup {T (t)}t­0 there exist con-
stants M, ω ∈ R, M ­ 1 such that

‖T (t)‖ ¬ Meωt

for all t ­ 0.

The fundamental concept related to each strongly continuous semigroup
{T (t)}t­0 is the concept of a generator (infinitesimal generator) of this semi-
group.

Definition 2 The operator

Ax := lim
h→0+

1
h
(
T (h)x − x

)
defined for each x ∈ X for which the above right-hand limit exists is called a
generator (infinitesimal generator) A of a given strongly continuous semigroup
{T (t)}t­0 defined on the real or complex Banach spaceX. The set of all x ∈ X for
which the limit exists is denoted by D(A) and called the domain of operator A.

Theorem 6 Let A be a generator of the strongly continuous semigroup {T (t)}t­0.
Then the following statements are true:

1) D(A) is the affine variety dense in X,

2) A : D(A) → X is the linear operator,
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3) for every x ∈ D(A) and t ∈ R­0 it holds T (t)x ∈ D(A). While for every

x ∈ X and t ∈ R­0 it holds
t∫

0
T (s)xds ∈ D(A). Moreover, for every

x ∈ D(A) and t ∈ R­0 we have

d
dt

T (t)x = T (t) Ax = AT (t)x

and

T (t)x − x =




A

t∫
0

T (s)xd s, for x ∈ X,

t∫
0

T (s) Axd s, for x ∈ D(A).

Theorem 7 The generator of a strongly continuous semigroup is a closed oper-
ator and defines this semigroup uniquely.

Since now we shall call denote each strongly contiguous semigroup {T (t)}t­0
by SA, where A is the generator of this semigroup and write SA(t) instead of T (t)
for all t ∈ R­0.

Duhamel’s formula in the semigroup theory has been defined and proved by
S. Mischler in [35] as follows.

Theorem 8 (Duhamel’s formula) Let SA and SB be two operator semigroups on
the same Banach space X. Let us suppose that domains of A and B are equal and

ΛSB, SBΛ ∈ L1 ([0,T]; B(X)
)

for any T ∈ R>0, where Λ := A − B. Then we have in B(X)

SA = SB + SA ∗ ΛSB = SB + SBΛ ∗ SA.

Proof. Let us take x ∈ D(A) = D(B), t > 0, and define the mapping

s 7→ u(s) := SA(s)SB (t − s)x ∈ C1 ([0, t]; X)
∩ C

(
[0, t]; D(A)

)
.

Then we obtain

u′(s) = SA(s)ASB (t − s)x − SA(s)BSB (t − s)x = SA(s)ΛSB (t − s)x
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for any s ∈ (0, t). Hence we deduce the equality

SA(t)x − SB (t)x =

t∫
0

u′(s)d s =

t∫
0

SA(t − s)ΛSB (s)xd s.

By density C1 ([0, t];X)
∩ C

(
[0, t]; D(A)

)
in C

(
[0, t]; D(A)

)
, and continuity of

SA(t) and SB (t) it follows that the same formula holds for any x ∈ X, which implies
the equality SA = SB + SA ∗ ΛSB. The second equality follows by reversing the
role of SA and SB. 2

5. Practical applications

In this section some examples of control systems for whichDuhamel’s integral
has been applied are presented.
Example 5 Consider the LC electrical circuit consisting of an inductor (rep-
resented by L) and a capacitor (represented by C) connected together, shown
in Fig. 1.

Figure 1: LC electrical circuit

The system is described by the following integro-differential equation [37]

L
di
dt
+

1
C

t∫
0

idt = u(t), t ­ 0

with zero initial condition, where i is a current intensity, u is a voltage, L and C
are positive constants.
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In [37], rather rarely used the Laplace-Carlson transformation was applied to
solve the equation. We propose to use the Laplace transformation method.

The auxiliary equation is

L
di
dt
+

1
C

t∫
0

idt = H (t).

LetL[i(t)] = I (s) andL[u(t)] = U (s). Applying the Laplace transformation,
we have

sLI (s) +
1

sC
I (s) =

1
s
.

We calculate
IH (s) =

C
CLs2 + 1

and then

iH (t) =

√
C
L

sin
t
√

CL
.

In order to use formula (35), we differentiate

diH

dt
=

1
L

cos
t
√

CL
.

Denoting ω2
0 =

t
CL (ω0 represents frequency), we obtain the Duhamel integral

i(t) =
1
L

t∫
0

u(τ) cosω0(t − τ)dτ.

It is a formula that expresses the dependence of the current i on the applied
voltage u in the circuit under consideration.

Example 6 Consider the following equation of motion that govern the behaviour
of a single-degree-of-freedom system [6]

d2x
dt2 + 2ϑω0

d x
dt
+ ω2

0x(t) = −
d2u
dt2 , (37)

where x,
d x
dt

,
d2x
dt2 are the relative displacement, velocity and acceleration of the

SDOF system, respectively,ω0 is the angular frequency, ϑ is the viscous damping

factor,
d2u
dt2 represents the base acceleration.
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If we assume zero initial conditions x(0) = x′(0) = 0, then the solution of
equation (37) at fixed time t ∈ (0,+∞) is the following Duhamel integral

x(t) = −

t∫
0

u′′(τ)h(t − τ)dτ,

where ωa = ω0
√

1 − ϑ2, h denotes the impulse response of system, and
h(t − τ) = 1

ωa
e−ϑω0(t−τ) sinω0(t − τ).

Example 7 Consider inhomogeneous wave equation on the infinite string

∂2u
∂t2 − c2 ∂

2u
∂x2 = F (t, x), (38)

u(0, x) = f (x),
∂

∂t
u(0, x) = g(x),

where F, f , g are given sufficiently smooth functions. We decompose the system
into two simpler problems, that is the initial value problem for the homogeneous
wave equation and inhomogeneous problem with zero initial conditions:

∂2v

∂t2 − c2 ∂
2v

∂x2 = 0, (39)

u(0, x) = f (x),
∂u
∂t

(0, x) = g(x)

and
∂2w

∂t2 − c2 ∂
2w

∂x2 = F (t, x), (40)

w(0, x) = 0,
∂w

∂t
(0, x) = 0.

Of course, if v is a solution to (39) and w is a solution to (40), then u(t, x) =
v(t, x) + w(t, x) solves (38). The problem (39) is easy to solve by the d’Alembert
formula whereas solving the problem (40) is based on Duhamel’s integral. To
find the solution w let us consider an auxiliary problem

∂2r
∂t2 − c2 ∂

2r
∂x2 = 0, t > τ, (41)

r (τ, τ, x) = 0,
∂r
∂t

(τ, τ, x) = F (τ, x),

which solution is the function r = r (t, τ, x).
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We will show that

w(t, x) =

t∫
0

r (t, τ, x)dτ

is the solution to (40). Indeed, since

t∫
0

r (t, τ, x)dτ =
t∫

0

1 · r (t, τ, x)dτ = H (t) ∗ r (t, τ, x),

we have Duhamel’s integral

∂w

∂t
=

d
dt

t∫
0

r (t, τ, x)dτ (3)
= r (t, τ, x) +

t∫
0

∂

∂t
r (t, τ, x)dτ.

It follows that

∂2w

∂t2 =
∂

∂t
r (t, τ, x) +

t∫
0

∂2

∂t2 r (t, τ, x)dτ = F (t, x) +

t∫
0

∂2

∂t2 r (t, τ, x)dτ.

Moreover,

∂2w

∂x2 =

t∫
0

∂2

∂x2 r (t, τ, x)dτ =
1
c2

t∫
0

∂2

∂t2 r (t, τ, x)dτ.

Thus we have
∂2w

∂t2 − c2 ∂
2w

∂x2 = F (t, x) and w(0, x) =
∂w

∂t
(0, x) = 0, which

needed to be shown.

6. Fractional-order case

In recent years, there has been a large increase in the number of publications
on fractional order integro-differential calculus. Control systems described by
differential equations with fractional order derivatives were discussed, among
others, in [2, 5, 16, 21, 22, 25, 39, 41–47]. However, there are few publications on
the usage of Duhamel’s integral to equations with fractional order derivative.
For example, S. Umarov and E. Saydamatov in [49] consider a generalization
of Duhamel’s principle in the case of fractional differential equations. Here
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the Duhamel principle for the Caputo fractional derivative is studied while in
[48] a solution to equations with the Riemann-Liouville derivative is presented.
Nevertheless, it has to be pointed out that initial value problemswith theRiemann-
Liouville derivatives has no unequivocal physical interpretation. In the case of
the Caputo derivative, initial conditions can be interpreted analogously to the
case of integer-order derivatives. Therefore, we present the Duhamel method for
solving differential equations with the Caputo fractional derivative and pseudo-
differential operator.

Fractional Duhamel’s principle in the case of 0 < α < 1, the Caputo fractional
derivarive

C Dα f (t) =
1

Γ(n − α)

t∫
0

(t − τ)n−α−1 f (n) (τ)dτ,

and the pseudo-differential operator A(Dx) defined on Rn, where Dx =

(D1, . . . , Dn), D j =
∂

∂x j
, j = 1, . . . , n, can be formulated as the following theo-

rem.

Theorem 9 [49] Suppose that V (t, τ, x), 0 ¬ τ ¬ t, x ∈ Rn is a solution of the
Cauchy problem for homogeneous equation

C DαV (t, τ, x) − A(Dx)V (t, τ, x) = 0 (42)

V (τ, τ, x) = C D1−α f (τ, x), (43)

where f = f (t, x) is a given function satisfying the condition f (0, x) = 0. Then
the convolution integral

v(t, x) =

t∫
0

V (t, τ, x)dτ (44)

is a solution of the inhomogeneous Cauchy problem
C Dαv(t, x) − A(Dx)v(t, x) = f (t, x) (45)

v(0, x) = 0.

Moreover, for linear fractional-order differential equations it is possible to
use the method applying Duhamel’s integral discussed in Subsection 3.3. The
following example presents the usage of the method for a linear system described
by a fractional differential equation with the Caputo derivative and zero initial
condition.
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Example 8 Consider a damper-spring control system described by the following
fractional-order differential equation (see for example: [15])

C Dαx(t) + ηx(t) =
η

k
u(t), x(0) = 0, (46)

t ­ 0, where α ∈ (0, 1), η = kσ1−α

β , k is the spring constant, β is the damping
coefficient, σ is an auxiliary parameter of the system with
(a) a constant source (control) u(t) = f0,

(b) a periodic source u(t) = f0 cos (ωt),
f0 and ω are given constants.

It is easy to verify that formula (34) holds also for linear systems with constant
coefficients with the Caputo derivative. For the system (46) we obtain the solution
in the form of Duhamel’s integral

x(t) = L−1
[
sXH (s)

η

k
U (s)

]
=
η

k
·

d
dt

t∫
0

xH (τ)u(t − τ)dτ, (47)

where L[u(t)] = U (s), L[xH (t)] = XH (s), and xH is a solution to the auxiliary
equation

C DαxH (t) + ηxH (t) = H (t), xH (0) = 0. (48)
Next, using formula (35), we have

x(t) =
η

k

t∫
0

x′H (τ)u(t − τ)dτ. (49)

Let us find the solution xH to the auxiliary equation (48). Applying the Laplace
transform method, we have

sαXH (s) + ηXH (s) =
1
s

and
XH (s) =

1
s(sα + η)

.

Finally,

xH (t) = L−1
[
1
s

]
∗ L−1

[
1

sα + η

]
= H (t) ∗ tα−1Eα,α (−ηtα)

=

t∫
0

τα−1Eα,α (−ητα)dτ,
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where Eα,α is the two-parameter Mittag-Leffler function, e.g.

Eα,β (z) =
+∞∑
k=0

zk

Γ(αk + β)
(50)

for α, β ∈ R+, z ∈ C.
Hence, substituting xH into (49), the solution to (46) takes the form

x(t) =
η

k

t∫
0

τα−1Eα,α (−ητα)u(t − τ)dτ. (51)

It follows that the solution of the Cauchy problem (a) is

x(t) =
η f0

k

t∫
0

τα−1Eα,α (−ητα)dτ

and for (b) we have

x(t) =
η f0

k

t∫
0

τα−1 cosω(t − τ)Eα,α (−ητα)dτ.

7. Concluding remarks

Properties and applications of Duhamel’s integral have been discussed in the
paper. Theoretical foundations on the ground of the theory of operator semigroups
have been studied. Numerical examples that illustrate theoretical considerations,
estimating the norms of solutions of selected integral equations as well as exam-
ples of practical applications for control systems have been presented. Application
of Duhamel’s integral and the Duhamel principle in the case of fractional-order
systems has been also provided in the paper.

In addition to the summary of known facts about Duhamela’s integral, the
paper contains a number of original results. The newproof of Theorem1have been
proposed. All the proofs of this theorem known to the authors have a completely
different course, they are based on different assumptions. Subsection 3.1 contains
original comments on the use of the Duhamel formula to solve linear differential
equations with constant coefficients, which was presented from the practical
side in Examples 2 and 3. Remark 8 contains new results on nonlinear integral
equation, where formula (31) has been proposed as an equivalent to Duhamel’s
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formula (28), and which allows for obtaining inequalities of type (28) more
efficiently. New is also the procedure basing onDuhamel’s integral for the analysis
of linear systems presented in Subsection 3.3. The proof of Theorem 8 is partly
original.

The strengths of the work are numerous examples. All numerical examples
are invented by the authors. Especially interesting is Example 1. Moreover, in
Section 5 (for integer order case) and Section 6 (for fractional order case) some
new solutions of known problems have been proposed.

The study is a unique compendium of knowledge about Duhamel’s integral.
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