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Performance of artificial neural networks in an inverse
problem of laser beam diagnostics
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Abstract. The presented results are for the numerical verification of a method devised to identify an unknown spatio-temporal distribution of
heat flux that occurs at the surface of a thin aluminum plate, as a result of pulsed laser beam excitation. The presented identification of boundary
heat flux function is a part of the newly proposed laser beam profiling method and utilizes artificial neural networks trained on temperature
distributions generated with the ANSYS Fluent solver. The paper focuses on the selection of the most effective neural network hyperparameters
and compares the results of neural network identification with the Levenberg–Marquardt method used earlier and discussed in previous articles.
For the levels of noise measured in physical experiments (0.25–0.5 K), the accuracy of the current parameter estimation method is between 5 and
10%. Design changes that may increase its accuracy are thoroughly discussed.
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1. INTRODUCTION
High-power lasers are used in many areas of science and tech-
nology – for example in materials processing [1], medicine [2],
defense [3], and materials characterization [4, 5]. One of their
key characteristics is the spatial distribution of energy density
across the beam, known as the beam profile [6]. The beam pro-
file may be often described by the super-Gaussian function [7].
Three basic shapes of that function are recognized, i.e. Gaus-
sian, super-Gaussian, and flattop (see Fig. 1). In laser-based
devices, it is often the case that light travels through optical
components before interacting with its target. The profile of the
laser beam at the end of the optical track may differ from the
desired one due to the heating of mirrors, lenses, and polarizers,
which causes their deformation [8].

Verification of the beam characteristics and stability checks
are required to assure reliable and repeatable operation of laser-
based devices. It is typically achieved with the use of laser
beam profiling techniques [6, 8], among which destructive and
non-destructive techniques may be distinguished. In destructive
measurements, laser beams interact with solid targets (e.g. ther-
mal paper, photographic films, acrylic blocks) and leave per-
manent changes which allow us to identify some beam param-
eters [6]. This type of setup is usually unsuitable for continu-
ous measurements, and nowadays destructive techniques have
mainly historical importance. Automated non-destructive tech-
niques, which are well-established, make use of various meth-
ods of beam attenuation before its interaction with the sensor.
High power beams are particularly problematic to measure. Fo-
cused constant width lasers of power in the 1 W range and
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Fig. 1. Profiles of temperature at the surface of thin aluminum plate
obtained by heating it with a high-power laser beam of three basic
spatial energy distributions – Gaussian, super-Gaussian and flat-top

(adopted from [9])

pulsed lasers in the 1 J range can easily damage scanning aper-
tures, and beams in the kW range can damage beam samplers.
One of the ways to overcome the power obstacle is the non-
interceptive profiling proposed by Guttman [8]. Nevertheless,
typical laser beam profiler instruments are usually very fragile
and expensive. Fragility makes it difficult to use them in field
conditions, and high cost limits their use in the industry. Addi-
tionally, not all of them work for pulsed beams [10].

In response to the need for less expensive and more ro-
bust testing methods applicable to pulsed laser beams, a new
method has been recently proposed by Kujawińska et al. [9].
This method initially assumed utilization of fast infrared ther-
mography (IRT) and digital image correlation (DIC) [11] meth-
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ods to capture temperature maps (thermography) and displace-
ment maps (DIC) resulting from the interaction of the short
laser pulse with a thin aluminum plate. The sensing of tem-
perature and displacement is carried out for the rear surface
of the plate – opposite to the heated surface (See Fig. 2). Ku-
jawińska and her collaborators [12] assumed that their exper-
imental setup may be used to identify four parameters of the
laser pulse, i.e. its spatial profile coefficient, beginning time,
end time, and power. In their technique, the density of heat flux
at the sample surface, resulting from the laser strike, was as-
sumed in the super-Gaussian form [7] and the impulse itself
was treated as rectangular with respect to time.

Fig. 2. The geometry of the laser-heated plate

The problem that arose may be classified as the inverse heat
transfer problem (IHTP) of parameter estimation [13]. Pietrak
et al. [12] and Łapka et al. [14] confirmed that useful results
may be obtained with the aforementioned method even if only
the thermal part of the problem is considered and the mechan-
ical part (the measurement and simulation of displacements)
is neglected. They tested the method based solely on tempera-
ture measurement using both simulated (artificial) [12] and real
(physical) [14] measurement data. They obtained discrepancies
between estimated and accurate parameter values of the order
of 3.39% for artificial and 20–25% for physical experiments.
The advantage of their technique is a simple experimental setup
employing a fast-infrared camera as the only required sensor.
That fact makes the method less expensive and more resistant
to failure than sophisticated commercial instruments. To solve
the parameter estimation problem, Pietrak et al. and Łapka et al.
used the Levenberg–Marquardt inverse algorithm with sensitiv-
ity matrices obtained by numerical simulation of the forward
thermal problem. That approach has one drawback, i.e. the pres-
ence of a significant delay between the physical measurement
and the end of the data analysis. The delay is caused by the re-
quirement to solve the forward problem many times using the
finite volume method (FVM), which may be time-consuming.
To assure fast operation of the data analyzer program in field
conditions, the numerical simulation process may be moved to
the time before the field measurements. This can be achieved
with the artificial neural network (ANN) approach investigated
in the current article.

The present approach to the identification of spatio-temporal
characteristics of the laser pulse is based on the experimental
setup proposed by Kujawińska et al. [9]. Similarly to the ver-
sion considered by Pietrak et al. [12] and Łapka et al. [14],
it includes the thermal problem and neglects the mechanical
one (the unknown characteristics of the laser pulse are esti-
mated only based on temperatures and not on displacements).
In the presented analysis it is proposed that an ANN can learn
how different temperature distributions measured on the plate
struck by a laser pulse translate to the characteristic parame-
ters of the laser beam. More specifically, the aluminum plate is
assumed to be heated by a short (0.2 – 2 ms) laser pulse travel-
ing perpendicularly to the plate. The spatial distribution of the
boundary heat flux resulting from the laser heating is assumed
in the super-Gaussian form [7] with rectangular temporal pro-
file. The laser beam hits the front surface of the sample and
temperatures are sensed at its rear surface by employing the in-
frared thermography (IRT) camera. By performing many mea-
surements with laser pulses of different parameters the ANNs
can be trained to recognize beam parameters based on cap-
tured temperature fields. Nevertheless, physical experiments are
costly and instead the ANNs can be trained using less expensive
numerical simulations in the ANSYS Fluent software. This sce-
nario is presented in Fig. 3, which shows the schematic of the
intended method.

Fig. 3. The schematic of the intended method

The current work shows the details and results of the process
of the optimization of ANN hyperparameters (such as topology,
activation functions, and learning methods) for the intended
task. In this process, the performance of the ANNs was vali-
dated using synthetic data from the Ansys Fluent simulations.
In these simulations, three parameters of the laser beam were
varied, i.e. the shape coefficient p, laser power Q, and pulse du-
ration tend (the start time of the pulse was considered known).
Validation of the neural network using synthetic data also al-
lowed to estimate the potential of the proposed artificial intelli-
gence solution for further development involving real measure-
ment data. The ANN-based data analyzer may run on portable
computers with limited resources and the results of laser beam
parameters estimation may be obtained with a minimal delay
which makes the method advantageous.

Classical solution approaches to inverse thermal problems
were briefly reviewed by Beck and Woodbury [15]. The
overview of inverse methods for the determination of sur-
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face heat fluxes may be found in book chapters by Taler and
Taler [16, 17]. Methods applied to problems of laser-solid mat-
ter interactions were discussed by Pietrak et al. [12]. ANNs,
which constitute an important element of the current solution
method, have been previously considered an interesting alter-
native method to solve general IHTPs alongside genetic algo-
rithms (GA), particle swarm optimization (PSO), and proper or-
thogonal decomposition (POD) [18]. Their successful applica-
tion has been demonstrated in the case of inverse and optimiza-
tion problems involving conduction [19–27], radiation [28–31],
and convection [32–34], but also in power engineering [35–37].
In particular, Krejsa et al. assessed their potential and dis-
cussed various strategies regarding their application for the in-
verse problem of heat conduction [19]. A detailed description
of the theory of neural networks, oriented towards engineer-
ing and scientific applications, can be found in Samarasinghe’s
book [38].

2. PROBLEM STATEMENT
2.1. Direct problem
In the direct problem considered in this paper, an aluminum
(alloy AW2017A T4), rectangle-shaped sample with a circular
hollow in the center is struck by a short high-power laser pulse
arriving perpendicularly to the plate from the side of the hollow
(see Fig. 2). The reduction of sample thickness in the heating
area decreases its temperature-damping quality and improves
the accuracy of the subsequent parameter estimation as temper-
ature sensing is carried out at the backside of the plate (opposite
to the illuminated one) [14]. Front-face sensing of temperatures
was also considered but it was finally rejected because of the
risk of damaging the IR camera by the reflected laser light.
Thermophysical properties of the modeled body subjected to
laser heating are grouped in Table 1.

Table 1
Assumed thermophysical properties of the heated plate

Temperature\
Property

Density
Thermal

conductivity
Specific

heat
Surface

emissivity

[K] [kg/m3] [W/m/K] [kJ/kg/K] [–]

303 122.6 0.902

323 125 0.911

373 133.7 0.943

423 2700 151.9 1.046 0.3

473 154.9 1.039

523 130 0.832

573 159.6 0.995

The aluminum sample was considered homogeneous and
isotropic. The presented version of the method is assumed to
be non-destructive, i.e. the temperature within the heated body
should not exceed the melting point of aluminum (736 – 944K
depending on the alloy [39]). In such conditions the heat con-

duction process in the sample may be described by the follow-
ing equation:

ρcp(T )
∂T
∂ t

= div [λ (T )grad(T )] , (1)

where ρ denotes density, cp – specific heat, λ – thermal con-
ductivity, T – temperature, div[.] – divergence and grad(.) –
gradient operators. The boundary heat flux at the front surface
(irradiated by laser beam) was assumed in the super-Gaussian
form [7] as follows:

ql =


εQ
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p
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p
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(
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)p]
, 0≤ t ≤ tend

0.0 , t > tend ,

(2)

where ε denotes surface emissivity (assumed ε = 0.05 after
matching the numerical model to experiments as presented
in [14]), Q – laser power, p – curve shape coefficient, R0 (as-
sumed 5 mm) – length scale over which the profile decreases to
e−2 of its axial value (in case of the Gaussian beam, i.e. p = 2),
R – distance from the center of the plate and Γ(.) – the Euler
Gamma function. Let us note that by changing the parameter
p in equation (2) it is possible to obtain all beam distributions
shown in Fig. 1, i.e. Gaussian (p = 2) as well as super-Gaussian
(p∼ 2−10) and flat-top (p∼ 10−100 and above).

Heat flux due to radiation and convection was included on all
walls of the plate, as described by this equation:

qw = H (T∞−Tw)+ εσ
(
T 4

∞−T 4
w
)
, (3)

where subscripts ∞ and w denote surroundings and the wall, re-
spectively, H – heat transfer coefficient at walls (H = 5 W/m2/K
was assumed based on the literature [40]) and σ – Stefan–
Boltzmann constant (σ = 5.67 ·10−8 W/m2/K4). Initial temper-
ature T0 = 303 K was assumed within the whole body.

The thermal problem given by equations (1)–(3) has been
solved using the FVM method in the commercial software AN-
SYS Fluent 19.2. Firstly, a 3D model of the problem was pre-
pared, described in detail in [12] and [14], and its thermal pa-
rameters, such as surface reflectivity were finetuned based on
physical experiments with laser and actual samples (the match
of experimental and modeled temperature curves can be found
in [14]). The geometry of the problem has been then trans-
formed to 2D axisymmetric to reduce the computational cost.
In the reduced model, the sample was treated as a cylinder of
radius 40 mm and height 1 mm with a cylindrical hollow of
radius 8 mm and depth 0.5 mm. The 2D model was meshed us-
ing a regular grid containing 48450 rectangular elements with
a maximal aspect ratio of 271.46 and maximal skewness equal
to 7.4 · 10−4. The influence of grid sizing on the result was
checked and the analysis confirmed grid independence. The de-
tailed view of the computational mesh is shown in Fig. 4. The
grid density was greater in the hollow section of the plate model
(where laser excitation occurred) and lower in the remaining
part. Finer grid was also placed near walls where heat diffusion
starts and where temperature measurement points were located.
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Fig. 4. Detail view of the computational grid where the plate thickness
changes

2.2. Inverse problem
For the sake of the inverse analysis, it was assumed that the
results of temperature measurements carried out at the rear side
of the heated plate are available. The parameters estimated by
the network were:
1) laser power Q,
2) spatial profile coefficient of the beam p,
3) pulse end time tend.
The start time was assumed known: tstart = 0. Before apply-
ing the ANNs it was necessary to select their inputs. Tempera-
ture measurements in real experiments are performed by fast IR
cameras which leads to availability of full temperature maps of
the investigated area, acquired with temporal step of the order
of 0.27 ms and spatial resolution of 80× 64 pixels [41]. The
large array of data resulting from the IR measurement must be
limited to become an input array to ANN. Appropriate selec-
tions were made based on earlier analyses of sensitivity [12].
It was assumed that the laser pulse end time tend belongs to the
range [0.2, 2] ms. The duration of temperature measurement
was limited to 16 ms, which ensured that the decrease of tem-
peratures due to heat loss to the surroundings is captured. The
area of temperature sensing was limited to the central region
of the wall placed vis-à-vis the heated area, where problem-
significant temperature changes were occurring.

The input vector of measurements used to train the ANNs
was constructed from two subsets:
1) temperature change history at the central point of the sam-

ple (see Fig. 5),
2) temperature values along the sample radius for a single time

instant t = 12 ms.
The first subset of the vector reflected the temporal profile

of the thermal response of the sample and the second one – its
spatial profile. Such vector was sampled with 3 different res-
olutions (n = 30, 60, 134 points) as later the influence of the
sampling resolution on the retrieval error was examined. Spa-
tial and temporal responses were sampled equally, e.g. for 60
points, 30 represented the temperature profile along the radius
and the other 30 – the change of temperature in the central point.

Fig. 5. ANN inputs and outputs schematic

Raw data sets for ANNs were generated by simulating the
axisymmetric FVM model with different values of input pa-
rameters Q, p and tend. The range of pulse durations and laser
power was limited to assure that melting temperature is not
reached. For both scenarios, values of parameter Q (in kilo-
watts) were taken from the set {5, 6, 7, . . . , 20}, the values of
parameter p (dimensionless) from the set {2, 8, 14, . . . , 98},
and values of parameter tend (in milliseconds), from the set
{0.2, 0.4, 0.6, . . . , 2}. Thus, the grid of training data contained
2720 cases.

3. METHODS
3.1. Design stages and training methods
The neural networks were programmed in Python 3.7 us-
ing open-source libraries Keras and Tensorflow [42]. Initially,
weights were set to random numbers. In the whole study, the
maximal number of hidden layers was arbitrarily limited to two.
The procedure of searching for the best ANN configuration was
divided into two stages – initial and final. Firstly, the influence
of network topology was tested with other hyperparameters
constrained to arbitrarily chosen ones (see section 4.1). Then,
two single- and double-hidden layer topologies which achieved
the best performance (i.e. 60–120–3 and 60–120–240–3, re-
spectively) were used in combination with the same arbitrarily-
chosen hyperparameters treated as fixed, while different opti-
mizers, activation functions, and data preprocessing methods
were tested one at a time, successively (sections 4.2–4.4). This
initial stage allowed us to draw conclusions for the second stage
of tests in which allowed us to narrow down the options and se-
lect the recommended configuration of hyperparameters for the
given application.

Among the training algorithms tested were all gradient de-
scent optimization algorithms available in the Keras library, i.e.
Stochastic gradient descent (SGD), Root Mean Square Prop-
agation (RMSProp), Adagrad, Adadelta, Adam, Adamax, and
Nadam. The aforementioned algorithms, among others, were
thoroughly explained by Ruder [43].

Tested activation functions included Sigmoid [44, 45],
Tanh [44, 45], Relu [44, 45], Elu [45, 46], Selu [45, 47], Soft-
max [45], Softplus [45], Softsign [45] and Hard_sigmoid [45].
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To avoid overfitting, the “EarlyStopping” function [48] was
used which stops training at an optimal point, when a neural
network does not learn anymore. The function monitors valida-
tion loss according to the selected metric, which in this experi-
ment was the MSE (mean squared error) [49].

The only customizable parameter was “patience” which tells
how many epochs must be executed without improvement to
break the process of training. For all training of neural networks
mentioned in this paper, the parameter of “patience” was set to
100 epochs.

3.2. Topology study
Although the concept of machine learning is not new, there has
not been found a method to calculate analytically the best num-
ber of hidden layers or number of nodes for a model [50].

Every problem is specific, so only suggestions can be found
in the literature but not the final answer. Testing many possi-
bilities is a problematic solution because of an extremely large
number of combinations and the long time of training a single
model. In general, the more nodes and hidden layers are used,
the more complex functions may be approximated. On the other
hand, large networks take longer to train and are more suscep-
tible to overfitting [51].

The Hecht–Nielsen theorem states that a network with only
one hidden layer and 2i+1 nodes (where i denotes the number
of inputs) is enough to approximate any continuous function,
provided that special activation functions are used [52].

Kurkova suggested that a second layer can be added to obtain
equal capabilities with classical activation functions [53].

Later, Cybenko showed that an ANN with one hidden layer
and the commonly used sigmoid activation function can ap-
proximate any continuous function of n real variables with sup-
port in the unit hypercube [54].

Given these rules, it was reasonable to start experimenting
with a single hidden layer and check how adding more layers
affected accuracy and generalization ability.

To gain an initial insight regarding an optimal topology for
the current problem, architectures with one and two single lay-
ers were tested, starting with one hidden layer of 10 nodes, in-
creasing gradually to 1200 nodes, and then expanding to two
layers, 10 neurons each, increasing both to nearly 1000 nodes
(e.g. 800 in the first and 1000 in the second). In these experi-
ments, the optimization algorithm (Adam [43]), stopping crite-
ria, and activation functions (sigmoid for the hidden layer, non
for output layer) were the same to obtain a useful comparison.
The inputs were noiseless, and their number was always 60. In
later experiments selected topologies with one and two hidden
layers were tried with different optimizers, activation functions,
and data preparation methods.

3.3. Data preparation
Due to the characteristics of algorithms applied to update
weights and biases, it is generally observed that input data pre-
processing (rescaling, normalization, and standardization [55])
is beneficial for neural network performance [55–57].

Preprocessed data leads to faster training and better accuracy
of estimations. In the present case, the ANN models did not

work with raw data. Therefore, various preconditioning meth-
ods for the input temperature data were tested, i.e. min-max
standardization to 〈−1, 1〉 [58], dividing by the median [58],
subtracting the median [59], and subtracting the midrange [60].

Furtherly, also the expected values (in our case laser pulse
parameters) may be transformed to improve the prediction ac-
curacy in machine learning [57].

It was decided to compare the accuracy without modification
of the expected values (raw data) and with outputs scaled to
a similar range as the inputs.

3.4. Verification methods
For each training, the data were randomly divided into 3 groups:

2000 samples – training data,
420 samples – validation data,
300 samples – test data.
The first subset was used for training. The second one was

monitored during training to detect overfitting. The last set was
not used for training and was used to assess the network perfor-
mance when it was presented with unknown data. The propor-
tions of data division were chosen arbitrarily.

In thermal measurements, temperature data is always noisy.
To check how noise affects the performance, the data sets were
modified by the addition of random noise with uniform distribu-
tion. Four levels of noise amplitude were tested: 0.1 K; 0.25 K;
0.5 K and 1 K.

3.5. Error measure
The agreement between the test datasets and network pre-
dictions was quantified using mean absolute percentage error
(MAPE) which can be described by equation (4), where: Ei –
the value estimated by ANN, Ci – the correct value, z – the num-
ber of estimations, |.| – the absolute value and i = 1,2, . . . ,z –
the index of estimation. It gives information about the mean
deviation of estimations from accurate parameter values ex-
pressed as percentage

MAPE =
1
z

z

∑
i=1

|Ei−Ci|
|Ci|

·100% . (4)

The error was measured for all 3 laser parameters separately
but because there were no significant differences observed be-
tween them, for every case only the average MAPE was con-
sidered.

4. DESCRIPTION AND RESULTS OF INITIAL STUDIES
4.1. The initial topology investigation
In the first stage of topology optimization, multiple single- and
double-layer topologies were verified systematically with the
number of inputs constrained to 60, Adam optimizer, sigmoid
activation function for hidden layers, and non-sigmoid for the
output layer. Each configuration was trained only once. Figure 6
shows the behavior of the estimation error as the number of
neurons in the single hidden layer case is increased.

It may be seen that the MAPE decreases steadily until the
number of neurons in the hidden layer is equal to the number
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Fig. 6. Relation between estimation error and number of neurons
in the hidden layer in case of one hidden layer

of inputs (60). The local minimum of error (MAPE = 3.82%)
occurred for 120 neurons. It had been concluded that further in-
crease of the layer size was not effective as the error fluctuated
above 120 neurons with no clear improvement. The global min-
imum occurred for 700 neurons (MAPE = 3.33%), but it was
regarded as a coincidence due to the fluctuating nature of the
error value in that range.

Surprisingly, the results for two hidden layers, with the same
settings, were generally worse. The sizes of the first layer in
tested configurations were the same as for the single-layer cases
and the sizes of the second layer were selected to be of a sim-
ilar order (i.e. 60–120, 1000–800, etc.). A total number of 24
topologies with two hidden layers was examined, and no clear
minima could be identified. However, the results were best if
both layers contained 60 neurons and more. The overall esti-
mation accuracy was lower than for a single hidden layer. The
median and mean of error for single hidden layer experiments
were 4.59 and 5.56%, respectively, whereas for the cases with
two layers these were 5.78 and 6.65%.

4.2. Optimizer comparison and selection
Next, all the optimizers were tested for both single-hidden layer
and double-hidden layer topologies which achieved the best re-
sults (i.e. 60–120–3 and 60–120-240–3, respectively). Three
simulations were performed for each optimizer to verify the re-
peatability. Sigmoid activation functions were used for hidden
layers and non-sigmoid for output layers.

In the case of one hidden layer, the best repeatable results
(MAPE around 5%) were obtained with Adam and Adamax
optimizers, as can be seen in Fig. 7. When the optimizers were
tested with the double-hidden layer network (Fig. 8), even bet-
ter results were obtained. In those experiments, the best accu-
racy was achieved with the Adagrad algorithm (MAPE around
2.5%). The typical number of epochs to complete the train-
ing for that algorithm was generally higher than for other al-
gorithms, both in the case of a single (5000–50000 epochs for
Adagrad vs 500–2000 for other optimizers) and double hidden
layer (2800–5000 epochs for Adagrad vs 250–900 for other op-
timizers).

Fig. 7. MAPE for different optimizers for a single hidden layer
(3 results per algorithm shown individually)

Fig. 8. MAPE error for different optimizers for two hidden layers
(3 results per algorithm shown individually)

4.3. Comparison and selection of activation functions
The choice of activation functions may influence the ANN’s
approximation ability and accuracy [45, 52] and due to that,
it was decided to test all activation functions available in the
Keras library. The functions were compared on networks with
topologies which provided the best results in the initial topol-
ogy study, i.e. 60–120–3 and 60–120–240–3. The comparisons
of estimation accuracy are shown in Figs. 9 and 10.

Fig. 9. Estimation errors for different activation functions
(one hidden layer, averaged from 3 experiments)
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Fig. 10. Estimation errors for different activation functions
(two hidden layers, averaged from 3 experiments)

The MAPE errors shown are averaged from 3 experiments.
The results for the Softmax function are not shown, because
the error for this case was extremely high (90 and 136%, re-
spectively for single and double hidden layers). The remaining
activation functions gave results of comparable order, with the
Softplus function being the best in the case of one hidden layer
and Relu – in the case of two hidden layers.

4.4. Effect of different data modification methods
To find the best preprocessing methods, a few series of experi-
ments were conducted. In the first series, input data transforma-
tion methods (i.e. min-max standardization, subtraction of the
median, subtraction of the midrange, and division by the me-
dian) were compared. Three simulations were performed per
every method to obtain averaged results shown in Fig. 11. Pa-
rameters of neural networks in the experiments were: topology
60–120–3, Activation functions -sigmoid for the hidden layer,
non-sigmoid for the output layer, optimizer- adam.

Fig. 11. Comparison of estimation errors for various methods of input
data transformation (3 results per method shown individually)

It can be seen in Fig. 11 that simply dividing the measured
temperatures (in kelvins) by their median was not effective
(estimation error of 68 to 98%), while other methods, which
shifted the center of the data to zero, gave considerably better
results. Among those methods, subtracting the median resulted
in the smallest error (around 5.4%).

Secondly, the outputs had been scaled to possess a similar
range to the inputs, i.e. laser power in W was divided by 10
and shape coefficient p was divided by 20, whereas the pulse
duration remained unchanged. The estimation accuracy in such
a case was compared with the case of unaltered outputs (raw
data). The effect was checked in five experiments for each type
of data (altered/unaltered). As can be seen in Fig. 12, scaling
of the output data resulted in profound increase in accuracy.
Figure 12 shows results for a network with two hidden lay-
ers (60–120–240–3). The results for a single-hidden layer net-
work (60–120–3) were very much alike and hence they are not
shown.

Fig. 12. Comparison of estimation errors for raw and scaled outputs
(5 results per method shown individually)

In one experiment the pulse duration parameter (in ms) was
multiplied by 10 which resulted in all output parameters having
similar magnitudes (1–100). However, it was still much greater
than the magnitude of inputs. The study showed that this type
of treatment is ineffective. The range of input and output data
should be similar. Subtracting of the median from the scaled
output data was also attempted to shift the center of the data to
zero, but it resulted in a loss of stability (MAPE for one param-
eter exploded).

5. FINAL RESULTS
5.1. Selection of the final ANN topology
Although the initial topology study showed that a single hid-
den layer network might be the best, changing the optimizer
to Adagrad caused the error to drop significantly for a network
with two hidden layers (see Fig. 8). Relu and sigmoid activa-
tion functions were selected for additional tests because they
demonstrated the best performance in double-hidden layer net-
works and good performance in single-hidden layer networks
(Figs. 9 and 10).

Additional experiments have shown that the best accuracy is
assured if both input and output layer operates with relu ac-
tivation function (configuration relu-relu resulted in 2% error,
as opposed to 2.25% for sigmoid-relu and 3.4% for sigmoid-
sigmoid). It was hard to point out the optimal topology, apart
from the fact that the number of neurons in the hidden layers
should be greater than, or equal to, the number of inputs. Based
on additional experiments with Adagrad optimizer and relu-
relu activation functions, the architecture 60–1000–1000–3 was
identified as best and selected for further studies. The topology
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with a high number of neurons in the hidden layer was expected
to perform well in the upcoming simulations with the number
of inputs increased to 134.

5.2. Effects of noise and measurement resolution
The dataset of simulated temperatures from the Fluent software
was characterized by the high spatial and temporal resolution of
the data. This feature allowed to increase the number of ANN
inputs to 134. Both spatial and temporal resolutions were in-
creased equally. The influence of increase and decrease of the
number of inputs on ANN retrieval accuracy was tested using
the final ANN configuration X-1000-1000-3.

At this stage, the input data were modified by the addition
of noise of different amplitudes. The influence of temperature
measurement resolution and the level of noise on the accuracy
of estimations are shown in Fig. 13. For non-noisy data, the
MAPE in all 3 cases (30, 60, 134 input points) was close. How-
ever, the higher the noise level, the bigger the difference be-
tween them. Models with more inputs had evidently better per-
formance for noisy datasets. To generate the graph, each config-
uration was trained three times and the arithmetic mean of ob-
tained MAPEs was calculated. The scatter of results was very
small (within 0.1–1% range). Figure 13 also shows the error
level obtained using the LM method discussed earlier [12] for
comparison. It was observed that ANN estimation results are
significantly more repeatable if the training data are noisy, com-
pared to non-noisy data.

Fig. 13. Dependence of the ANN parameter estimation error on the
number of inputs and the level of noise for the finally chosen topol-
ogy X-1000-1000-3 (performance of the alternative LM method is also

shown for comparison)

6. DISCUSSION
The lowest MAPE error achieved during all tests was 1.22%
(134 inputs), but it was for non-noisy data which represents
a non-realistic case. For the noise amplitude of 0.1 K, the best
result was MAPE error equal to 3.44%; for 0.25 K, it rose to
5.33%; for 0.5 K, it was 10.15%, and for 1 K – 16.63%.

To judge the quality of the finally obtained result, it should
be compared with similar research and analyzed from differ-
ent perspectives. The same inverse problem was previously
solved using the gradient-based Levenberg–Marquardt (LM)
technique in which the heat transfer model in Fluent was di-
rectly simulated to obtain the sensitivity matrices [12].

With that technique retrieval errors as low as 1.55% were ob-
tained when the level of noise was 1 K and increased to 3.39%
at 2 and 3 K (lower levels of noise were not tested). For the
noise level of 1 K, the current ANN method yielded a much
greater error (16.63%) which makes it look rather disadvan-
tageous (see Fig. 13). Nevertheless, there is a substantial dif-
ference – the LM method uses a direct simulation of the heat
transfer model to take iterative steps and gradually minimize the
difference between modeled data and presented data in the full
range of possible parameters, whereas the ANN method gener-
alizes based on a limited number of cases generated for some
fixed configurations of parameters. The neural network can give
a rough estimate of the unknown parameters immediately even
if the details of the heat transfer model are not known. On the
contrary, the LM required knowledge of the heat transfer model
and long computation times. The comparison shows that the
machine learning analyzer may be advantageous in situations
where the immediate estimate is needed, or the model of the
phenomenon is not fully known (it can rely solely on the mea-
surement data). It can be also used to obtain the initial esti-
mate before a more accurate estimate from the second method
is available.

It must be noted that the accuracy of the neural network
method can be increased by raising the signal-to-noise ra-
tio. The signal-to-noise ratio is especially low if laser pulses
of low power and low pulse duration are measured. In this
case, the temperature increase sensed at the back surface of
the plate is low. To increase the accuracy, thinner measuring
plates may be used. A version of the current laser diagnos-
tics method in which melting occurs has been considered in
preliminary numerical tests (employing the LM algorithm) and
yielded promising results where retrieval of pulse parameters
was possible (see [61]). Nevertheless, the presented ANN ver-
sion was intended as non-destructive, i.e. without melting. To
assure a good signal-to-noise ratio while avoiding melting, it
is possible to use specialized plates of different thicknesses for
different ranges of laser pulse energy. Such design was not ap-
plied in the present work but should be considered in the future.
Changing the material of the plates to one withstanding higher
temperature and having good thermal diffusivity (e.g. tungsten)
can be used to produce thin measuring plates, which should as-
sure an even better signal-to-noise ratio. Another method to re-
duce the influence of noise is software noise cancellation.

In the physical experiments conducted to test the gradient-
based method [14] the typical level of spatial noise in IR im-
ages was about ±0.5 K, and temporal noise ±0.25 K, which
corresponds to ANN estimation error of around 8%, based on
Fig. 13. Shielding of the elements of the optical track and sta-
bilization of the electric power sources should result in a fur-
ther increase of the method accuracy. The levels of noise in the
data captured in the real experiments [14] were pretty high for
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a modern Stirling-cooled IR camera, which suggests that a bet-
ter signal-to-noise ratio is still possible.

Now moving to comparisons with a broader spectrum of
works, it should be said that the ANN approach was previously
successfully applied in heat transfer engineering to solve vari-
ous problems of estimation and prediction. For example, Czél
et al. [23] performed numerical simulations regarding simulta-
neous estimation of temperature-dependent volumetric heat ca-
pacity and thermal conductivity in solid material and obtained
a 1.216% average error for noisy inputs. Their ANN structure
contained 34 output and 34 or 162 input neurons. Romero-
Méndez et al. [33] reported a 2.46% error in the problem of
convective heat transfer coefficient estimation in evaporative
mini-tubes based on the knowledge of saturation temperature,
refrigerant mass flow rate, and applied heat flux.

A case similar to the current one, involving a radiative source
and temperature measurements, was presented by Mirsepahi et
al. [29] who used shallow neural networks trained with LM to
estimate the temporal change of irradiative heat generated by
a heat lamp in a batch dryer based on the temperature history
measurement on one of the surfaces of the enclosure, as mea-
sured by a single thermocouple. In their first paper, the mean
of absolute error (MAE) was 43.00245 W for the input heat
in the range of 0–2 kW. For an average input heat of 1 kW this
translates to 4.3% MAPE. Data from physical experiments were
used to train the networks, and the reported error of temper-
ature measurement was ±1 K. In the subsequent research [30]
genetic algorithms were applied to optimize the number of neu-
rons in hidden layers, which allowed to decrease the MAE to
35.05 W (MAPE ~3.5%). In the next paper [28], the tested
physical system was extended to a dryer with two chambers,
each heated by a single lamp. Each chamber was monitored
with one thermocouple. The presented data allow estimating the
MAPE in that case around 3%.

At the same level of sensor error, the MAPE in the present
solution is much greater (16%), which can be explained by the
fact that the current problem suffers more from ill-conditioning.
For the irradiative dryer, the heat transfer between the lamp
and the thermocouple is confined within the enclosure, which
makes it well shielded from ambient noise, and the sensor is
separated from the source only by air. In the current solution,
the heat source is obstructed by a solid body, which is neces-
sary to prevent sensor damage. The radial spread of heat within
the plate and its thermal inertia greatly weakens the effect mea-
sured at the opposite surface which results in ill-conditioning. It
is still possible to overcome these problems and increase the ac-
curacy in future designs by measuring the heat effects directly
at the irradiated surface.

7. CONCLUSIONS
• The ANN method is attractive as it can work purely on mea-

surement data, without the heat transfer model (whose pa-
rameters are often hard to establish). Once trained, estima-
tions are given immediately.

• The best results were obtained when the number of neurons
in the hidden layers was more than or equal to the number
of inputs.

• Changing the optimizer from Adam to Adagrad introduced
a significant diminishing of error (from around 5 to 2.5% for
undistorted data) and unlocked the potential of the second
hidden layer.

• During the testing of different activation functions, it was
found that the Softmax function leads to disproportionally
large errors (90,136%). Errors while applying other func-
tions were far smaller.

• Both subtracting the median and scaling the inputs to a sim-
ilar range to outputs resulted in a profound increase in esti-
mation accuracy.

• Increasing the number of available inputs is especially ef-
fective in lowering the estimation errors for noisy data.

• For the levels of noise measured in physical experiments
(0.25-0.5 K), the accuracy of the ANN parameter estimation
method is between 5 and 10%.

• The error level of the ANN retrieval method is much greater
than the LM method with the same levels of added noise
(see Fig. 13), but the latter one utilizes a more costly 3D
heat transfer model and is much slower. The trained neural
network gives an immediate estimate of the unknown pa-
rameters and therefore it can be used to generate the start-
ing point for the LM method or to quickly obtain a rough
estimate.

• The ANN method accuracy may still be increased in future
designs, either through the utilization of plates of different
thicknesses for different ranges of pulse energy or by chang-
ing the temperature measurement location to the irradiated
front surface. Among these two solutions, the second one
appears as one with greater potential.
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