

A R C H I V E S

o f

F O U N D R Y E N G I N E E R I N G

10.24425/afe.2022.140210

Published quarterly as the organ of the Foundry Commission of the Polish Academy of Sciences

ISSN (2299-2944)
Volume 2022
Issue 1/2022

5 – 12

1/1

© The Author(s) 2022. Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any

medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons licence, and indicate if changes were made.

Comparison of the Classical Algorithm with

the Training Algorithm in Scheduling

Problem ADI Production

D. Wilk-Kołodziejczyk a, b, * , K. Chrzan b, K. Jaśkowiec b, Z. Pirowski b, R. Żuczek b,

A. Bitka b, D. Machulec a
a AGH University of Science and Technology, Kraków, Poland

b Łukasiewicz Research Network - Kraków Institute of Technology, Poland

* Corresponding author. E-mail address: wilk.kolodziejczyk@gmail.com

Received 18.08.2021; accepted in revised form 04.10.2021; available online 20.01.2022

Abstract

A classical algorithm Tabu Search was compared with Q Learning (named learning) with regards to the scheduling problems in the

Austempered Ductile Iron (ADI) manufacturing process. The first part comprised of a review of the literature concerning scheduling

problems, machine learning and the ADI manufacturing process. Based on this, a simplified scheme of ADI production line was created,

which a scheduling problem was described for. Moreover, a classic and training algorithm that is best suited to solve this scheduling problem

was selected. In the second part, was made an implementation of chosen algorithms in Python programming language and the results were

discussed. The most optimal algorithm to solve this problem was identified. In the end, all tests and their results for this project were

presented.

Keywords: Production scheduling, Austempered Ductile Iron, Iron castings, Foundry industry, Training algorithm, Tabu search

1. Introduction

In the production of castings, the problem of scheduling tasks

concerns both the manufacturing process of a given product and the

queuing of accepted orders. This allows to increase efficiency or

optimize the production process itself. The development of

artificial intelligence is also used in the production of steel. It

allows you to create an intelligent knowledge system that allows

for task scheduling and production planning in an optimal way.

Integrated planning of steel production is a problem of high

complexity, therefore intelligent algorithms are used, which will

allow you to obtain more accurate results than the classic

algorithms, in a shorter time [1]. The tasks performed by training

algorithms are often used for optimization. Their use requires less

calculation power than the use of classical algorithms, especially

for problems with a large number of possible solutions [2].

Scheduling is the process of assigning limited resources to tasks in

order to obtain the optimal value due to the selected criterion [3].

In production systems, resources are understood as objects such as

workstations, machines, means of transport, as well as fuel, energy

and people. However, the tasks are the processes of processing,

transporting or producing a given product [3] [4]. In order to

present and systematize the scheduling problems, the three-field

notation α | β | γ is used, where α is the task processing system, β is

the task characteristics, γ is optimization criterion [3] [4] [5] [6].

The symbol α can be represented by equation 1, where α1 describes

the way in which tasks are performed by the system, and the symbol

α2 describes the amount of resources in the system, in a particular

case it is the number of machines or stands. The α2 symbol can take

http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-5590-0477
https://orcid.org/0000-0003-2738-4377
https://orcid.org/0000-0002-0569-1192
https://orcid.org/0000-0003-4588-3444
https://orcid.org/0000-0002-2663-7099
https://orcid.org/0000-0002-2342-5023
https://orcid.org/0000-0001-8339-0865

6 A R C H I V E S o f F O U N D R Y E N G I N E E R I N G V o l u m e 2 2 , I s s u e 1 / 2 0 2 2 , 5 - 1 2

the empty character "ο", which means that the number of resources

is part of the problem and is not predetermined [3].

𝛼 = 𝛼1𝛼2 (1)

The way in which tasks are performed by the system can be

divided into two main groups: systems with parallel machines,

where each task can be performed on one of the machines, and

systems with dedicated machines, where each task must go through

by specific positions. The second group can be further divided into

the following subgroups: flow shop systems, where each task must

pass through all machines in the same order, open systems, where

each task must be performed at all workstations, but the order is

arbitrary and general systems (called job shop), where each job

position and the order is arbitrary. Table 1 shows examples of the

values that the symbol α1 can take [3].

2. Learning algorithms in scheduling

tasks

2.1. Description of the problem

Learning methods are also used in scheduling problems [7] [8]
[9] [10]. The most commonly used solutions are neural networks.
An example of this is the Hopfield network. This is a self-
associative non-linear searching network that aims to minimize the
function representing activation in the network units {system
energy}. The operation of this network can be compared to an
electrical circuit with an operational amplifier [11]. The simplest
form of a Hopfield network is a single-layer feedback network, an
example of which is shown in Figure 1. In this figure, each neuron
ni is excited by external signals such as threes holds or signals
entering ain, additionally, it is excited by internal signals in the
form of the feedback of the output signal aout,j multiplied by the
respective weights in ij. The output signals are connected to all
other neurons except the own [2]. With other learning algorithms,
decision trees are used for solving problems. In the considered
example, a decision tree was used, for real-time planning of the
flow system problem. In this case, the decision tree selects the
scheduling rule from a previously prepared list. The applied
solution is presented graphically in Figure 2 [12].

Fig. 1 Hopfield network

Three main elements can be distinguished in the applied solution:
a real-time controller, a scheduler and a decision tree. The real state
controller is receiving data from the flow system and sends jobs to
be executed according to the rule issued by the scheduler.
Additionally, it monitors the state of the system. The scheduler
decides when a new scheduling rule is selected. It then fills in and
releases the rules selected by the decision tree. The decision tree
selects a new scheduling rule based on the state of the system. In
addition, the flow system itself, the learning data, the decision tree
and the system state, which stores current information about the
system, are also distinguished. It is updated with every change.

Fig. 2 Planning program with decision tree

The ADI cast iron manufacturing process can be represented as
scheduling problem Fn | 6 | Emin. It is a flow system with 6 stations
and n tasks, the optimization criterion of which the purpose is to
minimize the energy consumption of the process. The first station
(M1) corresponds to the processes taking place in the furnace, the
second station (M2) of the molding and casting line, the third
station (M3) is optional technical processing depending on the
order, the fourth station (M4) corresponds to the annealing process,
station five (M5) to the cooling process and station six (M6) to the
final technical treatment. In order to simplify the problem, it has
been assumed that the machining is fully automated. The total
energy consumption during the production of Ec was assumed as
the optimization criterion. In the case under consideration, not only
the duration of the process itself is of great importance for the costs
incurred, but also the change of temperature parameters between
individual tasks. For stations M2, M3 and M6, the power of devices
and the duration of the process will be important factors. The power
of these devices in turn is P2 equal to 350 kW, P3 equal to 185 kW,
P6 equal to 140 kW. For stations M1, M4 and M5, an additional
factor influencing energy consumption will be the influence of
temperature on the consumed power. In the paper, it was assumed
that in the considered temperature ranges this relationship will be
linear as shown in equation 2.

A R C H I V E S o f F O U N D R Y E N G I N E E R I N G V o l u m e 2 2 , I s s u e 1 / 2 0 2 2 , 5 - 1 2 7

P(θ)= c θ (2)

Where P (θ) - power is dependent on temperature, c- dependence
coefficient, θ - process temperature expressed in Kelvin. The
dependence coefficient is: 1.119 for the M1 station kW / K, for M4
0.1063 kW / K, for M5 0.2972 kW / K. Contrary to previous
positions, the time from the beginning of the first tp1 task to the
end of the last tkn task will be important here, not just the duration.
For the remaining machines, it was assumed that they only
consume energy while working. The optimization criterion for the
entire process is presented in Equation 3, where Ei is the energy w
consumed in the i-th station and is described by Equation 4.

𝐸𝑐 = ∑ 𝐸𝑖
𝑛
𝑖=1 (3)

𝐸𝑖 = ∑ 𝑃𝑖(𝜃𝑖𝑗)(𝑡𝑝(𝑗+1) − 𝑡𝑝𝑗), 𝑖 ∈ {1,4}; ∑ 𝑃𝑖𝑡𝑗
𝑚
𝑗=1

𝑚
𝑗=1 (4)

Where Pi is the power consumed by the i-th station, θij is the
temperature at the i-th station during the j-th task, and ie is the
duration of the j-th task.

The number of tasks depends on the number of ADI cast-iron

variants with specific properties, listed in Table 1. It was assumed

that one task allows for the production of 20 elements with a total

weight of 3 tons. The work assumes the implementation of a

maximum of 3 orders from each cast iron variant. Table 2

summarizes the required work parameters for each position for

each task. Machining on an M3 machine depends on the

requirements of the order and can be applied to any task. This work

assumes that only the first two orders of each variant require this

processing.

Table 1.

Cast iron variants ADI
Material

index
Tensile

strength,

Rm, [MPa]

Yield
point,

R0,2,

[MPa]

Elongation,
A5, %

Hardness,
HB

1 800 500 8 260-320

2 1000 700 5 300-360

3 1200 850 2 340-440

4 1400 1100 1 380-480

Table 2.

Parameters of workplaces for especially tasks
Task

design

ation

Material
designat

ion

M1 M2 M3 M4 M5 M6

t1, s 𝜃1, ℃ t2, s t3, s t4, s 𝜃4, ℃ t5, s 𝜃5, ℃ t6, s

a 1 7200 900 3600 10800 90000 375 6000 375 5400

b 7200 900 3600 8800 90000 375 6000 375 5400

c 7200 900 3600 0 90000 375 6000 375 5400

d 2 7200 900 3000 11800 90000 330 10000 330 6500

e 7200 900 3000 7800 90000 330 10000 330 6500

f 7200 900 3000 0 90000 330 10000 330 6500

g 3 7200 900 2600 8900 10800 270 16000 270 4400

h 7200 900 2600 6000 10800 270 16000 270 4400

i 7200 900 2600 0 10800 270 16000 270 4400

j 4 7200 871 4000 10800 14400 260 17000 260 8800

k 7200 871 4000 6000 14400 260 17000 260 8800

l 7200 871 4000 0 14400 260 17000 260 8800

2.2. Classic algorithm

The search algorithm was selected from among the classic

algorithms presented in this paper, due to the typical and self-

defined target function. Additionally, this algorithm is used, inter

alia, for flow problems in scheduling tasks [14]. In the problem

under consideration, the algorithm will schedule tasks on the first

machine. Then, in accordance with the ADI cast iron production

process, will determine the energy consumed on both individual

stations and across the entire process. The process of determining

the energy consumption will be determined during each iteration.

In order to fully describe the algorithm for this solution, the

following should be defined: initial scheduling, traffic, final

condition and the length of the prohibition for given traffic [13]. In

a given study, due to the lack of information on the optimal method

of selecting the initial solution, the algorithm will be performed for

two different initial orderings. In each of them, the criterion will be

the total energy consumption of a single task, assuming that only

that one task is involved in the process. In the first case, the tasks

are ranked in ascending order of energy consumption, and in the

second case, in descending order. The move will be to bring the

selected item to the top of the list and move it the remaining

elements to the empty space in the order [13]. The final condition

is that the maximum number of iterations, which is the product of

the number of tasks and the number of stations, has been exceeded.

Two values of the forbidden length were used and compared: 10%

of the maximum number of iterations and half of the number of

tasks rounded up because in the literature this value is not clearly

defined for this problem. The algorithm receives the tasks with the

data as input, as shown in Table 2. The results are presented in the

form of a sequence of tasks on the first machine, the total energy

consumption of this ranking, and a graphical representation of the

ranking in the form of a Gantt chart. In addition, it will return data

from subsequent iterations to determine which variant of the

algorithm parameters gave the best results.4

Fig. 3 TS algorithm scheme

The scheme of the algorithm's operation is shown in Figure 3,

where the subsequent elements of the algorithm's operation include

selecting the initial solution, searching for the best possible motion

along with its execution, and checking the final condition. In

addition, the diagram shows the elements that allow you to control

the list of prohibited moves by adding more moves and reducing

8 A R C H I V E S o f F O U N D R Y E N G I N E E R I N G V o l u m e 2 2 , I s s u e 1 / 2 0 2 2 , 5 - 1 2

the forbidden time at the beginning of the loop, as well as

controlling the improvement in subsequent moves to determine one

of the conditions completion of the algorithm [13].

2.3. Learning algorithm

The learning algorithm was chosen due to the architecture

properties that allow it to be used for optimization processes,

without the need to create an additional database of learning

examples. The algorithm checks the successive possibilities of

ranking only the given problem and selects the best combination

found. In the problem under consideration, the algorithm will

change the order of tasks only on the first machine, and then, in

accordance with the described process, it will determine energy

consumption, the same as in the classic algorithm. The scheme of

the algorithm's operation, adapted to the problem of scheduling

tasks in the flow system, is shown in Figure 4. The algorithm uses

the Q table to store values for each pair of environmental states (si)

and actions that can be performed (a). The action to be performed

is to select one of the tasks, which means the total number of

possible actions is equal to the number of tasks to be performed,

in this case, it is 12. The total number of environmental states is

given by equation 5, which for the described case gives 4096 states.

It follows that the size of the array Q is 4096 x 12. At the beginning

of the algorithm, the array is initialized with the values 0 in each

cell [14].

𝑠 = 2𝛼 (5)

The next steps of the algorithm are cycled over a specified number

of iterations. Based on the analysed literature, the number of

iterations was determined as the product of the number of tasks and

machines, in this case, it is 72 iterations. The first step in this loop

is to initialize a randomly sorted set of tasks. In this

implementation, it will be the alphabetical order of the task

designation. Primary rankings in this algorithm have no effect on

the final rankings [14]. The next step is, the next loop and this is

performed until all tasks from the set are completed. In this loop, a

number between 0 and 1 is first drawn and compared with the

‘greedy strategy’ coefficient ε to decide whether the model will

search arrays. If the value is greater than ε then the action is selected

based on the Q table, such an action is called an array search

because it is already based on the known actions in a given state

and their values in the Q table. If the value is smaller than the action

is selected randomly, it is called this is discovery because the model

selects actions without checking the values in the Q table for that

state. This situation is advantageous when, for example, there are

no values other than 0 [14] in the table yet. This solution provides

two values of the ε coefficient to choose from. In the first solution,

it is a value that is constant and unchanging throughout the duration

of the program and amounts to 0.1. In the latter case, the value

decreases from 1 by 10% for each iteration. This allows the

algorithm to initially discover the values of the Q array by

randomizing actions, and the more information the model has about

that array, the more likely it will be to choose an action based on

the values of the Q array. However, there will always be a low

probability of taking a random action. After selecting the action, it

is performed, in this case, it consists in assigning a given task to the

spot list. After completing the entire loop, the program has full task

scheduling for a given iteration. After the action is performed, the

values of the predicted future state (s) and the reward (r) determined

according to equation 6 are examined. At the end of the loop, table

Q is updated according to equation 7 and the task set by deleting

the task that has been selected [14].

Fig. 4 Learning algorithm scheme

𝑟 =
1

𝑓(𝑆𝑜𝑝𝑡)
 (6)

𝑄′(𝑠. 𝑎) = 𝑄(𝑠, 𝑎) + 𝛼𝑞𝑙 (𝑟 + 𝛾𝑞𝑙𝑚𝑎𝑥𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)) (7)

Where, f (sopt) - the value of the objective function for a list of

ordered tasks, Q '(s, a) - the value in the Q table after the update, Q

(s, a) - the value of the Q table before the update, α ql - the constant

learning coefficient, γql - constant discount factor [14]. The

learning coefficient αql can be interpreted as the degree of updating

the values in the Q table, for the case considered in this paper its

value was assumed to be 0.1. The discount factor γql determines

A R C H I V E S o f F O U N D R Y E N G I N E E R I N G V o l u m e 2 2 , I s s u e 1 / 2 0 2 2 , 5 - 1 2 9

the significance level of the future, anticipated reward, here

adopted at the level of 0.8 [14]. If the set of tasks in this iteration is

already empty, it means that each task has been ranked. Then the

obtained value of the objective function for this ranking is

compared with the currently best ranking, and if the new ranking is

better, it is stored as the currently best ranking. After all, iterations

are completed, the algorithm returns the best-found solution.

Additionally, the program has the ability to print out the solution

after each iteration [14]. Works on similar solutions have also been

described in other literature books.[15 - 18].

3. Description of achieved results of

own research

The results of assigning tasks from the described problem were

presented separately for each algorithm, and then their comparison

was made. Each algorithm was performed for three data sets. The

materials for checking the operation of the algorithms came from

item [19].

3.1. Classical algorithm results

The classic algorithm allows the selection of three work

parameters, two of which may affect the value of the result. These

are the length of the prohibition and the primary alignments. The

last parameter determines whether all results are saved or only one.

Table 3 summarizes the results for all three data sets, performed for

all combinations of parameters affecting the result. The first

column contains the designation of sets, where 1 is a set with four

tasks, 2 is a set with eight tasks, and 3 is a set with twelve tasks. In

the second column, the selected prohibition length. Primary

alignments are selected in the third column. The fourth column

shows the final rankings. In the fifth, the value for this ranking. The

last column shows the execution time of the algorithm. Only the

versions with the best ranking were selected for these results.

The table shows that different orderings give the same results,

which is additionally confirmed by the analysis of the results after

each iteration. Results after each iteration were also generated for

each variant and each combination of parameters. By analysing the

results after each iteration, it can be concluded that the rankings

presented in the table are optimal. On the basis of the obtained

results, there is no visible influence of the original ranking and the

length of the prohibition on the solution. This may result from the

characteristics of the considered example, and not the

characteristics of the issue itself. For the first two data sets, there is

no additional impact on the length of the algorithm's execution. In

the option with the prohibition length equal to half the number of

tasks, the time is significantly longer than with the 10% number of

iterations. You can see the effect of the forbidden length on the

algorithm by analysing the results after each iteration. For the

bypass length equal to half the number of tasks, the algorithm more

often returned the result already achieved earlier than for the bypass

length equal to 10% of the number of iterations. Additionally,

extreme results were achieved more often.

Table 3.

Ranking results for the classical algorithm

Set

designation

Length of

forbiddance

Primary

ordering

Final

ordering

Ordering

value

[MJ]

Time of

performance

[ms]

1

10 % amount

of iteration

From higher

energy

consumption

j, d, a, g 64387 249

Half of tasks

amount

From higher

energy

consumption

j, d, a, g 64387 253

10 % amount

of iteration

From lower

energy

consumption

j, g, a ,d 64387 244

Half of tasks

amount

From lower

energy

consumption

j, g, a, d 64387 249

2

10 % amount

of iteration

From higher

energy

consumption

d, f, i, l, j,

g, a, c
120949 306

Half of tasks

amount

From higher

energy

consumption

g, i, l, j, d,

a, f, c
120949 323

10 % amount

of iteration

From lower

energy

consumption

l, e, i, f, g,

a, d, j
120949 305

Half of tasks

amount

From lower

energy

consumption

j, l, d, g, c,

I, f, a
120949 321

3

10 % amount

of iteration

From higher

energy

consumption

k, g, c,a, b,

d, c, f, I, l,

j, h

182801 334

Half of tasks

amount

From higher

energy

consumption

g, j, d, k, a,

e, b, h, l, f,

I, c

182801 487

10 % amount

of iteration

From lower

energy

consumption

l, e, i, f, h,

b, e, g, a,

k, d, j

182801 334

Half of tasks

amount

From lower

energy

consumption

l, e, i, f, h,

b, e, g, a,

k, d, j

182801 494

Figure 5 shows the Gantt charts for the optimal ordering. In Figure

5 a) for option 1, at 5 b) for the 2nd option and at 5 c) for the 3rd

option. In all examples, the forbidden length was chosen to be 10%

of the number of iterations and the primary ordering decreasing

with respect to energy consumption. The drawings clearly show the

breaks in the work of individual machines and the desire to avoid

breaks in the machines that draw power not only during the

performance of tasks. Additionally, one can observe in Figures 5 b)

and 5c) interruptions resulting from the lack of performance of

some tasks on the M3 machine.

10 A R C H I V E S o f F O U N D R Y E N G I N E E R I N G V o l u m e 2 2 , I s s u e 1 / 2 0 2 2 , 5 - 1 2

a)

b)

c)

Fig. 5. Gantt chart for a) 1st variant, b) 2nd variant, c) 3rd variant

3.2. Learning algorithm results

The learning algorithm requires the selection of only two

parameters: the ε coefficient and the result variant. Only the first

factors can have an impact on finding the optimal solution. In Table

4, as for the classical algorithm, the results for all three data variants

were collected for both options of the ε coefficient. Only the

versions with the best ranking were selected for these results. When

analyzing the ranking for this algorithm, it is worth highlighting its

random nature. The results do not need to repeat when the

algorithm is called again. The results after each iteration were also

generated for each variant and each option of the ε coefficient. By

analyzing these results, it can be concluded that the rankings

presented in the table are optimal. No influence of the ε coefficient

on the final solution was observed, nor on the algorithm execution

time. However, you can see its effect on the operation of the

algorithm by analyzing the results after each iteration. For the ε

coefficient decreasing by 10% from 1, it can be seen how the

algorithm initially selects solutions that are far from optimal, and

only from a certain moment selects the optimal ones. For a constant

value coefficient, optimal results started to appear earlier, leading

to fewer extremely bad results appearing.

Table 4.

Classification results for the learning algorithm

Set desig

nation
ɛ factor Final ordering

Orderi

ng valu

e

[MJ]

Time of performance

[ms]

1

Constant 0.1 j, a, g, d 64387 276

Decreasing every itera

tion by 10%
j, a, g, d 64387 246

2

Constant 0.1
g, l, j, i, c, a, f,

d

120949

302

Decreasing every itera

tion by 10%

l, f, g, j, i, c, d,

a

120949

286

3

Constant 0.1
j, i, f, l, a, c, e,

h, g, b, k, d

182801

373

Decreasing every itera

tion by 10%

l, h, k, f, e, d,

b, c, a, i, j, g

182801

380

Figure 6 shows the Gantt charts for the optimal ordering. In Figure

6 a) for variant 1, to 6 b) for the 2nd variant and to 6 c) for the 3rd

variant. In all examples, a constant value of the ε coefficient equal

to 0.1 was chosen. The charts have the same characteristics as the

classical algorithm.

A R C H I V E S o f F O U N D R Y E N G I N E E R I N G V o l u m e 2 2 , I s s u e 1 / 2 0 2 2 , 5 - 1 2 11

a)

b)

c)

Fig. 6 Gantt chart for a) 1st variant, b) 2nd variant, c) 3rd variant

3.3. Comparison of algorithms

The comparison of algorithms was also made for all three data

sets, but one set of algorithm operation parameters was selected.

For comparison, the following were selected: for the classical

algorithm, the length of the sequence equal to 10% of the number

of iterations and the primary ordering from the highest energy

consumption, and for the learning algorithm, the value of the ε

coefficient equal to 0.1. It was decided to set these parameters

because they were recognized

for the most advantageous. For the classical algorithm, this

parameter value gives a shorter algorithm execution time and

greater differentiation during the search. In addition, this value

more often allowed to find various optimal solutions. The

comparison of the results is presented in Table 5, where the first

column is the number of the data variant, in the second column is

the name of the algorithm, in the third is the optimal sequence, in

the fourth column is the objective function value for this ranking,

and in the last column is the algorithm execution time. Algorithms

return different orderings, but with similar values. After analysing

the results after each iteration, these rankings can be considered

optimal. The only difference between the algorithms shown in the

table is the execution time for the set with the most tasks. Classic

algorithms here return results much faster than the learning

algorithm. When additionally analysing the results obtained after

each iteration for the described parameters of the algorithms, it can

be observed that the learning algorithm returns more differentiated

orderings. No line-up repeats itself. This gives the possibility of

finding a greater number of optimal orderings. The downside of

this algorithm, in this case, is its randomness, which causes it to be

returned in an extremely unfavourable case the end result will not

be the optimal ranking.

Table 5.

Comparison of the obtained results for the classical and learning

algorithms

Designation of the
set

Algorithm name Final ranking
The value of
the ranking

[MJ]

Execution time
[ms]

1
Classic j, d, a, g 64387 249

Learning g, j, a, d 64387 257

2
Classic d, f, i, l, j, g, a, c 120949 306

Learning g, j, l, d, i, f, c, a 120949 317

3

Classic k, g, c, a, b, d,
e, f, i, l, j, h

182801 334

Learning g, k, l, d, e, h, c,
i, b, a, f, j

182802 436

4. Conclusions

The goals of the work were fully achieved. Two algorithms

were implemented and compared: Classic and Learning. An
Algorithm has been implemented to solve the scheduling problem

for the simplified ADI cast iron manufacturing process. The

operation of the algorithms has been tested for various tasks.
For the described problem, the algorithms returned different

orderings, but with the same value of the objective function. All the
solutions returned were considered optimal. The work of the

algorithms for different parameter values was checked and the sets

12 A R C H I V E S o f F O U N D R Y E N G I N E E R I N G V o l u m e 2 2 , I s s u e 1 / 2 0 2 2 , 5 - 1 2

best suited to this problem were selected. For the learning

algorithm, the ε coefficient with a constant value equal to 0.1 more
often, during the work of the algorithms, it found the optimal

ordering and found different orderings, which reduces the chances
of finding the local optimum instead of the global one. In the

classical algorithm, for a sequence length equal to 10% of the
number of iterations, the algorithm was faster and found more

differentiated orderings during operation. The original rankings in
this case did not matter. Of these two algorithms, Classic

algorithms were found to be better for this problem.

Acknowledgements

The works were financed under the TECHMATSTRATEG 1

project with the acronym INNOBIOLAS entitled "Development of
innovative working elements for forestry machines and biomass

processing based on high-energy technologies of surface
modification of the surface layer of cast elements"; contract

no.TECHMATSTRATEG1 / 348072/2 / NCBR / 2017 and
POIR.04.01.04-00-0027 / 18-00 Development of innovative

technical and material solutions in the construction of an
autonomous Agrobo under Measure 4.1 of the Intelligent

Development Operational Program 2014-2020 co-financed by the
European funds Regional Development Fund and TANGO2 /

340100 / NCBR / 2017..

Managing production processes in the enterprise

References

[1] Yang, L., Jiang, G., Chen, X., Li, G., Li, T. & Chen, X. (2019).

Design of integrated steel production scheduling knowledge

network system. Claster Comput. 10197-10206.

[2] Żurada, J. Barski, M., Jędruch, W. (1996). Artificial Neural

Networks. Fundamentals of theory and application.

Warszawa: PWN. (in Polish).

[3] Janiak, A. (2006). Scheduling in computer and manufacturing

systems. Warszawa: Wydawnictwa Komunikacji i Łączności.

[4] Smutnicki, C. (2002). Scheduling algorithms. Warszawa:

Akademicka Oficyna Wydawnicza EXIT. (in Polish).

[5] Coffman, E.G. (1980). Task scheduling theory. Warszawa:

Wydawnictwa Naukowo-Techniczne. (in Polish).

[6] Janczarek, M. (2011). Managing production processes in the

enterprise. Lublin: Lubelskie Towarzystwo Naukowe. (in

Polish).

[7] Szeliga, M. (2019) Practical machine learning. Warszawa:

PWN. (in Polish).

[8] Raschka, S. (2018) Python machine learning. Gliwice:

Helion. (in Polish).

[9] Choi, H-S, Kim, J-S. & Lee, D-H. (2011). Real-time

scheduling for reentrant hybrid flow shops: A decision tree

based mechanism and its application to a TFT-LCD line.

Expert System with Application. 38, 3514-3521.

[10] Agarwal, A., Pirkul, H. & Jacob, V.S. (2003). Augmented

neutral network for task scheduling. European Journal of

Operational Research. 151, 481-502.

[11] Jain, A.S. & Meeran, S. (1998). Jop-shop scheduling using

neutral networks. International Journal of Production

Research,

[12] Fonseca-Reyna, Y.C., Martinez-Jimenez, Y. & Nowe, A.

(2017). Q-Learning algorithm performance for m-machine, n-

jobs flow shop scheduling problems to minimize makespan,

Revista Investigacion Operacional. 38(3), 281-290.

[13] Dewi, Andriansyah, & Syahriza, (2019). Optimization of flow

shop scheduling problem using classic algorithm: case study,

IOP Conf. Series: Materials Science and Engineering 506.

[14] Putatunda, K. (2001) Development of austempered ductile

cast iron (ADI) with simultaneous high yield strength and

fracture toughness by a novel two-step austempering process.

Material Science and Engineering A. 315, 70-80.

[15] Dayong Han, Hubei Key, Qiuhua Tang; Zikai Zhang; Jun Cao,

(2020). Energy-efficient integration optimization of

production scheduling and ladle dispatching in steelmaking

plants. IEEE Access. 8, 176170-176187.

[16] Perzyk, M. (2017). The use of production data mining

methods in the diagnosis of the causes of product defects and

disruptions in the production process. Utrzymanie Ruchu. 4,

45-47. (in Polish).

[17] Perzyk, M., Dybowski, B. & Kozłowski, J. (2019).

Introducing advanced data analytics in perspective of industry

4.0 in a die casting foundry. Archives of Foundry Engineering.

19(1), 53-57.

[18] Yescas, M. (2003). Prediction of the Vickers hardness in

austempered ductile irons using neural networks.

International Journal of Cast Metals Research. 15(5), 513-

521.
[19] Report on the contract no. U / 227/2014 implemented at the

Foundry Research Institute. (in Polish).

