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Abstract: In order to improve the detection accuracy of harmonics/inter-harmonics in power
systems, a new method of harmonic/inter-harmonic detection based on synchrosqueezed
transform and the Hilbert operator based on local spectrum maximum is proposed. Firstly,
the spectrum of inter-harmonic signals is obtained through short-time Fourier transform,
and the local maximum value of the spectrum in the frequency direction is detected.
Then, based on the maximum frequency of the spectrum, a new frequency redistribution
operator and synchronous extraction operator are constructed. It combines the operators
with ridge detection for the decomposition of harmonic/inter-harmonic signals, so as to
obtain a series of intrinsic mode function (IMF) components. Finally, the instantaneous
amplitude and frequency of the IMF components is obtained by using the Hilbert operator.
Meanwhile, according to the instantaneous frequency mutation point in the spectrum,
the starting and ending time of transient harmonics/inter-harmonics is located accurately.
Based on a low signal-to-noise ratio (SNR), the wavelet packet method (WP), Hilbert
Marginal Spectrum method (HMS), synchrosqueezing wavelet transform method (SST),
the Hybrid SST method (HSST), enhanced empirical wavelet transform (EEWT) and the
proposed method are used to identify the harmonic/inter-harmonic parameters, respectively.
The experimental results show that the proposed LMSST method can effectively separate
the steady-state and transient harmonic/inter-harmonic signals, and has higher detection
accuracy and better noise robustness.

Key words: inter-harmonic, parameter identification, power system, synchrosqueezed trans-
form, time-frequency analysis

0

© 2022. The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives License (CC BY-NC-ND 4.0, https://creativecommons.org/licenses/by-nc-nd/4.0/), which per-
mits use, distribution, and reproduction in any medium, provided that the Article is properly cited, the use is non-commercial,
and no modifications or adaptations are made.

mailto:linqi0349486@163.com
mailto:19404425@qq.com
mailto:963531916@qq.com
https://creativecommons.org/licenses/by-nc-nd/4.0/


190 L. Sun, J. Song, Y. Jin Arch. Elect. Eng.

1. Introduction

With the rapid development of power electronics and extensive application of non-linear
power electronics, harmonic/inter-harmonic pollution in power systems is becoming more and
more serious [1]. The impact of harmonics on power quality is also getting more and more
attention. In the power system, there are not only integer harmonics whose frequency is integer
multiple of power frequency, but also a large number of non-integer and fractional harmonics.
These harmonics seriously affect the safe operation of the power system, and the control of them
is necessary. The accurate detection of inter-harmonics is the premise of harmonic control. How
to accurately obtain the instantaneous frequency and amplitude of inter-harmonics is the key for
harmonic detection [2].

Power system harmonics are divided into steady-state harmonics and transient harmonics.
The steady-state harmonics include steady-state integer harmonics and inter-harmonics, while
the transient harmonics mainly include short-time harmonics and time-varying harmonics. For
different applications, domestic and foreign scholars have conducted in-depth research and pro-
posed different harmonic detection methods [3], mainly including instantaneous reactive power
theory [4], the 𝑖𝑝-𝑖𝑞 algorithm [5], Fourier transform [6], wavelet transform [7], S-transform [8]
and Hilbert-Huang transform (HHT) [9]. The instantaneous reactive power theory and the 𝑖𝑝-𝑖𝑞
algorithm have a small amount of calculation and good real-time performance. They are suitable
for online harmonic detection, but a phase-locked loop is required to lock the grid synchroniza-
tion angle. The instantaneous reactive power theory also requires a symmetrical and distortion-
free signal. The Fourier transform method detects integer harmonics with high accuracy. But
it cannot avoid frequency leakage and fence effects caused by non-synchronous sampling, and
cannot analyse non-smooth signals, such as transient harmonics. Wavelet transform has a good
time-frequency localisation effect, and can be used to locate the starting and ending moments
of transient harmonics. However, the decomposition effect is highly dependent on the choice
of wavelet basis and decomposition layers. S-transform uses a Gaussian window function for
time-frequency transformation, which can achieve effective detection of transient signals, and
its time-frequency resolution is still relatively fixed. The HHT method can perform adaptive de-
composition of non-stationary and non-linear signals, and is capable of steady-state and transient
harmonic analysis. However, over-envelope and under-envelope phenomena are prone to appear
in decomposition. The decomposition of harmonic signals with similar frequencies may lead to
modal mixing.

Reference [10] proposed a method of harmonic parameter identification based on Prony’s
method with energy analysis, but the problem that the energy of harmonics with small amplitude
is similar to the energy of noise component is not considered, and the number of harmonics
needs to be manually selected. Reference [11] proposed a harmonic detection algorithm for
power grids, based on the combination of ensemble empirical mode decomposition-independent
component analysis (EEMD-ICA) and singular value decomposition (SVD). This method requires
no prior information of source signals and can separate harmonics from non-stationary signals.
However, the EEMD-ICA-SVD method is sensitive to noise and requires a large amount of
calculation. Reference [12] proposed a harmonic detection method based on visual merchandising
(VMD), but it did not explain how to select an appropriate number of modal components.
Reference [13] proposed a harmonic parameter detection method based on empirical wavelet
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transform (EWT). The method first estimates the frequency component in the distorted signal,
calculates the boundary value, and then filters according to the boundary value. Because this
method does not need the prior information of the signal, the detection accuracy is better. In
recent years, more harmonic detection algorithms have been proposed, such as the Kalman
filter algorithm [14], instantaneous power theory (PQ) [15], sliding window Fourier analysis
(SWFA) [16], the synchronous detection (SD) [17], the synchronous reference frame (SRF)
theory or the 𝑑-𝑞 axis (DQ) [18], the synchronous detection with the Fourier (SDF) method [19],
and the 𝑑-𝑞 axis with the Fourier (DQF) method [20].

Synchrosqueezed transform (SST) [21] is a new time-frequency analysis method proposed
by Daubechies. SST squeezes the transformed time-frequency diagram in the frequency domain
to obtain a time-frequency curve with high accuracy, so as to improve the frequency aliasing.
However, SST still has some shortcomings [22]: firstly, when the frequencies of the signal
components are relatively close, the lack of focus in the SST spectral domain will cause the
signal spectrum to be blurred, which will seriously affect the analysis of instantaneous frequency.
Secondly, when the signal is severely disturbed by noise, due to the lack of noise coefficient
screening mechanism in the reconstruction of SST modal components, the extraction is greatly
affected by noise, thus the analysis accuracy of modal component parameters is affected [23,24].

In order to further improve the analysis capability of SST for complex signals, the local fre-
quency maximum SST (LMSST) method is proposed. The method performs a short-time Fourier
transform on the signal to obtain its spectrum; then, by detecting the local maxima of the spec-
trum in the frequency direction, a new frequency redistribution operator, namely a local maximum
synchroextracting operator (LMSEO) is constructed, which has a higher time-frequency focusing
capability and noise immunity than the traditional one. Combining the LMSEO operator with the
ridge detection method can form an adaptive modal separation algorithm to achieve frequency
division and cause effective separation of signal modal components. Due to the application of
the local maximum synchroextracting operator, the LMSST overcomes the modal mixing of the
traditional SST method for near-frequency signal analysis, and LMSST can successfully separate
two time-varying harmonic components with similar frequencies. In addition, LMSST also has
good noise robustness, because in the modal component extraction process, the coefficients are
simultaneously screened according to the threshold and frequency. Simulations and actual data
tests show that the LMSST method can sensitively detect the modal and time-varying features of
the signal even in the data with low signal-to-noise ratios [25–27].

In view of the good band division, modal separation and noise immunity of LMSST for
multi-component signals, this paper applies it to the parametric detection of inter-harmonic
signals in power systems. Firstly, based on the STFT spectrum of inter-harmonic signals, a local
maximum synchronous extraction operator is constructed. Then, the LMSST method is used
to decompose the signal to obtain 𝐾 state components, namely different harmonic and inter-
harmonic modes. Finally, for the steady-state harmonic components, the Hilbert operator is used
to demodulate the intrinsic mode function (IMF) component to obtain the instantaneous amplitude
and frequency. For the transient harmonic component, the starting and ending time is located
according to the mutation points in the spectrum. After that, the corresponding amplitude and
frequency information in the duration is extracted through the Hilbert transform. The simulation
results show that compared with the wavelet packet method (WP) [28], the Hilbert marginal
spectrum method (HMS) [29], synchrosqueezing wavelet transform method (SST) [30], hybrid
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SST method (HSST) [31] enhanced empirical wavelet transform (EEWT) and LMSST method
has higher detection accuracy and better noise robustness, and can be applied to the parameter
detection of steady-state and transient inter-harmonics.

2. Foundations of local frequency maximum synchrosqueezed transform

2.1. Short-time Fourier transform

A multi-component signal with amplitude modulation (AM) and frequency modulation (FM)
is defined as𝑠(𝑡) [24, 25].

𝑠(𝑡) =
𝐾∑︁
𝑘=1

𝐴𝑘𝑒
𝑖𝜑𝑘 (𝑡) , (1)

where 𝐴𝑘 and the derivative 𝜑′
𝑘
(𝑡) of 𝜑𝑘 (𝑡) are the instantaneous amplitude (IA) and instantaneous

frequency (IF), respectively. IA and IF are two important instantaneous characteristics, which can
be used to study the time-varying characteristics of multi-component signals. Assuming that
real functions 𝑠 ∈ 𝐿2 (𝑅) and 𝑔 ∈ 𝐿2 (𝑅) are given as window functions, the short time Fourier
transform (STFT) of the function 𝑠 is defined as:

𝐺 (𝑡, 𝜔) =
+∞∫

−∞

𝑔(𝑢 − 𝑡)𝑠(𝑢)𝑒−𝑖𝜔 (𝑢−𝑡) d𝑢. (2)

𝐺 (𝑡, 𝜔) is the spectrum of STFT. STFT can extend a one-dimensional time series signal to a
two-dimensional time-frequency plane, which can effectively extract the instantaneous amplitude
and instantaneous frequency of the signal. By integrating Eq. (2) in the frequency direction,
Formula (3) can be obtained.

+∞∫
−∞

𝐺 (𝑡, 𝜔) d𝜔 =

+∞∫
−∞

+∞∫
−∞

𝑔(𝑢 − 𝑡)𝑠(𝑢)𝑒−𝑖𝜔 (𝑢−𝑡) d𝑢d𝜔 = 2𝜋𝑔(0)𝑠(𝑡). (3)

Therefore, after STFT transform, the signal can be reconstructed as:

𝑠(𝑡) = (2𝜋𝑔(0))−1
+∞∫

−∞

𝐺 (𝑡, 𝜔) d𝜔. (4)

For multi-component signals, if the spectra of the components can be well separated in the
time-frequency plane, the components can be reconstructed according to their instantaneous
frequencies 𝜑′

𝑘
(𝑡) and spectra 𝐺 (𝑡, 𝜔).

𝑠𝑘 (𝑡) = (2𝜋𝑔(0))−1
∫

|𝜔−𝜑′
𝑘
(𝑡) |≤𝜀

𝐺 (𝑡, 𝜔) d𝜔, 1 ≤ 𝑘 ≤ 𝐾. (5)
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2.2. Synchrosqueezed transform
For multi-component signals, according to the instantaneous amplitude 𝐴𝑘 (𝑡) and instanta-

neous frequency 𝜑′
𝑘
(𝑡) of each component signal, it can be expressed as [26]:

ITFA(𝑡, 𝜔) =
𝑛∑︁
𝑘=1

𝐴𝑘 (𝑡)𝑒𝑖𝜑𝑘 (𝑡)𝛿(𝜔 − 𝜑′𝑘 (𝑡)). (6)

In the time-frequency (TF) analysis of signals, we assumed that the TF spectrum of each
component is clear and separated from each other. However, due to spectrum leakage and mode
aliasing, the spectrum of STFT is seriously blurred and the instantaneous frequency resolution
is low. In order to observe the characteristics of time-varying TF more accurately, Daubechies et
al. [21] proposed synchrosqueezed transform (SST). SST is defined as:

SST(𝑡, 𝜂) =
+∞∫

−∞

𝐺 (𝑡, 𝜔)𝛿(𝜂 − 𝜔0 (𝑡, 𝜔)) d𝜔, (7)

where
𝜔0 (𝑡, 𝜔) =

𝜕𝑡𝐺 (𝑡, 𝜔)
𝑖𝐺 (𝑡, 𝜔) . (8)

Substituting Eq. (2) into Eq. (8), we get the following equation:

𝜔0 (𝑡, 𝜔) = 𝜔 + 𝑖 𝐺
𝑔 (𝑡, 𝜔)
𝐺 (𝑡, 𝜔) = 𝜔 − Im

(
𝐺𝑔 (𝑡, 𝜔)
𝐺 (𝑡, 𝜔)

)
. (9)

SST only considers the redistribution of frequency directions, e.g. (𝑡, 𝜔) → (𝑡, 𝜔(𝑡, 𝜔)). It
turns out that for a purely harmonic signal 𝜑(𝑡) = 𝑎+𝑏𝑡. The result of SST transform is equivalent
to its ideal instantaneous frequency according to iterative transformation factor analysis (ITFA),
and SST can also reconstruct the components of a multi-component signal. The reconstructed
equation for the component signal can be obtained through Eq. (4), the SST transform coefficients
SST(𝑡, 𝜔) and the instantaneous frequency 𝜑′

𝑘
(𝑡).

𝑠𝑘 (𝑡) = (2𝜋𝑔(0))−1
∫

|𝜔−𝜑′
𝑘
(𝑡) |≤𝜀

SST(𝑡, 𝜔) d𝜔, (10)

where 𝜀 denotes the reconstructed bandwidth of SST.

2.3. Local frequency maximum synchrosqueezed transform
Although the time-frequency analysis capability of SST is improved to a greater extent than

STFT, when the frequency of component signal is relatively close or seriously polluted by noise,
there is still a certain degree of spectrum chaos. This leads to different degrees of errors in
signal instantaneous frequency calculation and component reconstruction. In order to solve the
above problems and further improve the parameter detection accuracy of inter-harmonic signals
in the power systems, this paper proposes a new SST model based on the local maximum
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synchroextracting operator (LMSEO) – the local frequency maximum spectrum synchrosqueeze
transform (LMSST) [23]. Set the spectrum of multi-component signal as:

|𝐺 (𝑡, 𝜔) | =
𝑛∑︁
𝑘=1

𝐴𝑘 (𝑡)�̂�
(
𝜔 − 𝜑′𝑘 (𝑡)

)
. (11)

Based on Eq. (11), a new frequency redistribution operator is defined in this paper.

𝜔𝑚 (𝑡, 𝜔) | =


argmax
𝜔

|𝐺 (𝑡, 𝜔) | , 𝜔 ∈ [𝜔−Δ, 𝜔+Δ], if ‖𝐺 (𝑡, 𝜔)‖ ≠ 0

0, if |𝐺 (𝑡, 𝜔| = 0
. (12)

Assuming that the frequency distance between any two modes in the multi-component signal
satisfies 𝜑′

𝑘+1 (𝑡) − 𝜑
′
𝑘
(𝑡) > 4Δ𝑘 ∈ 1, 2, · · · 𝑛 − 1}, and considering that the Fourier transform of

the window function reaches the maximum value at zero, namely �̂�(𝜔) ≤ �̂�(0), the results are as
follows:

𝜔𝑚 (𝑡, 𝜔) | =
{
𝜑′
𝑘
(𝑡), if 𝜔 ∈ [𝜑′

𝑘
(𝑡)−Δ, 𝜑′

𝑘
(𝑡)+Δ]

0, otherwise
. (13)

From the above analysis, it is clear that the only way to improve the reconstruction capability of
multi-component signal modal components is to redistribute the TF coefficients in the frequency
direction. Therefore, the local frequency maximum synchrosqueezed transform (LMSST) is
defined as:

LMSST(𝑡, 𝜂) =
+∞∫

−∞

𝐺 (𝑡, 𝜔)𝛿(𝜂 − 𝜔𝑚 (𝑡, 𝜔))d𝜔. (14)

To demonstrate the signal reconstruction capability of LMSST, the following expressions are
constructed:

+∞∫
−∞

LMSST(𝑡, 𝜂) d𝜂 =

+∞∫
−∞

+∞∫
−∞

𝐺 (𝑡, 𝜔)𝛿(𝜂 − 𝜔𝑚 (𝑡, 𝜔))d𝜔d𝜂 =

=

+∞∫
−∞

𝐺 (𝑡, 𝜔)
+∞∫

−∞

𝛿(𝜂 − 𝜔𝑚 (𝑡, 𝜔)) d𝜂d𝜔 =

=

+∞∫
−∞

𝐺 (𝑡, 𝜔) d𝜔 = (2𝜋𝑔(0))𝑠(𝑡). (15)

Thus, after the LMSST, the signal can be reconstructed entirely.

𝑠(𝑡) = (2𝜋𝑔(0))−1
+∞∫

−∞

LMSST(𝑡, 𝜔) d𝜔. (16)

From Eq. (16), the reconstruction formula for each modal component can be written as
follows:

𝑠𝑘 (𝑡) = (2𝜋𝑔(0))−1LMSST(𝑡, 𝜑′𝑘 (𝑡)). (17)
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3. Inter-harmonic detection based on local frequency maximum
synchrosqueezed transform

3.1. Inter-harmonic signal instantaneous frequency trajectory detection
The detection of inter-harmonic parameters using the local frequency maximum synchro-

squeezed transform (LMSST) algorithm relies, to a large extent, on the estimation of the instanta-
neous frequency ridges. The difficulty lies in how to accurately detect the instantaneous frequency
(IF) trajectory of the inter-harmonics [32, 33]. In this paper, the method in [27] is used to detect
the inter-harmonic instantaneous frequency trajectory in the spectrum, and the instantaneous
frequency trajectory detection equation is TFR IF.

𝐸 (IF𝑘 (𝑡)) =
+∞∫

−∞

|TFR(𝑡, IF𝑘 (𝑡)) |2 d𝑡 −
+∞∫

−∞

(
𝜆 · IF′

𝑘 (𝑡) + 𝛽 · IF′
𝑘 (𝑡)

2
)

d𝑡, (18)

where (𝑡, IF𝑘 (𝑡)) is the IF trajectory of the 𝐾-th mode estimate of the inter-harmonic signal
in the TF plane. 𝜆 and 𝛽 are two regularisation parameters. In the instantaneous frequency
trajectory detection of an inter-harmonic signal, the transient frequency ridge with the largest
energy mode component is first detected according to Eq. (18). The specific steps are as follows:
firstly, the whole TF plane of the inter-harmonic signal is segmented according to the energy
partition, and the starting point of the instantaneous frequency trajectory is found; secondly, the
forward and backward search schemes are implemented to search the IF trajectory; finally, the
best IF trajectory is selected from these tracks according to the local frequency energy maximum
criterion. After TF is solved, the trajectories are estimated to be zero. The trajectories of all modes
in the inter-harmonic signals can be estimated by multiple iterations.

3.2. Inter-harmonic mode component extraction based on synchroextracting operator
The actual inter-harmonic signals of the power system usually contain a lot of noise, which is

submerged by noise and seriously affects the detection accuracy of inter-harmonic parameters. In
order to eliminate the influence of noise, a local maximum synchroextracting operator (LMSEO)
is introduced into LMSST to extract the inter harmonic components. The one-dimensional IF
function for the first component of a multi-component inter-harmonic signal is expressed as:

IF𝑘 (𝑡) = 𝜑′𝑘 (𝑡). (19)

The Dirac function can be extended to a two-dimensional TF plane:

IF𝑘 (𝑡, 𝜔) = 𝛿
(
𝜔 − 𝜑′𝑘 (𝑡)

)
. (20)

Based on Eq. (20), a local maximum synchroextracting operator (LMSEO) is constructed:

LMSEO(𝑡, 𝜔) = 𝛿(𝜔 − 𝜔𝑚 (𝑡, 𝜔)). (21)

It can be seen from Eq. (13) that𝜔𝑚 (𝑡, 𝜔) is the superposition of IF at each mode. Substituting
it into Eq. (20), we can obtain as follows:

𝛿(𝜔 − 𝜔𝑚 (𝑡, 𝜔)) =
{

1, if 𝜔 = 𝜑′
𝑘
(𝑡)

0, otherwise
. (22)
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From Eq. (22), it can be seen that the LMSEO is very close to the instantaneous frequency
of the inter-harmonic signal and can be used to represent the time-varying characteristics of the
instantaneous frequency. Taking into account the calculation errors in practical applications, an
error factor is introduced and the LMSEO is redefined as:

LMSEO(𝑡, 𝜔) =
{

1, |𝜔 − 𝜔𝑚 (𝑡, 𝜔) | < 𝜀
0, otherwise

. (23)

In order to ensure that the IF trajectory of each extracted modal component does not exceed
the TF plane, the following constraints are added.

0 < 𝜑′𝑘 (𝑡) < (𝑆𝐹)/2, ∀ , 𝑡 ∈ 𝑅 and ∀ 𝑘 ∈ 1, 2, · · · 𝑛. (24)

In Eq. (24), SF denotes the sampling frequency.
Given the inter-harmonic signal 𝑠(𝑡), 𝑡 = 𝑡0 · · · 𝑡𝑁−1 the instantaneous frequency trajectory

detection of the component signal is first performed by Eq. (18). On the basis of the IF trajectory
detection, the LMSST and LMSEO joint methods are used to decompose and extract the compo-
nents of inter-harmonic signals. The termination condition for component extraction is shown in
Eq. (25).

𝑁−1∑︁
𝑛=0

FMSEO(𝑡𝑛, IF𝑘 (𝑡𝑛)) > 𝜌𝑁, (25)

where 𝜌 is the constant threshold, and the value is 𝜌 = 0.8.

3.3. Calculation of inter-harmonic parameters
The signals with inter-harmonics in the power system can be expressed as follows:

𝑓 (𝑡) =
𝐾∑︁
𝑘=1

𝐴𝑘 cos(2𝜋𝜔𝑘 𝑡 + 𝜙𝑘 ), (26)

where: 𝐴𝑘 is the amplitude;𝜔𝑘 is the frequency, and 𝜙𝑘 is the initial phase. Since LMSST extracts
the intrinsic mode function (IMF) components corresponding to different harmonic components,
the process of detecting IMF components is actually the process of detecting harmonics.

The IMF function model can be expressed as:

𝑓𝑘 (𝑡) = 𝐴𝑘 cos(2𝜋𝜔𝑘 𝑡 + 𝜙𝑘 ). (27)

In order to obtain the amplitude, frequency and phase of the 𝑘-th harmonic component, it
is sufficient to detect 𝐴𝑘 , 𝜔𝑘 and 𝜙𝑘 , and the Hilbert transform of the 𝑘-th component 𝑓𝑘 (𝑡)
extracted by SST:

𝑦(𝑡) = 1
𝜋

+∞∫
−∞

𝑓𝑘 (𝑡)
𝑡 − 𝜏 d𝑡. (28)

The inverse Hilbert transform is obtained by exchanging 𝑦 and 𝑓𝑘 in Eq. (9), thus we obtain
the analytic signal.

𝑧(𝑡) = 𝑓𝑘 (𝑡) + 𝑖𝑦(𝑡) = 𝐴(𝑡)𝑒𝑖 𝜃 (𝑡) , (29)
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where

𝐴(𝑡) =
√︃
𝑓 2
𝑘
(𝑡) + 𝑦2 (𝑡), 𝜃 (𝑡) = arctan

[
𝑦(𝑡)
𝑓𝑘 (𝑡)

]
. (30)

Then the amplitude 𝐴0 and the frequency 𝜔𝑑 of the harmonic signal are calculated as:

𝐴0 = 𝐴(𝑡), 𝜔𝑑 =
1

2𝜋
d𝜃
d𝑡
. (31)

Since the amplitude 𝐴0 and frequency 𝜔𝑑 are calculated by Eq. (30) and Eq. (31), the values
of 𝐴0 and 𝜔𝑑 will slightly change, and the final detection values of 𝐴0 and 𝜔𝑑 can be calculated
by least squares fitting.

It can be seen from the above that the LMSST algorithm can extract the inter-harmonics
through the following steps, and the flow chart of LMSST is shown in Fig. 1.

Fig. 1. Flow chart of LMSST method

Step 1: The continuous wavelet transform 𝑊 𝑓 (𝑎, 𝑏) on the power signal 𝑓 containing inter-
harmonics is carried out. The discretization of𝑊 𝑓 (𝑎, 𝑏) gives𝑊 𝑓 (𝑎 𝑗 , 𝑡𝑚), and the discretization
of the instantaneous frequency obtained from Eq. (2) gives 𝜔 𝑓 (𝑎 𝑗 , 𝑡𝑚).
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Step 2: Divide frequency intervals. Assuming that the power signal 𝑓 (𝑡) containing inter-
harmonics has length 𝑛 = 2𝐿+1 and sampling time interval Δ𝑡, take 𝑛𝑣 = 32, and let 𝑛𝑎 = 𝐿𝑛𝑣 ,

Δ𝜔 =
1

𝑛𝑎 − 1
log2

(𝑛
2

)
, 𝜔0 =

1
𝑛Δ𝑡

.

Specify 𝜔𝑙 = 2𝑙Δ𝜔𝜔0 and 𝑙 = 0, 1, · · · , 𝑛𝑎 − 1, then according to the Nyquist sampling
theorem, the frequency range of the power system harmonic signals can be divided into different
frequency intervals

𝑊𝑙 =

[𝜔𝑙−1 + 𝜔𝑙
2

,
𝜔𝑙 + 𝜔𝑙+1

2

]
.

Step 3: Discrete synchronous extrusion 𝑇 𝑓 (𝜔𝑙 , 𝑏) in the time-frequency plane: the syn-
chronous squeezing wavelet transform of signals at the center frequency 𝜔𝑙 is as follows:

𝑇 𝑓 (𝜔𝑙 , 𝑏) =
∑︁

0≤ 𝑗≤𝑛𝑎−1,
𝑗 : |𝜔 (𝑎 𝑗 ,𝑡𝑚) |∈𝑊𝑙

𝑊 𝑓

(
𝑎 𝑗 𝑡𝑚

) log 2
𝑛𝑣

𝑎
− 1

2
𝑗
,

where 𝑡𝑚 = 𝑚Δ𝑡.
Step 4: Extraction of each harmonic inter-harmonic and fundamental component signal. The

𝑘-th component (fundamental, harmonic or inter-harmonic) can be reconstructed from Eq. (5).

𝑓𝑘 (𝑡𝑚) =
2
𝑅𝜓

Re ©«
∑︁

𝑙∈𝐿𝑘 (𝑡𝑚)
𝑇 𝑓 (𝜔𝑙 , 𝑡𝑚)

ª®¬ ,
where, 𝐿𝑘 (𝑡𝑚) is the subscript set of 𝜔𝑙 around the narrow band of the curve 𝑓𝑘 .

Step 5: The IMF component 𝑓𝑘 (𝑡) of LMSST is transformed by Hilbert transform. Then the
amplitude 𝐴0 and frequency𝜔𝑑 are calculated by Eq. (30) and Eq. (31). The final detection values
of 𝐴0 and 𝜔𝑑 are obtained by least square fitting.

4. Experimental and numerical validation

4.1. Steady-state harmonic analysis
Assume that the power signal containing steady-state harmonics is 𝑥(𝑡).

𝑥(𝑡) = 15 cos(100𝜋𝑡) +3.5 cos(150𝜋𝑡) +30 cos(250𝜋𝑡) +55 cos(300𝜋𝑡) ++10 cos(500𝜋𝑡) +𝑛(𝑡).

The signal 𝑥(𝑡) contains fundamental, 3rd and 5th harmonics, and 1.5 and 2.5 inter-harmonics,
and a Gaussian white noise with 𝑛(𝑡) of 30 dB is added to the signal 𝑥(𝑡) to form the original
signal. The sampling frequency of the signal is 5120 Hz, and the sampling time is 1 s. Figure 2
shows the time domain waveform of the original signal.

This signal spectrum is shown in Fig. 3.
In order to compare the detection accuracy of the proposed method for harmonic/interhar-

monic parameters, the Wavelet Packet method (WP) [28], Hilbert Marginal Spectrum method
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Fig. 2. Time domain waveform of original signal

Fig. 3. Spectrum of steady state inter-harmonic signal

(HMS) [29], Synchrosqueezing Transform method (SST) [30], Hybrid Synchrosqueezing Trans-
form method (HSST) [31], Enhanced Empirical Wavelet Transform (EEWT) and the proposed
LMSST method are used to detect the parameters of analog harmonic signals. Firstly, the original
signal containing noise is decomposed by the WP, EMD, SST, HSST, EEWT and LMSST, re-
spectively, and the signal is not de-noised in decomposition. The standard deviation of the added
Gaussian white noise amplitude is 0.2, the set averages is set to 200, and the modal components
of SST and LMSST is 𝐾 = 5. The decomposition results are shown in Fig. 4(a) and Fig. 4(b)
(only the graph of [0 s, 0.25 s] is drawn for clarity).

Figure 4(a) shows the SST decomposition results of the original signal full of noise, where
IMF1 is the fundamental component, IMF5 is the 5th harmonic component, and IMF2-IMF4 is the
remaining harmonic components. IMF2-IMF5 show that modal aliasing occurs. Due to the effect
of noise and spectral mixing, SST cannot accurately decompose each harmonic/inter-harmonic.
Figure 4(b) shows the components obtained from the decomposition of LMSST. IMF1-IMF5 are
arranged in the order of fundamental wave, 1.5 and 2.5 inter-harmonics, 3rd and 5th harmonics.
From the waveform, it can be seen that each component is basically a single frequency harmonic
and no modal aliasing occurs.

In order to visualise the time-varying characteristics of the amplitude and frequency of LMSST
components, the Hilbert operator is used to demodulate the individual modal components in
Fig. 4(b). The instantaneous amplitude and frequency of the modal components are shown in
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(a) Decomposition results of SST

(b) Comparison of main harmonic components of no-load B-EMF of part
of the skew structure

Fig. 4. Decomposition results of steady state harmonics

Fig. 5(a) and Fig. 5(b). From Fig. 5(a) and Fig. 5(b), the instantaneous amplitudes and frequencies
of the modal components are basically a straight line, except for the deviations at the endpoints.
This indicates that the detected values are close to the theoretical values. In order to compare the
parameter detection results of SST and LMSST, the component of Fig. 4(a) obtained after the
decomposition of SST is also subjected to Hilbert operator demodulation analysis.

In order to compare the parameter detection results of the six methods, the decomposition
results of the WP, EMD, SST, HSST and EEWT are demodulated and analysed by the Hilbert
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(a) Identification of instantaneous amplitude by LMSST

(b) Identification of instantaneous frequency by LMSST

Fig. 5. Instantaneous amplitude and frequency of steady harmonic

operator. Then, for the waveform after demodulation analysis, the average value of other parts ex-
cept the endpoint is obtained. It is used as the detection value of steady-state harmonic component
parameters, and the results are shown in Table 1.

It can be seen from Table 1 that, the average errors of amplitude and frequency detection
by the WP method are 1.972% and 1.082%, respectively; by the HMS method are 1.599% and
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Table 1. Identification results of steady harmonic component parameters

Method Actual

Modal components

IMF1 IMF2 IMF3 IMF4 IMF5

ampl freq ampl freq ampl freq ampl freq ampl freq

15.0 50.00 3.50 75.00 30.0 125.0 55.0 150.0 10.0 250.0

WP
Estimated 14.586 50.822 3.457 74.081 30.497 125.929 54.183 151.268 10.273 252.379

Error 2.760% 1.644% 1.228% 1.225% 1.656% 0.743% 1.485% 0.845% 2.730% 0.952%

HMS
Estimated 14.624 50.729 3.452 74.113 30.340 124.095 54.274 151.192 9.834 252.184

Error 2.511% 1.458% 1.371% 1.182% 1.133% 0.724% 1.320% 0.795% 1.660% 0.874%

SST
Estimated 14.829 50.646 3.469 74.209 30.283 124.163 54.297 150.912 10.088 248.033

Error 1.135% 1.092% 0.877% 1.054% 0.944% 0.669% 1.095% 0.608% 0.889% 0.787%

HSST
Estimated 14.865 49.641 3.483 74.502 29.711 124.572 54.594 150.617 9.914 249.281

Error 0.900% 0.718% 0.485% 0.664% 0.963% 0.342% 0.738% 0.411% 0.860% 0.288%

EEWT
Estimated 14.877 50.320 3.488 75.427 30.231 124.629 54.616 149.611 10.034 249.471

Error 0.820% 0.640% 0.342% 0.569% 0.770% 0.297% 0.698% 0.259% 0.340% 0.212%

LMSST
Estimated 14.889 49.698 3.509 74.597 29.797 125.301 54.659 150.302 9.979 249.599

Error 0.737% 0.602% 0.260% 0.536% 0.677% 0.241% 0.621% 0.201% 0.203% 0.160%

1.007%, respectively; by the SST method are 0.988% and 0.842%, respectively; by the HSST
method are 0.789% and 0.484%, respectively; by the EEWT method are 0.594% and 0.396%,
respectively and that by the LMSST method are 0.499% and 0.348%, respectively.

According to the test results, the detection accuracy of the LMSST method is significantly
higher than that of WP, HMS, SST and HSST methods. The EEWT method also has high
detection accuracy, but compared with the EEWT method, the detection accuracy of the LMSST
method proposed in this paper is still improved to a certain extent. This is because the adaptive
mode decomposition algorithm formed by the combination of the ridge detection method and the
synchronous extraction operator of the LMSST algorithm can effectively decompose the inter-
harmonic signal into multiple single components, and reduce the influence of noise on the signal
decomposition. From Fig. 5(b) and Table 1, it can be seen that the LMSST method still has high
detection accuracy when detecting harmonic/inter-harmonic signals with noise. It indicates that
LMSST also has good robustness to noise.

4.2. Transient harmonic analysis
Assuming that the power signal with transient harmonics is 𝑥(𝑡).

𝑥1 (𝑡) = 15 cos(100𝜋𝑡), 0 ≤ 𝑡 ≤ 0.4,
𝑥2 (𝑡) = 3.5 cos(350𝜋𝑡), 0.05 ≤ 𝑡 ≤ 0.3,
𝑥(𝑡) = 𝑥1 (𝑡) + 𝑥2 (𝑡).
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The signal consists of the fundamental and 3.5th inter-harmonic. The 3.5th inter-harmonic
is superimposed into the signal at 0.05 s and stops superimposing at 0.3 s. The fundamental
frequency is 50 Hz, the sampling frequency is 5120 Hz and the sampling time is 0.4 s. Fig. 6
shows the time domain waveform of the transient harmonic signal.

Fig. 6. Time domain waveform of transient harmonic signal

Set the modal components 𝐾 = 2. The WP, HMS, SST, Hybrid-SST, EEWT and LMSST
are used to decompose transient harmonic signals respectively. Due to space limitation, only
decomposition results of SST and LMSST are presented in this paper, as shown in Fig. 7(a) and
Fig. 7(b). From Fig. 7, it can be seen that although the method can decompose the transient

(a) Decomposition results of SST

(b) Decomposition results of LMSST

Fig. 7. Decomposition results of state inter-harmonics
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harmonics from the signal, there is still some modal mixing in these two components. IMF1 and
IMF2 components obtained from the decomposition in Fig. 7(b) correspond to the fundamental
wave and the short-time inter-harmonic 3.5, respectively. These two components are basically
sinusoidal waves with clear decomposition levels, indicating that the LMSST algorithm has strong
decomposition capability.

The decomposition results of the six methods are analyzed by Hilbert operator demodulation,
and the instantaneous amplitude and frequency waveforms of the components are obtained. Due
to space limitation, only the demodulation analysis results of LMSST decomposition components
are shown in Fig. 8(a)–Fig. 8(d). According to Fig. 8(d), it can be seen that a mutation point

(a) Instantaneous amplitude of IMF1

(b) Instantaneous frequency of IMF1

(c) Instantaneous amplitude of IMF2

(d) Instantaneous frequency of IMF2

Fig. 8. Analysis results of transient inter harmonic signal
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appears at the starting and ending of the transient harmonics. The starting time of the 1.5th
inter-harmonic obtained from LMSST decomposition is 0.0503 s and the ending time is 0.3017 s.
Similarly, the starting and ending time of the WP method is 0.0457 s and 0.3211 s, respectively;
that of the HMS method is 0.0461 s and 0.3227 s, respectively; that of the SST method is 0.0467 s
and 0.3192 s, respectively; that of the HSST method is 0.0492 s and 0.3068 s and that of the
EEWT method is 0.0495 s and 0.3028 s, respectively. The comparison between the detection
results of the six methods and the theoretical values is shown in Table 2.

Table 2. Detection results of transient harmonic starting and ending time

Method Starting time/s Ending time/s

Actual Detected Error/% Actual Detected Error/%

WP 0.0500 0.0457 8.600 0.3000 0.3211 7.033

HMS 0.0500 0.0461 7.800 0.3000 0.3227 7.566

SST 0.0500 0.0467 6.600 0.3000 0.3192 6.400

HSST 0.0500 0.0492 1.600 0.3000 0.3068 2.266

EEWT 0.0500 0.0495 1.000 0.3000 0.3028 0.933

LMSST 0.0500 0.0503 0.600 0.3000 0.3017 0.567

According to Table 2, the accuracy of the LMSST positioning start and end time is significantly
higher than that of the WP, HMS, SST and HSST. Although the accuracy of the EEWT positioning
start and end time is relatively high, it is still lower than that of the LMSST method. The reason
is that the LMSST algorithm uses the local maximum synchroextracting operator (LMSEO) to
continuously update each mode and its central frequency, so that the transient harmonics in the
signal can be accurately and thoroughly decomposed. This makes the sudden change point of the
starting and ending moments of instantaneous frequency very obvious, so as to accurately locate
the starting and ending moments. The average value of the smoothed phase from the starting to the
ending of the moment in Fig. 8(c) and Fig. 8(d) is used as the detection value of the instantaneous
amplitude and frequency of the 3.5th inter-harmonic component. The average of the waveforms in
Fig. 8(a) and Fig. 8(b) is taken as the detected value of the instantaneous amplitude and frequency
of the fundamental waveform. The parameters detection results of each component of transient
harmonics are shown in Table 3.

According to the detection results in Table 3, the average error of amplitude and frequency
detection by the WP method is 1.819% and 1.463%, respectively; by the HMS method are
1.888% and 1.509%, respectively; by the SST method are 1.404 and 1.215, respectively; by the
HSST method are 0.821% and 0.480%, respectively; by the EEWT method are 0.651% and
0.272%, respectively and by the proposed LMSST method are 0.537% and 0.186%, respectively.
It can be seen that compared with the other four methods, the proposed method has the lowest
error in detecting the amplitude and frequency of inter-harmonic, and the detection effect is
better.
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Table 3. Detection results of transient harmonic component parameters

Method Actual

Modal components

IMF1 IMF2

Ampl Freq Ampl Freq

15.000 50.000 3.50 175.00

WP
Estimated 14.8247 49.1362 3.4188 177.0974

Error 1.318% 1.727% 2.320% 1.198%

HMS
Estimated 14.7622 49.0407 3.4233 176.9255

Error 1.585% 1.918% 2.191% 1.100%

SST
Estimated 14.8537 49.2745 3.4358 176.7136

Error 0.975% 1.451% 1.834% 0.979%

HSST
estimated 14.9032 49.6275 3.4651 174.6216

Error 0.645% 0.745% 0.997% 0.216%

EWWT
Estimated 15.0817 50.1872 3.5265 175.2971

Error 0.544% 0.374% 0.757% 0.169%

LMSST
Estimated 15.0721 49.8768 3.4792 174.7818

Error 0.481% 0.247% 0.594% 0.125%

4.3. Comparison of computational complexity

The system used in the experiment is Windows10, the CPU is a 2.90 GHz i5 processor, memory
is 16.0 GB, and the experimental software is the matlab2019a version. In the experiment, when
the steady-state harmonic and transient harmonic are analyzed, each algorithm conducts 100
harmonic detection experiments respectively, and takes the average running time as the final
result. The running time test results of the six harmonic detection methods are shown in Table 4.

Table 4. Comparison of computation complexity of detection methods

Method WP HMS SST HSST EEWT LMSST

Steady-state harmonic analysis 0.2746 0.7748 0.3926 0.4342 0.3645 0.4133

Transient harmonic analysis 0.2101 0.7059 0.3118 0.3844 0.2881 0.3398

It can be seen from Table 4 that the wavelet packet (WP) detection algorithm has the shortest
calculation time, while the HMS algorithm has the longest calculation time because it needs to
decompose the signal in an iterative way. The running time of the SST algorithm is basically
the same as that of the EEWT algorithm. HSST and LMSST proposed in this paper need to
further process the decomposition results of SST, so the running time of both HSST and LMSST
is more than the SST algorithm. Compared with the EEWT method, the running time of the
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LMSST method proposed in this paper is slightly longer, but the difference is not significant. It
can be seen that the LMSST method can meet certain requirements in real-time and has good
extensibility.

5. Conclusions

The LMSST algorithm is applied to power harmonic detection, and the harmonic/inter-
harmonic detection method combining the local frequency maximum synchronous compression
transform and synchronous extraction operator is proposed. The main conclusions are drawn from
the detection results as follows:

1. LMSST can adaptively divide the signal spectrum according to the spectral extreme value
of the signal, and accurately extract each harmonic or inter-harmonic component from the
power system signal. This can effectively avoid the problem of modal mixing in traditional
time-frequency analysis methods, and improve the extraction accuracy of harmonic/inter-
harmonic components.

2. The WP method, HMS method, SST method, HSST method, EEWT method and LMSST
method are used to detect the parameters of harmonics/inter-harmonics signals. Then the
instantaneous amplitude and frequency of harmonics/inter-harmonics are calculated, and
the starting and ending time of transient harmonics is located according to the instantaneous
frequency.

3. The proposed method is suitable for the detection of steady-state and transient harmonics
with high accuracy, and has good noise robustness when decomposing noisy signals.
Furthermore, the proposed method also can be applied to the detection of harmonic/inter-
harmonic parameters in a noisy background.
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