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Research paper

Parametric analysis of mast guys within the elastic
and inelastic range

Monika Matuszkiewicz1, Renata Pigoń2

Abstract: The paper concerns the computations of mast guys taking into account both geometric and
physical nonlinearities. Experimental studies have been conducted, the aim of which was to determine
𝜎 − 𝜀 (stress – deformation) relation for steel rope and to determine the value of modulus of elasticity
after its pre-stretching. Results of the research were used to create appropriate computational cable
models within the elastic and inelastic range in SOFiSTiK software, based on FEM. The computational
cable models were then used to perform parametric analyses of single cables with horizontal and
diagonal chords and computations of a lattice guyed mast. The computational single cables results
obtained in the SOFiSTiK software were confronted with the results obtained by the analytical method,
based on the cable equation. The FEM analyses performed for single cables have proven usefulness of
presented analytical procedure for computation of structures with cable elements (e.g. guyed masts)
taking into account both the geometric and physical nonlinearity of the cables. It has been shown
that while using steel ropes without pre-stretching, permanent deformations in the cables may occur,
which affect the shape of the cable and may significantly reduce values of forces in the cables. This
phenomenon can be particularly dangerous in the case of guyed masts, as it may affect the reduction in
rigidity of the mast structure.
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1. Introduction

Guyed masts are vertical, slender high–rise structures, built of a lattice or tubular shaft
and supporting on several levels diagonal wire ropes. Mast structures are most often used
to suspend transmitting and receiving radio and television antennas as well as wireless
communication antennas. They can also be used as measuring masts, e.g. for wind speed
and wind direction. Due to their slender structure guyed masts belong to the structures that
are susceptible to deformations. Moreover, geometric non-linearity of guys supporting the
mast shaft causes the entire structure to behave nonlinearly, i.e. the displacements of the
mast shaft are nonlinearly dependent on the external load. The correct response of the mast
structure to external load in this case can be obtained only in an iterative way, where the
aim is to fulfill the equilibrium equations of the deformed structure. Such type of analysis
recommended in European standard [1] is called a nonlinear analysis of the second order
theory.
Physical nonlinearity concerns structures where brand new ropes, without pre-stretch-

ing, were used to make cables. Such cables are characterized by a nonlinear stress –
deformation relation, which results in a variable modulus of elasticity E, which in turn
determines tensile stiffness of the rope. Including in computations of the constant modulus
of elasticity would require pre-stretching of all used ropes, which is difficult to achieve
especially in the case of guyed masts of considerable height.
At present, taking into account the geometric nonlinearity of cables in structure is

not a computation problem for researchers. In the computations of e.g. guyed masts, the
easiest effective way is to divide the curvilinear guy into appropriate number of straight
elements and to perform spatial analysis of the structure in accordance with FEMmethods.
Such a procedure, used i.a. in the works [2, 3] results from availability of commercial
computation software enabling performance of the geometrically nonlinear analysis for
cable-bar structures. Another way is to consider in the computations the curvilinear shape
of mast guys as the result of their inter-node load. The computation methods used in this
case are usually based on iterative methods of modification of mast guy stiffness [4–7].
The vast majority of research works on guyedmasts is based on computations within the

linear-elastic range, limited to taking into account geometric nonlinearity of the structures.
The analysis of cable structureswithin the physically nonlinear range has been presented, for
example, in [8, 9]. However, there is a significant group of works on the study of physical
nonlinearity of steel ropes. In [10] a comparative analysis of a steel spiral strand rope
subjected to axial-torsional load using analytical methods and FEM has been presented.
The effect of inter-wire contact in the wire rope subjected to axial tension and torsion
loads using the semi-analytical method has been presented in [11]. In [12] the results
of theoretical calculations of a steel wire rope according to the Feyrer’s and Costello’s
theories have been compared with the results of experimental research. A numerical model
for cables based on FEM including friction has been described in [13].
In this study the authors used for the analyses the mechanical properties of spiral strand

ropes determined on the basis of experimental studies during the static stretching test. The



PARAMETRIC ANALYSIS OF MAST GUYS WITHIN THE ELASTIC AND INELASTIC. . . 171

computational cable models tested within the linear-elastic and inelastic range in SOFiSTiK
software will be used subsequently for the analyses of guyed mast structures.

2. Experimental study

Mechanical properties of steel ropes are significantly affected by rope structure, i.e.
the number of wires and the method of twisting the wires in the rope. Brand new ropes,
without pre-stretching, tend to show so-called stretching, i.e. increasing the length under
load, resulting in permanent deformations. The typical 𝜎 − 𝜀 relation for a rope without
pre-stretching determined on the basis of the static stretching test is, therefore, nonlinear,
and the modulus of elasticity of such a rope, defined as 𝐸 = Δ𝜎/Δ𝜀, is variable in this case
and depends on the current stress value. The pre-stretching process, consisting in cyclic
loading and unloading of a rope, causes permanent deformations and results in a significant
increase of the value of the rope elasticity modulus 𝐸 . After pre-stretching, the rope behaves
elastically, in the range of applied axial force, thus the value of modulus 𝐸 is constant.
In order to show differences in the results of computations of guyed masts in which

the spiral strand ropes without pre-stretching (inelastic range) and the pre-stretched ropes
(elastic range) were adopted as guys, the experimental studies of a steel spiral rope had
been carried out. A full description of the research and its results was presented at the
conference of young scientists in 2018 [14]. Below are briefly described the scope of the
research and its results, which have been further used to perform analyses.
The subject of the experimental research was PG 40 spiral strand rope with the structure

1 × 37, diameter 20.1 mm and cross-section 𝐴 = 237 mm2, manufactured by PFEIFER
Seil – Und Hebetechnik GmbH [15]. The minimum rope breaking force specified by the
producer is 367 kN. The tensile strength of rope wires is 𝑓𝑢,𝑘 = 1770 MPa; the wires have
been protected with GALFAN anticorrosion zinc coating.
15 rope samples featuring length of 1.24 m, based on the standard [16] were prepared

for tests. Ends of the ropes were anchored in conical bushes (Figs. 1, 2), made of S355
steel grade, in accordance with the standard [17]. The cold socketing compound named
WIRELOCK, manufactured by the Millfield Group [18], was used as a socketing media.
The experimental tests were carried out in the Laboratory ofMaterial Strength and Building
Structures of Koszalin University of Technology. Inspekt 600 testing machine by Hegewald
Und Peschke MPT GmbH was used. The device is computer controlled using closely
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Fig. 1. Dimensions of a rope sample with conical bush [mm]
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cooperating software called H&P Labmaster, which is responsible, among other things, for
saving, managing and processing of the measurement data.

Fig. 2. Rope samples prepared for tests

View of the rope sample in the testing machine is presented in Fig. 3.

Fig. 3. View of the rope sample in testing machine
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The tests included:
– determination of 𝜎 − 𝜀 relation for the rope during the static stretching test based on
the measured values of force – rope elongation,

– finding the constant (standard) value of the rope elasticity coefficient 𝐸 after its
pre-stretching,

– determination of the real value of the rope breaking force.
The tests were conducted in compliance with the guidelines set out in the standard [19].

In order to eliminate the initial non-straightness, the rope samples mounted in the testing
machine were initially subjected to force 𝑃0 = 5÷10 kN. The pre-stretching process was
carried out on six rope samples in accordance with the recommendations set out in the
standard [1] regarding guys pre-stretching. This process consisted in cyclic loading and
unloading of the rope (minimum 10 cycles) within the range from 10% to 50% of the
nominal breaking force. The tested rope samples were loaded 12 times in the testing
machine up to the force value equal to 183.5 kN and then unloaded. As a result of this
process, permanent deformations appeared in the rope samples, visible on the section
A – C of the 𝜎 − 𝜀 curve (Fig. 4), while the section B – C during unloading and re-
loading is practically linear. Hence, the constant (standard) value of the rope elasticity
modulus was determined. For six tested samples the arithmetic mean value of the rope
elasticity modulus was equal to 158 GPa, therefore, a good correlation with the standard
recommendations [20] regarding the assumption of constant elasticity modulus of spiral
strand ropes 𝐸 = 150 ± 10 GPa was obtained.

Fig. 4. Graph of nonlinear relation stress – deformation of the rope
during cyclic loading and unloading

Six consecutive rope samples were used to determine the nonlinear 𝜎 − 𝜀 relation
during the static tensile test. The loading was commenced with initial force of 5 kN and
increased at a rate of 1 kN/s until the breaking force value specified by the producer equal
to 367 kN. The graph of 𝜎 − 𝜀 relation for the rope is shown in Fig. 5.
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Fig. 5. Relation 𝜎 − 𝜀 for the tested rope subjected to static tensile test

All of the 15 rope samples were loaded until rupture of individual wires in the rope
had occurred. The samples were destroyed in the middle of the span, which proves that the
anchoring was correctly made (Fig. 6). The highest value of the obtained breaking force
was equal to 430.8 kN, and the lowest – 414.6 kN. The average value of the breaking force
was obtained equal to 425.3 kN.

Fig. 6. View of broken rope samples

The constant (standard) value of the elasticity modulus 𝐸 = 158 GPa, determined in
the tests, was used in further analyses to compute the cables within the elastic range, while
𝜎 − 𝜀 nonlinear relation for the rope without pre-stretching was approximated by the 4th
degree polynomial described by the following equation (2.1):

(2.1) 𝜎(𝜀) = 25.963 + 1590.237𝜀 + 500.756𝜀2 − 1107.53𝜀3 + 376.147𝜀4 [MPa]
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The equation was used, in turn, to develop a physically nonlinear cable model where
modulus 𝐸 is determined in a particular iteration based on the current values of stresses
and deformations. Comparison of the experimental results and the 𝜎 − 𝜀 curve described
by the adopted polynomial is shown in Fig. 7.

Fig. 7. Comparison of the experimental results and the adopted polynomial
approximating 𝜎 − 𝜀 relation for the tested rope

3. Cable equation
The relationship between cable length 𝑠0 before installation and its length 𝑠 under load

is shown in the following equation (3.1) [4, 21]:

(3.1) 𝑠 = 𝑠0 + Δ𝑠 + Δ𝑠𝑡

where Δ𝑠 is the elastic elongation of the cable and Δ𝑠𝑡 – the elongation (or shortening) of
the cable due to temperature change.
Assuming that the shape of the cable under load is described by the catenary equa-

tion (3.2) [4, 22, 23]:

(3.2) 𝑦 = 𝑘

[
cosh

( 𝑥
𝑘

)
− 1

]
(𝑘 = 𝑆/𝑔 [m], 𝑆 – cable force (Fig. 8), 𝑔 – cable self-weight), the so called exact cable
equation (3.3) from equation (3.1) after transformations is obtained, on the basis of which
cable force 𝑆 can be determined [9]:

(3.3)
2𝑆
𝑔
sinh

𝑙 · 𝑔
2𝐻

= 𝑠0 (1 + 𝛼𝑡Δ𝑇) +
𝑆2

2𝐸 · 𝐴 · 𝑔

[
𝑙 · 𝑔
𝑆

+ sinh 𝑙 · 𝑔
𝑆

]
However, in practical computations, with some simplifying assumptions, it is more

convenient to assume that the cable overhang line is determined by the second degree
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Fig. 8. Slant cable (guy) under 𝑞(𝑥) load

parabola (the so-called technical theory of the cable applies). On this assumption an
approximate equation (3.4) of mast guy (slant cable) was derived in [4], based on the
current length of the cable chord:

(3.4) 𝑆3 + 𝑆2𝐸𝐴

[
1 − 1

𝑠0
(𝑙𝑠 − 𝛼𝑡Δ𝑡 𝑠0)

]
=

𝐸𝐴 cos𝛼
2𝑠0

𝑙∫
0

[𝑄(𝑥)]2 d𝑥

where: 𝑆 – force acting in the cable chord direction (Fig. 8), 𝑠0 – length of unloaded cable,
𝐸 – cable modulus of elasticity, 𝐴 – rope metallic cross section, 𝛼𝑡 – linear extension factor
(𝛼𝑡 = 0.000012 1/K], Δ𝑇 – change of temperature, 𝑙𝑠 – length of cable chord,𝑄(𝑥) – shear
force equation as for a simply supported beam with span 𝑙 subjected to load 𝑞(𝑥).
In situation where length of the cable 𝑠0 corresponds to a certain initial value of force

𝑆0, equation (3.4) can be expressed in the following form (3.5):

(3.5) 𝑆3 + 𝑆2
[
𝐸𝐴 − 𝑆0 −

𝐸𝐴

𝑠0
(𝑙𝑠 − 𝛼𝑡Δ𝑡 𝑠0)

]
=

𝐸𝐴 cos𝛼
2𝑠0

𝑙∫
0

[𝑄(𝑥)]2 d𝑥

In the case of guy unloading, the initial state of the guy is the computed value of force 𝑆𝑘
of the total load and the corresponding final length of the guy 𝑠𝑘 . Therefore, equation (3.5)
takes the following form (3.6):

(3.6) 𝑆3 + 𝑆2
[
𝐸𝐴 − 𝑆𝑘 −

𝐸𝐴

𝑠𝑘
(𝑙𝑠 − 𝛼𝑡Δ𝑡 𝑠𝑘 )

]
=

𝐸𝐴 cos𝛼
2𝑠𝑘

𝑙∫
0

[𝑄(𝑥)]2 d𝑥

The final guy length can be determined from [4]:

(3.7) 𝑠𝑘 = 𝑙𝑠 +
cos𝛼
2𝑆2

𝑘

𝑙∫
0

[𝑄(𝑥)]2 d𝑥



PARAMETRIC ANALYSIS OF MAST GUYS WITHIN THE ELASTIC AND INELASTIC. . . 177

The equations presented above show a good convergence with the exact solution in
the case of cables with small overhangs (when the ratio of the guy sag 𝑓 to span 𝑙 is less
than 0.1) and low angles of the cable chord inclination to the horizontal (𝛼 < 60◦), which
conditions for most structures of guyed masts are met [4]. In computations in the elastic
range the value of 𝐸 modulus of elasticity is constant. In the computations in the inelastic
range, it is assumed that the curvilinear relation 𝜎 − 𝜀 applies during loading of the guy,
so the modulus 𝐸 depends on the values of stresses and strains of the guy, and during
unloading and re-loading, the constant value of the modulus 𝐸 is constant. Proper value
of the modulus of elasticity 𝐸 can be determined based on 𝜎–𝜀 relation using the iterative
secant method (successive approximations method) [9].

4. Guys modelling and computation method
using sofistik software

SOFiSTiK commercial software allows, for example, to perform a fully nonlinear
analysis of bar structures based on FEM [24]. It consists of several modules interconnected
through a common database (CDBase). Depending on the considered type of structure,
modules which are used, are responsible for:
– adoption of initial assumptions (PREPROCESSING),
– carrying out calculations (PROCESSING),
– presentation and further processing of the obtained results (POSTPROCESSING).
Description of the structure is best done with use of TEDDY text editor, in which all the

parameters of the structure are defined by text code (CANDIP) in an alphanumeric format.
In AQUA module, which is intended to define the material properties and cross-sections,
the range in which cable element works, should be specified. In the case of the analysis
within the linear-elastic range, a constant value of elastic modulus 𝐸 for cables (adopted
on the basis of experimental tests of rope 𝐸 = 158 GPa) is assumed.
When analysis within inelastic range is chosen, using SSLA (Stress – strain curves)

command, the curvilinear characteristic 𝜎 − 𝜀 of the rope is introduced by defining the
coordinates of up to 20 points (stress – SIG in [N/mm2], strain – EPS in [1/1000]).
In SOFIMSHA module, the geometry of the structure is described.
First of all a global coordinate system (e.g. a spatial system) should be defined, then

groups of elements are introduced, next nodes and boundary conditions are defined.
In the case of cable elements – the division into n-components is given (in the presented

examples of computations, the division into 30 elements was used).
The load of structure elements is defined in SOFILOAD module. The self-weight of

the guys, initial guys forces, other loads and, if necessary, the unloads, should be given
separately. Computations are carried out in ASE module on the basis of declared load
tests. In the case of structures with cables – in the first ASE module, the self-weight of the
structure and initial forces of the cables should be taken into account. It is the main module,
the base for further combinations. The appropriate type of analysis should be chosen.
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In the case of structures with cable elements, it is best to assume TH3 – the equivalent
of the classical second-order theory. The solution of the geometrically nonlinear problem
is possible in the software in an iterative way. A modified Newton’s method (iteration-
incremental method) is used, in which the stiffness matrix is updated at each iteration step
and the speed of finding a solution is increased thanks to the Crisfield method. The module
should include, among other things, the number of iterations, the increase of given load
and the accuracy of solution. In order to activate calculations of cables within the inelastic
range, NSTR (Non-linear stress and strain) command should be entered.

5. Computation examples

The above-presented models and computation procedures for structures with cable
elements in SOFiSTiK software within the linear elastic and inelastic range were tested on
examples.

Example 1.
Compute a horizontal cable force 𝑆 under given load 𝑔 + 𝑝 (Fig. 9). Cross section

𝐴 = 2.37 cm2, horizontal distance between supports 𝑙 = 60 m, unloaded cable length
𝑠0 = 60 m, permanent load 𝑔 = 1.0 kN/m, variable load 𝑝 = 1.0÷5.0 kN/m.

l=60 m 

S S 

p 

R R 

g 
ls 

f

Fig. 9. Cable under load 𝑔 and 𝑝

The problem was solved in two variants. In the first one, it was assumed that the
modulus of cable elasticity 𝐸 is constant and amounts to 158 GPa. In the second variant,
it was assumed that during load application, relation 𝜎 − 𝜀 for the rope is described by
equation (1), and during rope unloading, constant modulus of elasticity 𝐸 = 158 GPa
applies.
Model of a horizontal cable prepared in SOFiSTiK software under 𝑔+𝑝 load is presented

in Fig. 10.
Figure 11 shows graphical dependence between given load and cable force value 𝑆

computed in the SOFiSTiK software in both variants. Table 1 presents calculated cable
guy sags 𝑓 . Additionally, for comparative purposes, computed cable force 𝑆 in SOFiSTiK
software was confronted with the results obtained based on cable equations (3.4) and (3.6)
and summarized in Table 2.
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Fig. 10. Model of a horizontal cable in SOFiSTiK software under 𝑔 + 𝑝 load

Fig. 11. Effect of load change 𝑞 = 𝑔 + 𝑝 on cable force 𝑆 change [kN]

Table 1. Cable guy sag 𝑓 [m] comparison within the linear-elastic and inelastic range

Range 𝑝 = 0 kN/m 𝑝 = 1 kN/m 𝑝 = 2 kN/m 𝑝 = 3 kN/m 𝑝 = 4 kN/m

Linear-elastic
Load
(𝑔 + 𝑝) 2.54 3.21 3.68 4.05 4.37

𝐸 = const Unload
𝑔

– 2.54 2.54 2.54 2.54

Inelastic
Load
(𝑔 + 𝑝) 2.54 3.25 3.92 4.55 4.97

𝐸 ≠ const Unload
𝑔

– 2.54 2.83 3.25 3.45

Comparing the results of cable forces computation 𝑆 in SOFiSTiK software and based
on cable equation, a good convergence within the linear-elastic range can be noticed – the
differences do not exceed 1%. Slightly larger differences (about 2%) were obtained for
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Table 2. Computed cable force 𝑆 [kN]: a) using SOFiSTiK software, b) based on the cable equation:
load – equation (3.4), unload – equation (3.6)

Range 𝑝 = 0 kN/m 𝑝 = 1 kN/m 𝑝 = 2 kN/m 𝑝 = 3 kN/m

Linear-elastic
Load a) 176.9 281.1 368.2 445.9

𝐸 = const
(𝑔 + 𝑝) b) 177.7 282.2 369.7 447.9

Unload a) – 177.8 177.8 177.8
U𝑔 b) – 178.0 178.0 178.0

Inelastic𝐸 ≠ const
Load a) 176.9 277.4 345.3 396.9

𝐸 ≠ const
(𝑔 + 𝑝) b) 177.7 280.2 354.2 405.5

Unload a) – 178.2 160.1 139.5
𝑔 b) – 176.1 163.5 141.9

𝐸 ≠ const. This can be explained by application of different cable computational models
and different iterative methods applied for solving the problem of geometrical and physical
cable nonlinearity in SOFiSTiK software and in calculations based on the approximate
cable equation. In both cases, however, a significant difference in behavior of the cable
with linear elastic and inelastic characteristics can be noticed. In a cable with inelastic
characteristic along with the increase in load, permanent deflections increase too, which
causes reduction of the force in the cable. After unloading, such cable does not return to the
original configuration, so cable guy sag is bigger than in the case of assumption 𝐸 = const.

Example 2.
Compute a slant cable force 𝑆 under given load 𝑔 + 𝑝 (Fig. 12). Cross section 𝐴 =

2.37 cm2, horizontal distance between supports 𝑙 = 60 m, unloaded cable length 𝑠0 = 𝑙𝑠 ,
permanent load 𝑔 = 1.0 kN/m, variable load 𝑝 = 1.0 ÷ 5.0 kN/m. The angle of cable

l=60 m 
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Fig. 12. A slant cable under 𝑔 and 𝑝 load
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chord inclination to horizontal á is 45◦, 50◦, 55◦ and 60◦. As in the previous example, the
computations were carried out in two variants – for 𝐸 = const and for 𝐸 ≠ const.
The computed values of cable force 𝑆 are presented in Table 3. Additionally, for𝛼 = 45◦,

computation results obtained from analytical method based on cable equation are given in
brackets.

Table 3. Computed cable force 𝑆 [kN]

𝛼 = 45◦

Range 𝑝 = 1
kN/m

𝑝 = 2
kN/m

𝑝 = 3
kN/m

𝑝 = 4
kN/m

𝑝 = 5
kN/m

Linear-elastic𝐸 = const
Load(𝑔 + 𝑝) 223.3

(223.9)
293.3
(293.5)

356.2
(355.5)

414.3
(412.5)

464.8
(465.8)

Unload𝑔 140.7
(141.2)

140.7
(141.2)

140.7
(141.2)

140.7
(141.2)

140.7
(141.2)

Inelastic 𝐸 ≠ const
Load (𝑔 + 𝑝) 222.7

(226.3)
285.5
(290.2)

332.9
(342.9)

370.6
(385.2)

414.9
(411.8)

Unload𝑔 153.5
(143.6)

136.2
(138.3)

122.5
(129.7)

110.4
(117.8)

104.3
(100.2)

𝛼 = 50◦

Range 𝑝 = 1
kN/m

𝑝 = 2
kN/m

𝑝 = 3
kN/m

𝑝 = 4
kN/m

𝑝 = 5
kN/m

Linear-elastic 𝐸 = const
Load (𝑔 + 𝑝) 210.3 276.6 333.4 388.1 439.6
Unload 𝑔 131.5 131.5 131.5 131.5 131.5

Inelastic 𝐸 ≠ const
Load (𝑔 + 𝑝) 211.6 273.6 318.0 364.5 400.1
Unload 𝑔 144.1 128.8 118.4 108.1 100.4

𝛼 = 55◦

Range 𝑝 = 1
kN/m

𝑝 = 2
kN/m

𝑝 = 3
kN/m

𝑝 = 4
kN/m

𝑝 = 5
kN/m

Linear-elastic 𝐸 = const
Load (𝑔 + 𝑝) 196.0 258.5 315.1 367.8 407.7
Unload 𝑔 123.1 123.1 123.1 123.1 123.1

Inelastic 𝐸 ≠ const
Load (𝑔 + 𝑝) 195.8 254.9 304.1 337.5 378.2
Unload 𝑔 135.1 121.7 112.8 101.8 95.6

𝛼 = 60◦

Range 𝑝 = 1
kN/m

𝑝 = 2
kN/m

𝑝 = 3
kN/m

𝑝 = 4
kN/m

𝑝 = 5
kN/m

Linear-elastic 𝐸 = const
Load (𝑔 + 𝑝) 180.5 238.7 284.9 332.9 378.4
Unload 𝑔 112.9 112.9 112.9 112.9 112.9

Inelastic 𝐸 ≠ const
Load (𝑔 + 𝑝) 180.3 236.5 278.5 316.5 354.9
Unload 𝑔 124.6 113.5 105.4 95.7 89.2
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Therefore, it can be noted that also in the case of slant cable computation (e.g. mast
guy) convergence of computation results from SOFiSTiK software and calculations based
on the approximate cable equation are satisfactory (< 1% difference for 𝐸 = const and
about 2% difference for 𝐸 ≠ const).

Example 3.
The subject of the analysis is a 140 m high mast with two guy levels at heights of

60 m and 120 m respectively (Fig. 13). The mast shaft was designed as S355 steel in form
of three-walled space truss with the axial spacing of legs equal to 1.8 m. Circular hollow
sections ∅ 168.3/14.2 mm were used as leg members, and as mast face lacing – circular
hollow sections∅ 76.1/4 mm. The mast guys were designed of spiral strand steel ropes PG
551× 37 structure, diameter ∅ 24.4 mm and minimum breaking force 𝑁min = 537 kN. The
assumed values of the initial guy forces at all levels amount to 40 kN. The mast location
was assumed in the second category area as per [25]. It has been assumed that value of
the base wind pressure is 𝑞𝑏 = 2.81 kN/m2. The mast structure has been qualified to the
second reliability class, in accordance with [1], for which the partial factors for permanent
loads are equal to 1.1 and for variable loads 1.4.

Fig. 13. Mast structure diagram

Own weight of structure and wind action for direction W1 were taken into account in
the analysis (Fig. 13).
Static computations of the mast structure were performed using SOFiSTiK software

in two variants – in the first one, it was assumed that the mast guys were initially pre-
stretched, so constant value of the elasticity modulus 𝐸 = const = 158 GPa was assumed;
in the second variant, it was assumed that the guys were made of brand new ropes, without
pre-stretching, for which, during the load, 𝜎 − 𝜀 characteristic for the rope was described
by equation (2.1) (𝐸 ≠ const), and during the unloading of the rope, the constant modulus
of elasticity 𝐸 = 158 GPa applied.
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The mast shaft was modeled in SOFiSTiK software using a 3D beam-column model,
with equivalent geometrical and strength characteristics (Fig. 14). The guys were modeled
as cable elements with division into 30 parts along the guy length.

Fig. 14. Mast diagram in SOFiSTiK software

The most visible differences in computations result for the structure for as per variant
I (𝐸 = const) and variant II (𝐸 ≠ const) pertain to maximum force values of the mast guys
on the winward side (direction of wind action on the guy 0◦) (Table 4) and the geometry
of the deformed structure (Figs. 15, 16).

Table 4. Maximum mast guy forces [kN]

Guylevel Direction of wind Linear-elastic range 𝐸 = const Inelastic range 𝐸 ≠ const
action on guy Load (𝑔 + 𝑝) Unload 𝑔 Load (𝑔 + 𝑝) Unload 𝑔

0◦ 489.4 37.9 496.6 24.5

I 120◦ 33.6 37.9 30.9 20.0

240◦ 33.6 37.9 30.9 20.0

0◦ 535.2 40.0 525.5 23.0

II 120◦ 74.5 40.0 68.9 23.0

240◦ 74.5 40.0 68.9 23.0
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Fig. 15. Maximum horizontal displacements of mast shaft nodes – computations within
the elastic range

Fig. 16. Maximum horizontal displacements of mast shaft nodes – computations within
the inelastic range

In variant I, the maximum values of guy forces of the windward side are higher, and
after unloading the mast structure returns to its initial state, while in variant II values of
the guy forces are smaller, horizontal deflection of the mast shaft is much greater, and after
unloading, due to permanent deformations in the guys, the mast shaft remains tilted.
The maximum value of the mast guy force in the second variant of computations was

525.5 kN, which corresponds to the stresses equal to 151.47 kN/cm2. Taking into account
the strains of the rope at the level of 1.23%, it is possible to check (e.g. Fig. 5) at which
point of the curve 𝜎 − 𝜀 the guy is. In the first variant of computations (𝐸 = const), the
maximum value of the mast guy force was 535.2 kN, so the stresses level in the rope is
greater and amounts to 154.24 kN/cm2.
In the analyzed example, inclusion in the computations of the physical non-linearity of

the guys slightly decreased the values of normal forces in themast shaft legs. Themaximum
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compressive force of 858.4 kN was recorded in the 2nd variant of computations, while in
the 1st variant it was 906.1 kN (5% difference).

6. Final conclusions

The objectives of this paper were to check the possibility of using analytical procedure
and SOFiSTiK commercial software for analysis of guyed masts, taking into account both
the geometric and physical non-linearity of the guys. For this purpose, an appropriate com-
putational model of the cable was defined, mechanical properties of which were determined
based on experimental tests of a specific wire rope. The defined computation models of
the cable within the linear-elastic and inelastic range were tested on simple examples, and
computation results obtained from SOFiSTiK software were confronted with the results
of the analytical method, based on the cable equation (technical theory of the cable). The
obtained results turned out to be satisfactory – the differences in the computed values
of cable force 𝑆 in both examples for 𝐸 = const did not exceed 1%. For 𝐸 ≠ const the
differences were slightly bigger (about 2%), which can be justified by different iterative
methods of the approximate solution.
Regardless of the cable chord angle of inclination to horizontal, the results of the

cables computation within the linearly elastic and inelastic ranges differ significantly.
In the first case, the cables are characterized by smaller deformations and greater cable
forces, and in the second – by greater deformations and smaller cable forces. In addition,
permanent deformations appear in the cables (the greater the load, the greater the values
of these deformations), which do not disappear after unloading. In the case of guyed mast
structures, this phenomenon may be so dangerous that it can cause significant reduction of
the structure stiffness and loss of its verticality and so adversely affect functional properties
of the mast. As design practice shows, the pre-stretching of new ropes of large lengths and
diameters is often difficult to carry out. It is, therefore, justified to carry out analyses of
masts structures taking into account also physical nonlinearity of the guys in the case when
the guys were made of ropes without pre-stretching.
Results of the computations presented in the paper refer to a specific type of steel rope

that has been tested in laboratory conditions and these are not supposed to be generalized.
Considering steel rope of a different structure, the non-linear effects may be different –
the more wires in the rope, the more non-linear characteristic of stress – strain. However,
the method of proceeding presented in the paper, in the case of using ropes without pre-
stretching, is universal.
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Analiza parametryczna odciągów masztu w zakresie
sprężystym i pozasprężystym

Słowa kluczowe: badania doświadczalne liny, globalna analiza statyczna, nieliniowość fizyczna,
nieliniowość geometryczna, odciągi masztu

Streszczenie:

Praca dotyczy obliczeń odciągów masztu z uwzględnieniem zarówno nieliniowości geometrycz-
nej, jak i fizycznej. Przeprowadzono badania doświadczalne pewnej liny spiralnej. Celem badań było
określenie zależności 𝜎−𝜀 liny (naprężenia – odkształcenia) oraz ustalenie modułu sprężystości liny
po jej wstępnym przeciągnięciu. Wyniki badań wykorzystano do utworzenia odpowiednich modeli
obliczeniowych cięgien w zakresie sprężystym i pozasprężystymw środowisku programu SOFiSTiK,
opartym o FEM. Modele obliczeniowe cięgna posłużyły do przeprowadzenia parametrycznej analizy
porównawczej cięgna płaskiego, cięgna ukośnego oraz kratowego masztu z odciągami. Rezultaty
obliczeń pojedynczych cięgien uzyskane w programie SOFiSTiK skonfrontowano z wynikami uzy-
skanymi metodą analityczną, na podstawie równania cięgna (techniczna teoria cięgna). Uzyskane
wyniki okazały się zadowalające – różnice w obliczonych wartościach sił naciągu cięgna 𝑆 w obu
przykładach dla 𝐸 = const nie przekraczały 1%. Dla 𝐸 ≠ const różnice były nieco większe (około
2%), co można uzasadnić różnymi iteracyjnymi metodami przybliżonego rozwiązania. Niezależnie
od kąta nachylenia cięciwy cięgna do poziomu, wyniki obliczeń cięgien w zakresie liniowo sprę-
żystym i pozasprężystym różnią się istotnie. W pierwszym przypadku cięgna charakteryzują się
mniejszymi odkształceniami i większymi sił ami naciągu, a w drugim – większymi odkształceniami
i mniejszymi siłami naciągu. Ponadto w linach pojawiają się trwałe odkształcenia (im większe ob-
ciążenie, tym większe wartości tych odkształceń), które nie znikają po odciążeniu. W przypadku
masztów z odciągami zjawisko to może być na tyle niebezpieczne, że może spowodować znaczne
zmniejszenie sztywności konstrukcji i utratę jej pionowości, a tym samym niekorzystnie wpłynąć
na właściwości użytkowe masztu. Jak pokazuje praktyka projektowa, wstępne rozciąganie nowych
lin o dużych długościach i średnicach jest często trudne do wykonania. Dlatego uzasadnione jest
przeprowadzenie analiz konstrukcji masztów z uwzględnieniem nieliniowości fizycznej odciągów
w przypadku, gdy odciągi wykonano z lin bez wstępnego przeciągnięcia.
Przedstawione w artykule wyniki obliczeń dotyczą określonego typu lin stalowych, które były

badane w warunkach laboratoryjnych i nie należy ich uogólniać. W przypadku lin stalowych o in-
nej konstrukcji efekty nieliniowe mogą być inne – im więcej drutów w linie, tym charakterystyka
naprężenia – odkształcenia jest bardziej nieliniowa. Uniwersalny charakter ma natomiast przedsta-
wiona w pracy metoda postępowania w przypadku wykorzystania do konstrukcji lin bez wstępnego
przeciągnięcia.
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