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Abstract
Effective recognition of tags in the dynamic measurement system would significantly improve the reading
performance of the tag group, but the blurred outline and appearance of tag images captured in motion
seriously limit the effectiveness of the existing tag group recognition. Thus, this paper proposes passive tag
group recognition in the dynamic environment based on motion blur estimation and improved YOLOv2.
Firstly, blur angles are estimated with a Gabor filter, and blur lengths are estimated through nonlinear
modelling of a Generalized Regression Neural Network (GRNN). Secondly, tag recognition based on
YOLOv2 improved by a Gaussian algorithm is proposed. The features of the tag group are analyzed by the
Gaussian algorithm, the region of interest of the dynamic tag is effectively framed, and the tag foreground
is extracted; Secondly, the data set of tag groups are trained by the end-to-end YOLOv2 algorithm for
secondary screening and recognition, and finally the specific locations of tags are framed to meet the effective
identification of tag groups in different scenes. A considerable number of experiments illustrate that the
fusion algorithm can significantly improve recognition accuracy. Combined with the reading distance, the
research presented in this paper can more accurately optimize the three-dimensional structure of the tag
group, improve the reading performance of the tag group, and avoid the interference and collision of tags
in the communication channel. Compared with the previous template matching algorithm, the tag group
recognition ability put forward in this paper is improved by at least 13.9%, and its reading performance is
improved by at least 6.2% as shown in many experiments.
Keywords: RFID, YOLOv2, neural network, GRNN.
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1. Introduction

With rapid development of the Internet of Things (IoT), the supply chain management has
promoted the development of non-contact technology. Radio Frequency Identification (RFID) is
one of the non-contact technologies widely used in access control, parking lots, patient tracking,
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toll gate payment systems, defense applications, production line automation, logistics tracking,
etc. [1,2]. To get rid of the limitations of inventory both management and industrial process, RFID
aims to improve the speed and accuracy of the system through data management and collection.

When locating objects with RFID, collisions between tags and antennas inevitably occur in
the channel, which seriously affects the tag positioning problem [3]. To calculate Received Signal
Strength (RSS), the power is calculated at the reader or the base station. RSS measurements
require at least three readers to analyze. In [4], tag positions are most likely to be estimated via
transmission level or RSS by stationary receivers, but RSS measurement is not reliable owing to
the change of the environment. The LANDMARC system finds the closest target tag by the RSS
value in [5]. Vire improves positioning accuracy by virtual marking [6]. In [7], high-precision
estimation of position is improved by reducing the number of target adjacent labels. In [8], RFID
tags are roughly located by rotating antennas, and more positioning information can be acquired
through the dynamic environment. Then, the distance of relative incident angle between the tag
and the antenna is acquired through Received Signal Strength Indication (RSSI). These methods
mainly focus on improving reader accuracy, RSS, and the positioning method. Yet, the location
of tags is inevitably affected by the interference of tag communication.

To avoid channel interference, some scholars have tried to combine RFID and computer vi-
sion to improve positioning accuracy. Computer vision eliminates interference between channels
by image processing and the neural network. In [9], the authors combine RFID with computer
vision effectively through Dempster-Shafer (DS) theory, according to the prior probability error
distribution. In addition, the feedback of high-confidence tracking results and RFID signal cor-
rects the wrong vision to overcome the drift problem of target aggregation and occlusion, thus
achieving monitoring of actual targets. In [10], the fusion algorithm of fine-grained positioning
and tracking of marked objects can find targets on the screen accurately. In [11], the multi-path
propagation model and the dual antenna solution are proposed to minimize the phase effect of
multi-path interference. Meanwhile, the Region of Interest (ROI) of RFID tag objects is extracted
by image processing. Then, the phase offset caused by multi-path interference eliminates the
ROI to minimize the uncertainty of the tag’s position caused periodically by the radio frequency
phase. So, the fusion of RFID and computer vision may reduce multi-path interference to a certain
extent. It is still hard work to improve the location information of RFID tags t computer vision.

In RFID tag identification based on computer vision, all the tags access the gate to simulate
the actual goods entering and leaving the warehouse. When all the tags enter and exit the gate
simultaneously, it is called a tag group. The tag groups are located through the RF system,
which will make the location information inaccurate due to the interference of the surrounding
environment. The images of tag groups with different geometric distributions are processed
and analyzed to find the location of tags through image processing, which allows to avoid the
collision and interference between tags in the channel [12–15]. The collision between tag groups is
eliminated geometrically, which is called physical anti-collision. In [12,16], the knife-edge and the
Wiener filter method are proposed, and then the three-dimensional position measurement of RFID
tags group are predicted by a Deep Brief Network (DBN) which overcomes the shortcomings of a
Back Propagation (BP) neural network, such as easily falling into local optimum and long training
time due to random initialization of weight parameters. In [13], multi-label image denoising
based on a fast and flexible deep convolution neural network is proposed, and multi-labels are
matched by template matching. Then, the relationship between the pixel and spatial coordinates
was built by photogrammetry to get 3D positions in the multi-label world coordinate system.
In [14], 3D coordinates and reading distance of multi-tags are optimized and analyzed by the
Mind Evolutionary Algorithm (MEA) to acquire optimal 3D distribution. The reading distance is
predicted by a Support Vector Machine (SVM), thereby obtaining optimal geometric distribution
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and improving the reading performance [17]. These methods eliminate channel and multi-path
interference by optimizing tag image through the neural network and image processing.

To accurately and quickly read the positioning information of the tag group, the RFID tag
group image is collected by a double Charge Coupled Device (CCD) camera. In this paper, the
information in the horizontal direction of the tag group is obtained by a vertically placed camera,
and the image information in the vertical direction of the tag group is collected by a horizontally
placed camera. This camera placement method is called the horizontal-vertical CCD camera.
There is motion blur in the acquired tag images owing to the relative motion between the CCD
cameras and tags. To improve the accuracy of 3D measurement, it is necessary to remove the
motion blur and restore the latent tag group images. The purpose of image restoration is to retrieve
degraded images with prior knowledge. First, a model of the blurry image is established, and then
latent sharp images are recovered from the degraded image.

In the restoration of the motion blur image there are two key problems to build a degradation
model more accurately and precisely capture the model parameters. The Point Spread Function
(PSF) is estimated by the characteristics of the tag group image in the parameter estimation,
and then the blurry image is restored by the fringes in the frequency domain. Some scholars
have studied the distribution rule of dark stripes in the spectrum of blurry images and proposed
corresponding parameter detection algorithms [18]. The spacing between the lines of the blurred
image spectrum is determined by the Hough transform [19]. The blur angle is calculated by the
Radon transform [20]. But any small error may cause a big change in the estimation of the blur
angle. The Hough transform cannot directly process grayscale images, and the trajectory of the
straight line is relatively blurry [21]. When line pixels of a straight are incomplete, the accuracy
is not high and the amount of calculations necessary is very large. The Radon transform has a fine
adaptability to the detection of blur angle, but the estimated value is not a sufficiently accurate
when the blur angle is 45. The estimated values of the Gabor filter in all directions are accurate
enough, and the operation efficiency is equivalent to that of the Radon transform [22].

In addition, the 3D distribution measurement of the tag group has been studied. In [15],
the 2D distribution of the multi-tag image is extracted by flood filling, and the 3D geometric
distribution of the multi-tag is obtained through theDirect Linear Transformation (DLT). In [12],
the distribution of tags was found through morphology and template matching. Yet, these methods
require a large amount of calculations and long running time. When the image rotates and the
size changes, it is difficult to meet the system requirements. As an end-to-end manner, the YOLO
series has been widely processed and applied in object recognition [23–25]. YOLO recognizes
objects by dividing the image into grid cells, rather than through the two-stage detector of the
region recommendation method. The detection speed of YOLO is much bigger than that of
conventional methods, but the positioning error is relatively large owing to the processing of grid
elements, and the detection accuracy needs to be improved. Compared with YOLO, YOLOv2
improves the detection accuracy by batch normalization of the convolution layer, anchor box, and
fine-grained features. However, when the size of the object relative to the image is very small or
the object is blocked, the detection accuracy needs to be improved. To overcome the shortcomings
of YOLOv2, YOLOv3 is composed of multiple convolution layers, and the accuracy is improved
through a depth network. YOLOv3 selects the residual jump link to solve the problem of gradient
disappearance and detects the feature images of different scales through the upsampling method,
so YOLOv3 can detect objects of different sizes in the image. To further improve the accuracy
and robustness of tag group recognition, this paper selects YOLOv2 improved by the Gaussian
algorithm to recognize tag groups. Thus, this paper proposes a tag group recognition method
based on motion blur estimation and YOLOv2 improved by the Gaussian algorithm. The main
contribution of research proposed in this paper is twofold, as follows:
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1. The prior knowledge formed when the original sharp tag group image is degraded, that is,
the PSF, is the key to restore the motion blur image. The blur length and blur angle of the
PSF are the keys to restoration, and as such directly affect the quality of image restoration.
Therefore, this paper estimates the blur angle through the Gabor filter and the blur length
by aGeneral Regression Neural Network (GRNN), which can improve the accuracy of PSF
parameter estimation. Finally, the tag group images are deblurred by the Wiener filter;

2. A tag group recognition algorithm combining Gauss and YOLOv2 is proposed. In the
fusion algorithm, firstly, the tag foreground is extracted by an improved mixture Gaussian
algorithm to eliminate the static interference and reduce the scope of tag recognition. Then,
the data is trained and the characteristics of the tag group are extracted by the object
recognition algorithm YOLOv2. Finally, the position and scope of the tags are predicted
and the tags are framed. Compared with YOLOv2, the improved YOLOv2 heightens the
real-time performance of prediction, reduces the false detection rate, which verifies the
effectiveness and feasibility.

The rest of this paper is arranged as follows. Section 2 describes system architecture. The
image deblurring principle and experiment are described in Section 3. Section 4 is the principle
and experiment of tags group recognition by improved YOLOv2. The conclusions are given in
Section 5.

2. System architecture

To optimize the reading performance of tag groups, this paper presents the simulation of
the transmission of goods based on an RFID semi-physical verification platform. RFID tags are
attached to the goods in transit. According to different power supply modes, there are three types
of RFID tags: active tags, passive tags, and semi-active tags [26]. Active tags can provide energy
for themselves without the assistance of the outside world. Passive tags get the energy needed by
the reader in the magnetic field, which is small and easy to carry. The battery power supply in
the semi-active tags only supports the circuit in the tag that requires power supply to maintain
data or the voltage required by the tag chip. The passive tag is selected in this paper. When the
tag enters the range of the reader, the tag extracts the required power from the RF signal emitted
by the reader. Tag information is transmitted to the readers by reflection modulation, in which it
would inevitably interfere with the surrounding electromagnetic information and other tags and
readers, and then affect the transmission of tag information.

The structure diagram of RFID tag group recognition measurement system is shown in Fig. 1. It
is mainly composed of the guide rail, readers, antennas, RFID tags, vertical and horizontal CCD
cameras group, etc. The image acquisition devices are fixed horizontal-vertical CCD cameras
group. The guide rail simulates the movement of logistics transportation, on which a turntable
is mounted. Brackets are placed on the turntable, and RFID tags are clamped on the bracket.
The horizontal CCD is placed perpendicularly to the direction of the conveyor belt, and its main
axis is parallel to the ground, which allows it to acquire tag group image from left to right to
obtain the side view of the tags. The vertical CCD is vertically downward relative to the conveyor
belt, and its main axis is perpendicular to the ground, which mainly collects the top image of the
tag group from top to bottom. The light of the two cameras is relatively vertical. The computer
communicates with the horizontal and vertical CCD camera groups through a data transmission
interface. The image becomes blur due to relative motion between the tag and the camera. Firstly,
the obtained image is deblurred by motion blur estimation, and then the position of the tags is
recognized in the restored sharp image. Through image processing and analysis, the coordinates
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of the tags in the 𝑧 direction can be obtained from the image collected by the horizontal CCD,
and the coordinates of the tags in 𝑥 and 𝑦 directions can be calculated from the image collected
by the vertical CCD.

Fig. 1. Structure diagram of the RFID tag group recognition measurement system.

3. Motion blur of RFID tag group

3.1. Motion blur parameters

When acquiring tag group image, the image may be degraded due to relative motion between
tags and the camera, which is motion blur. The motion degradation is simulated by a 2D linear
translation invariance. The blurry image is represented by 𝑔(𝑥, 𝑦), and the original image is
𝑓 (𝑥, 𝑦). 𝑔(𝑥, 𝑦) is the convolution of the original image 𝑓 (𝑥, 𝑦) and the PSF. So, image deblurring
is a deconvolution operation. The degradation model is shown in Fig. 2, and the mathematical
equation is shown as follows:

𝑔(𝑥, 𝑦) = 𝑓 (𝑥, 𝑦) ∗ ℎ(𝑥, 𝑦) + 𝜂(𝑥, 𝑦), (1)

∗ represents 2D linear convolution, 𝜂(𝑥, 𝑦) is additive noise, and ℎ(𝑥, 𝑦) is the PSF. The model
expression in the frequency domain is as follows:

𝐺 (𝑢, 𝑣) = 𝐹 (𝑢, 𝑣)𝐻 (𝑢, 𝑣) + 𝑁 (𝑢, 𝑣). (2)

Fig. 2. The degradation model of blurry image.

Among them,𝐺 (𝑢, 𝑣), 𝐹 (𝑢, 𝑣),𝐻 (𝑢, 𝑣) and 𝑁 (𝑢, 𝑣) are the Fourier transform of blurry image,
original image, PSF and noise, respectively. Ignoring 𝑛(𝑥, 𝑦) in (1), when 𝑔(𝑥, 𝑦) is known, 𝑓 (𝑥, 𝑦)
is solved, which transforms the problem into solving the PSF ℎ(𝑥, 𝑦). The motion blur restoration
is the inverse operation of the degraded model, in which the accuracy of the PSF is crucial to the
restoration effect. The PSF is uncertain, and that can only be estimated by extracting degraded
information from the blurred image.
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For 2D linear translation-invariant system, the mathematical description of the PSF blur for
the uniform linear motion is as follows:

ℎ(𝑥, 𝑦) =
{

1/𝐿
√︁
𝑥2 + 𝑦2 ≤ 𝐿/2, 𝑦/𝑥/= /tan 𝜃

0 in other cases
. (3)

The PSF has two parameters, motion blur length 𝐿 and blur angle 𝜃, which are then transformed
into the solution process of two parameters. According to (3), the frequency response of the PSF is
sin 𝑐 function. The blur image of the tag group and its spectrum diagram are shown in Fig. 3. The
performance of blurry image restoration depends on the accuracy of PSF parameter estimation.
Therefore, it is necessary to accurately estimate blur length and angle from the motion blur
function. To filter blur images, the blur angle can be estimated with the Gabor filter based on its
response in the frequency domain. The blur length can train the neural network to evaluate. Once
the blur angle and length are acquired, the PSF is constructed, and finally, the deblurred image is
restored by the Wiener filter.

(a) (b)

Fig. 3. Tag motion blur image, (a) origin image, (b) corresponding spectrum.

As can be seen from Fig. 3, the direction of parallel black lines and the direction of motion
blur angle are perpendicular to each other. The angle of parallel lines is calculated by all line
detection algorithms, that is, the angle of the motion blur. In this paper, the blurred image is
filtered with the Gabor filter in the frequency domain, and the blur angle is estimated according
to its response.

3.2. Motion blur parameter estimation

3.2.1. Blur angle

In this paper, the frequency response of blur images is adopted. The relationship between the
blur angle and the display direction is as follows:

𝛼 = 𝜙 + 90. (4)

Many line detection algorithms can detect the line direction in the blur image spectrum,
such as the Hough transform or the Radon transform. The Hough transform needs a threshold
to determine the points on the line. The threshold corresponding to different images is different.
Any small error in threshold estimation may lead to a large deviation in blur angle estimation. To
solve the problem of threshold estimation, the angle of motion blur is determined by the Gabor
filter.
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The Gabor transform is a windowed Fourier transform, which can extract relevant features in
different scales and directions in the frequency domain. It is commonly used in image segmenta-
tion, texture recognition, and angle extraction, etc. The Gabor filter is a Gaussian filter modulated
by a sine wave. The equation of a typical 2D Gabor filter is as follows [22]:

𝐺 (𝑥, 𝑦) = 1
2𝜋𝜎𝑥𝜎𝑦

exp

[
−1

2

(
𝑥2

𝜎2
𝑥

+ 𝑦2

𝜎2
𝑦

)]
exp [− 𝑗𝜔 (𝑥 cos 𝜑 + 𝑦 sin 𝜑)] , (5)

where the first is the tuning function, and the second is the window function. 𝜔 is the modulation
signal frequency, 𝜃 is the modulation signal angle, 𝜎𝑥 , 𝜎𝑦 are the standard deviations in the 𝑥 and
𝑦 directions, respectively. The response of the filter varies with the orientation parameter, so the
blur angle can be calculated by the directional parameter of the 2D Gabor filter. The 2D Gabor
filter is convoluted with the spectrum of the blurred image, and then the response in different
directions is received by changing other parameters. The line orientation in the spectrum of the
blurred image can directly affect the judgment of blur angle. The Gabor filter determines the blur
angle, extracts the features of the blur image and determines the direction of the motion blur,
which can effectively reduce the impact of this problem. Assuming that 𝐼 = lg(𝐺 (𝑢, 𝑣)) is a grey
image in the frequency domain, the response of the Gabor filter depends on the frequency and
direction of the input image. When the Gabor filter detects the motion direction in the spectrum
of the blur image, the blurred image is Fourier-transformed to get 𝐼. Secondly, the Gabor filter can
only change the filter direction and keep other parameters unchanged. Gabor filters in different
directions are convoluted with 𝐼 to obtain the response of each angle 𝑅(𝜑) = 𝐺 (𝑥, 𝑦) ∗ 𝐼. The
angle corresponding to the maximum value is taken as the angle of the point, that is, the response
at a specific frequency and direction. For each angle, the direction corresponding to the maximum
value of the convolution is the angle of the point. The direction corresponding to its maximum
value is calculated by the 𝐿2 norm. So, for each 𝜑, the 𝐿2 norm generated by the convolution is
calculated. The maximum value of 𝐿2 norm corresponds to the blur angle 𝜃 𝜃 .

3.2.2. Blur length

Another parameter of the motion blur is the blur length which describes the distance the
tag covers in the image pixels during the exposure time. To predict the blur length of a specific
blurred image, the sum of amplitudes of the Fourier series corresponding to the blurred image
is as input. The Fourier feature is one of the simplest features in the frequency domain. The
nonlinear relationship between the sum of amplitudes of the Fourier series and the blur length
can be modelled by a Generalized Regression Neural Network (GRNN).

The GRNN is a radial basis function neural network which has strong nonlinear mapping
ability and robustness, and has great advantages in approximation ability and learning speed [27,
28]. The GRNN structure, which better solves nonlinear problems, is shown in Fig. 4. The GRNN
is composed of four layers, and they are input, output, mode, and sum layer.

In training, 50 tag group images of each scene are selected as the data set, of which 40 images
are as the training data sets and 10 as the testing data. There are 6 scenes in total, there are 240
training image data sets and 60 test image data sets. The range of the blur length is from 2 to
45 and the step size is 1. The SUMFC of each image was calculated with a total of 352 training
samples, of which 70 are as test data. The error of the final control result is less than 0.01. Then,
the blur length is estimated by the trained GRNN.

Tag group image information is collected by the CCD camera. In this paper, a series of images
are blurred in different scales and directions. The blur angle is taken as 0 < 𝜙 < 90, and the
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Fig. 4. GRNN structure.

direction of the blur is 0 < 𝐿 < 45. Blur angles are estimated with different Gabor templates
to make them closer to actual blur angles. In the Gabor filter, the aspect ratio parameter is 0.5,
the wavelength is 20 pt, the direction is 0◦, the phase offset is 0◦, and the bandwidth is 1. Then,
Fourier coefficients of the horizontal blurred image in the frequency domain are used as the input
to train the neural network and estimate the blur length. Fig. 5 shows the convergence curve of
the generalized regression neural network.

Fig. 5. Convergence curve of the GRNN.

3.3. Image motion deblurring results and analysis

To verify the effectiveness of the proposed method, the motion blur images of the tag group
with different angles and lengths are analysed in this paper. The Wiener filtering follows the
Minimum Mean Square Error (MMSE) criterion, which is as follows [29]:

𝑒2 = 𝐸

{(
𝑓 − 𝑓

)}2
. (6)
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The core idea is to minimize the mean square error between the original image and the restored
image. According to this principle, the Wiener filtering equation can be deduced as follows [30]:

𝐹 (𝑢, 𝑣) = 1
𝐻 (𝑢, 𝑣) ∗

|𝐻 (𝑢, 𝑣) |2

|𝐻 (𝑢, 𝑣) |2 + 𝑠 𝑃𝑛 (𝑢, 𝑣)
𝑃 𝑓 (𝑢, 𝑣)

𝐺 (𝑢, 𝑣), (7)

where |𝐻 (𝑢, 𝑣) |2 = 𝐻∗ (𝑢, 𝑣)𝐻 (𝑢, 𝑣), 𝐻 (𝑢, 𝑣) is the frequency domain form of the PSF,𝐺 (𝑢, 𝑣) is
the frequency-domain form of the blur image, 𝑃𝑛 (𝑢, 𝑣) is the noise power spectrum, and 𝑃 𝑓 (𝑢, 𝑣)
is the original image power spectrum. Let 𝐾 = 𝑠𝑃𝑛 (𝑢, 𝑣)/𝑃 𝑓 (𝑢, 𝑣). The experimental results
show that when 𝐾 takes the empirical value of 0.0039, the restoration effect of the obtained image
is the best.

Fig. 6 shows the static tag group image captured by the horizontal camera. By simulating the
actual situation, the tag group image has different blur lengths and angles in motion. Images with
different blur lengths and angles are selected as the input to the proposed estimation scheme. The
Gabor filter calculates the blur angle of each image, and the GRNN calculates the blur length
of each image. Table 1 shows blur angle estimation of the restored image, which shows that the
estimation of each angle with the Gabor filter is very efficient. Blur length estimation of the
restored image is shown in Table 2(a-d) which represents blurry images at different times.

Fig. 6. The static tag group image.

Table 1. Blur angle estimation of the restored image.

Image Angle 𝜽 Radon Ours
(a) 15 14 14

(b) 30 29 29

(c) 40 37 39

(d) 45 41 47

(e) 60 63 61

(f) 75 78 74

(g) 90 93 88
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Table 2. Blur length estimation of the restored image.

Image Length L Radon Ours
(a) 10 11 10
(b) 15 19 14
(c) 30 32 29
(d) 45 41 44

In Table 1, it can be found that the Radon transform has an ideal accuracy for blur angle
estimation, but the estimation error of image blur angle at 45◦ is relatively large. At the same
time, the Gabor filter has good angle estimation at all angles. In Table 2, one can see that the
estimation of the blur length by the GRNN has obvious advantages over the traditional method,
in which the error between estimated and actual blur length is smaller. The PSF is constructed
by the estimated blur parameters (𝜃𝐿), and the degradation model is established. In this paper,
the blurred image is restored with the Wiener filter, andMean Square Error (MSE) is used as the
evaluation index to evaluate the results of image restoration as shown in Table 3. MSE between
the restored image and the original image is small, which indicates that the method in this paper
can effectively remove the motion blur from the image.

Table 3. MSE of the restored image.

Image Length L Angle 𝜽 Radon Ours
(a) 10 15 3.68E-01 1.22E-02
(b) 15 30 7.69 3.26E-02
(c) 30 40 5.98E-01 2.29E-02
(d) 30 45 5.36E-01 2.32E-02

Fig. 7 is a comparison of the motion deblurring results of our research with other methods.
In this paper tag group image restoration is proposed based on motion blur parameter estimation,

Fig. 7. Comparison of the motion deblurring results achieved in our study with other methods, a) blurred image,
b) restoration results of our method, c) restoration results of constrained least square method, d) restoration results of

Lagrange operator method.
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which obtains the PSF based on the prior estimation of the motion-blurred image, and the
degradation model is established to restore the image. Aiming at bypassing the shortcomings of
the Hough and Radon transforms, the Gabor filter is more suitable for blur angle estimation. In
addition, the blur length is estimated by the GRNN for that the nonlinear relationship between blur
length and spectral characteristics. After getting blur parameters, the blurred image is restored
with Wiener filter. Compared to the traditional method, it shows that the proposed method is
feasible and effective in removing motion blur in tag group images.

4. Tag group recognition

4.1. Algorithm principle

Tag group recognition mainly includes two parts. One is that the tags region is roughly filtered
by the Gaussian filter. Firstly, all training data set is matched by the Gaussian mixture to obtain
the corresponding static background and dynamic foreground. Then, the dynamic foreground is
extracted to get the rough filtered tags foreground by the Gaussian filter. The other is that tag
features are extracted and screened twice by YOLOv2. The collected tag data set is pre-processed,
which creates input for training and adjusting the parameters in the model repeatedly. The weights
representing the tag features are generated and named in the tag foreground obtained by rough
screening. Finally, the tag area is filtered again, and the specific location and range of tags are
framed.

The overall flow chart of the tag group recognition algorithm YOLOv2 improved by the
Gaussian filter is shown in Fig. 8.

Fig. 8. Flow chart of tags group recognition algorithm YOLOv2 improved with the Gaussian filter.

4.1.1. Tags foreground extraction based on the Gaussian mixture algorithm

The adaptive Gaussian mixture model [32] is proposed by Stauffer et al which weights and
models K Gaussian functions to represent the characteristics of each pixel in the image. After
a new image is obtained, the Gaussian mixture model is updated, and each pixel in the current
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image is matched with the Gaussian mixture model to separate the foreground and background.
The foreground extraction method of the Gaussian mixture has a high self-adaption ability to
the background, which can better describe the complex background environment. In addition,
the background elimination effect of the Gaussian mixture also depends on the surrounding
environment of the image and, to a certain extent, the morphological characteristics of the
objects. In the actual complex environment, the relative size of the tag is small in the image, and it
is easy to be affected by the surrounding environment, running speed, and direction. The average
gradient of each pixel will also change accordingly, making the overall contour more complex
and blur.

Therefore, based on the Gaussian mixture algorithm and the inherent characteristics of dif-
ferent tags, this paper improves the Gaussian mixture to adapt to the extraction of tags group
foreground. The specific improvement steps are as follows:

1. The Gaussian takes the matched pixels in each image as the black foreground and the
unmatched pixels as the white background. Each image is converted into a binary image.

2. For each binary image after matching, the coordinate system is established with the upper
left corner of the image as the origin point and all pixels are traversed. The minimum and
maximum values of 𝑥, 𝑦 axis coordinates (𝑥min, 𝑦min), (𝑥max, 𝑦max) are found from all the
black pixels, and the region of interest corresponding tags foreground is framed.

3. The region of interest (ROI) of the tags foreground is can be expressed as [𝑥max + 𝜇 : 𝑥min −
𝜇𝑦max + 𝛽 : 𝑦min − 𝛽], which is represented by the red rectangle in Fig. 9. When 𝜇 = 0
and 𝛽 = 0, ROI in the tags foreground is the rectangular part of the middle solid line in
Fig. 9. 𝜇 and 𝛽 are adjusted by different image scenes to receive better tags area extraction
effect. There are no black pixels in the matched binary image, which means that the moving
foreground is not extracted, then the next image is recognized and updated.

Fig. 9. Region of interest in tags foreground.

4. The coordinate information of the region of interest defined is fed back to the corresponding
original image, and the tags region is extracted to complete the first coarse screening.
Through the experiments of tags in different scenes, YOLOv2 improved with the Gaussian
can effectively complete tag foreground extraction.

4.1.2. Tag group recognition by YOLOv2

YOLOv2 is an end-to-end object recognition algorithm which integrates region prediction
and category prediction into a single neural network model [25]. It can quickly identify targets
with high accuracy, which is more suitable for practical environment application. YOLOv2 has
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made great improvement when compared to YOLO, i.e., it adds batch normalization after each
convolution layer to normalize input data of each layer [25]. It can balance the data distribution,
improve the convergence speed of the model, and reduce the overfitting phenomenon.

The YOLOv2 selects the Google net as the network structure. The specific network structure
is shown in Figure 10. The whole YOLOv2 model has 32 layers of neural network structure and
the input image resolution reaches 416 × 416. The feature map of 13 × 13 × 1024 is output by
extracting 20 convolution layers and 5 pooling layers. Here, the convolutional kernel is 3 × 3 in
size and the number of channels is doubled after each pooling operation. To improve the model
performance, high-and-low resolution feature maps are linked by the fusion of YOLOv2 and the
Gaussian. Firstly, the feature map of 16th layer 26 × 26 × 512 is reconstructed into a feature map
of 13×13×256. Then, it is connected with the original deep feature map to form a feature map of
13× 13× 1280. Also, different fine-grained features are used to improve the model performance,
which is more conducive to the small-scale detection of tags. Then, the features are extracted by
convolution and, finally, 13 × 13 × 13 is the output. Tag information is classified and output on
each cell of the feature map, and its specific position coordinates are predicted.

Fig. 10. YOLOv2 network structure.

To restrict the range of location prediction, YOLOv2 improves the anchor boxes to make it
easier for the model to learn the location. Finally, the location information of the target is predicted
for each cell of the network feature map. The specific coordinate calculation formula is shown as
follows:

𝑃𝑟 (object) ∗ 𝐼𝑂𝑈 (𝑏, object) = 𝜎(𝑡𝑜)
𝑏𝑥 = 𝜎(𝑡𝑥) + 𝑐𝑥
𝑏𝑦 = 𝜎(𝑡𝑦) + 𝑐𝑦
𝑏𝑤 = 𝑝𝑤𝑒

𝑡
𝑤

𝑏ℎ = 𝑝ℎ𝑒
𝑡
ℎ

. (8)

When the detected image is input, it is divided into 𝑆 × 𝑆 grids. If the center of the detected
object is located in a grid, the grid is responsible for recognizing the object. A grid is responsible for
predicting the border position of B objects which contains five normalized prediction parameters.
Each bounding box predicts five values, namely 𝑡𝑥 , 𝑡𝑦 𝑡𝑤 , 𝑡ℎ , 𝑡𝑜, respectively. The first four
parameters are coordinates and 𝑡𝑜 is confidence. The distance between the cell edge and the upper
left corner of the image is 𝑐𝑥 , 𝑐𝑦 . The length and width of the box dimension corresponding to
the cell are 𝑝𝑤 , 𝑝ℎ , respectively. 𝑃𝑟 (object) is the position of the anchor, and 𝐼𝑂𝑈 (bobject) is
the position of the predicted object. Its purpose is to predict the location of the box by the anchor,
so that the predicted box is closer to the actual object. The bounding box coordinate diagram is
shown in Fig. 11. When the confidence level exceeds 25% of the threshold, the target recognition
is completed by framing the candidate frame and estimating the probability of the target based
on the output coordinates of the bounding boxes.
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Fig. 11. Bounding box coordinate diagram.

In the RFID tag group recognition measurement system, 200 tag images of different sizes are
selected in each scene as a tag group data set. Thus, in our study we have1200 tag images as the
data set of the tag group in six scenes, in which 150 images are selected for each scene as the
training set and the other 50 images as the test data set. The specific steps are as follows:

1. Data set pre-processing – The tag samples in the data set are filtered and denoised. Then
the data set is expanded, including random clipping, rotation, changing brightness and
saturation, etc. Tag coordinate information of each image is labelled manually. Finally,
the tag image and coordinate information are used as the model input to complete the
pre-processing of the data set.

2. Tag group sample training – A deep learning framework called Darknet is adopted in
YOLOv2. After many times of training and adjusting parameters, the initial learning rate is
set to 0.001, the size of the batch is 8, and the maximum number of iterations is 19000. The
tag features are extracted and the corresponding weights are generated, which visualizes
the YOLOv2 training process. When the value of the average loss function is smaller, the
actual output is closer to the expected output, and the training effect is relatively better.
The distribution of the average loss function is shown as Fig. 12. With the increase in
the iteration, the loss function of the ordinate gradually decreases and is finally controlled
within the effective range to complete the tag feature extraction and training.

Fig. 12. Distribution of the average loss function.
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In the training of different tag group data sets, YOLOv2 makes tags recognition generalization
through a lot of learning and parameter optimization. It can not only verify and identify the
collected data sets, but is also suitable for recognizing other untrained tag group scenes. Finally,
the weight with tags feature is generated, which is screened twice in YOLOv2 improved with the
Gaussian.

4.2. Analysis of experimental results

To verify the tag group recognition algorithm, this paper selects 100 images to test. The
computer configuration used in the experiment is an I5-8500H, GTX1050Ti, and the running
memory is 16GB. The initial learning rate is 0.001, the maximum number of iterations is 19000,
the weight attenuation value is 0.005, and the batch size is set to 8. Intersection over Union (IoU)
is set to 0.7. IoU represents the intersection and union ratio of the object box and the prediction
box. It can not only determine positive and negative samples, but also reflects the prediction frame
and detection effect. If the prediction box is close to the real box, the IoU value is larger, on the
contrary, the IoU value is smaller. The calculation formula of the IoU is as follows:

𝐼𝑜𝑈 =
𝐴 ∩ 𝐵
𝐴 ∪ 𝐵 , (9)

where 𝐴 and 𝐵 represent object data and forecast data, respectively. The IoU measures the distance
and coincidence degree of the two boxes. In this paper, the rectangle box is used to recognize
the specific location and range of tag area, which verifies the recognition effect of the algorithm.
Fig. 13 shows the recognition effect of different algorithms on tag group images in different
scenes. The first line are the tag images of different scenes. From left to right, there is one tag,
two tags, three tags, five tags image, and overlapping tag group image. The second line is the
effect of tag detection by YOLOv2, and the third line is the tag foreground effect image extracted
by YOLOv2 improved with the Gaussian. The proposed method and YOLOv2 can effectively
detect the tag position when tags are not occluded in the fifth column of Fig. 13. At the same
time the confidence level of the region of interest is relatively higher than with YOLOv2. On
the other hand, when the tags are occluded, YOLOv2 may misjudge the number of tags, and the
YOLOv2 improved with the Gaussian can find the location of occluded tags more clearly, which
can effectively complete tag coarse screening. Although the tag foreground may be mixed with

Fig. 13. Recognition effect of different algorithms with tag group images.
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other moving objects and the background, it can effectively reduce the detection range of the tag
as well as error detection rate of the suspicious tag area, especially in a static region.

Besides, the recognition effect of a tag group is mainly evaluated by two factors. One is
accurate recognition of the tag; the other is the accurate exclusion of images without tags. In this
paper, the recognition results of different algorithms are analyzed, and two evaluation criteria
Recall and Missing Rate (𝑀𝑅) are selected, which are expressed as follows:

Recall =
TP
AF

M.R. =
FP

FP + TN

, (10)

where TF represents the number of tags in the images identified correctly, AF is the total number
of images, TN is the number of undetected tags in tag images, and FP represents the number of tag
images mistakenly identified. Recall, M.R. and detection rate are used as comparison standards
to verify the effectiveness of tag recognition. Recognition rate is the probability that all tags are
recognized in the image. The experimental data are shown in Table 4. Here, tag-n represents the
image scene with 𝑛 tags randomly placed on the tray but not overlapped in the system, and its
value is the average result of 50 images. Tag-com are tag group images with 5–8 tags placed
on the tray and distributed in cross overlap, in which 100 images are selected for each different
number of tag groups for different overlapping random arrangements. The value of tag-com is the
statistical average of the 400 overlapping tag group images.

Table 4. Recall and M.R. of tags recognition on different data sets by different algorithms.

Algorithm Evaluation index Tag-1 Tag-2 Tag-3 Tag-4 Tag-5 Tag-Com
Recall (%) 94.7 89.9 85.2 79.1 77.4 71.8

YOLOv2 M.R. (%) 5.2 1.3 1.9 2.3 2.7 3.6
Recognition rate (%) 95.3 93.6 87.7 84.4 81.1 79.8

Recall (%) 97.6 91.3 86.2 83.5 77.3 76.5
YOLOv3 M.R. (%) 1.5 1.6 1.1 0.9 0.7 0.8

Recognition rate (%) 98.3 96.5 93.2 93.1 86.9 85.9

Recall (%) 98.1 92.0 86.1 81.6 76.5 74.8
Ours M.R. (%) 0.8 0.3 1.1 0.5 0.7 1.7

Recognition rate (%) 97.6 95.4 93.1 93.5 88.3 87.3

To intuitively compare the advantages of this method, Table 4 compares YOLOv2 improved
with the Gaussian with YOLOv2 and YOLOv3. Due to different environments and complexity
in image acquisition, the recognition effects of the three methods are slightly different. With
the rotation of tags on the rotating tray, the tags may overlap and block. At the same time, the
tags’ position is different, which may make the tags’ sizes different in the image. The smaller the
tags, the lower the recognition. It can be seen from Table 4 that the recognition rate of YOLOv2
improved with the Gaussian and YOLOv3 is significantly better than YOLOv2. There is little
difference between the overall recognition effect of YOLOv2 improved with the Gaussian and
YOLOv3. But in the complex tag group environment, our method can achieve a better recognition
effect, and the recognition rate is 1.6% higher than that of YOLOv3. Thus, our method has higher
robustness. In addition, the running times taken by YOLOv2, YOLOv3, and YOLOv2 improved
with the Gaussian are 0.195 s, 0.101 s, and 0.113 s respectively. There is little difference in
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time between YOLOv3 and Gaussian-improved YOLOv2, but YOLOv3 is a little faster. Because
YOLOv2 improved with the Gaussian is more robust, our method is more in line with industrial
production and practical applications in the actual complex tag group environment.

4.3. System assessment

4.3.1. Image system assessment

Compared with the previous methods [16,31], the deep learning recognition system based on
motion blur estimation and improved YOLOv2 has obvious merits. The blur and noise of polluted
images are unknown and cannot be completely repaired. Since the tags are moving, it is necessary
to estimate the motion blur of the tag group images and remove the sharp images. In this paper,
we assume that the image known a priori and noise are fixed during filtering. Motion deblurring
is beneficial to the recognition of subsequent tag groups. In tag group recognition, the improved
YOLOv2 also shows an astonishing effect. Table 5 shows the evaluation results of tag recognition
described in [16] and with the proposed method. Time refers to the average time of running 100
tag image detection. Accuracy is the number of tags images that can be correctly detected in 100
images.

Table 5. Evaluation results of tag recognition compared template matching [16] with ours.

Measure Time (s) Accuracy
[16] 1.416 78.6%

Ours 0.213 92.5%

We can observe the following advantages of the improved YOLOv2:
1. Template matching has its own limitations because it can only move in parallel. It is very

difficult to detect the matching object that rotates or changes size in the original image.
Meanwhile, boundary offsets are predicted by YOLOv2, instead of directly predicting the
boundary size. When the size and rotation angle of the object change in the image, tags are
recognized effectively. And this method makes image details match and recognize more
clearly.

2. Template matching is able to find the object consistently with the template from an image,
and the correlation coefficient of the template is obtained for each pixel. Whereas YOLOv2
receives rich information to judge the target location, size, and category. So, the accuracy
of the improved YOLOv2 is 13.9% higher than that of template matching from Table 5.

3. In terms of time, the average time of template matching is 1.416s, and the computation is
large and slow. Whereas, the improved YOLOv2 selects lightweight convolution, instead
of standard convolution with many parameters, which improves the speed, and the time is
only 0.113 s.

As a whole, the motion blur estimation and the improved YOLOv2 are embedded into the RFID
tag group recognition measurement system, which can not only restore high-quality multi-task
images, quickly identify all tags, but also lays a solid foundation for the performance optimization
of the RFID system.

4.3.2. RFID tag group performance optimization

The purpose of RFID tag group identification is to more accurately optimize the 3D structure
of the tag group and avoid communication interference between tags. Tag groups are recognized
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by fusing the motion blur estimation and YOLOv2 improved with the Gaussian. Then, the
coordinate values of 𝑥 and 𝑦 are calculated in the image acquired by the vertical camera, and the
coordinate values of 𝑧 are calculated in the image obtained by the horizontal camera, to find the
three-dimensional coordinates of the tag group in the image. The dual CCD camera can not only
restore the high-quality tag image, but also finds 3D information without massive calculations.
According to [13], the relationship between the tag group in the image coordinate system and
the world coordinate system is established, and then the actual position of the tag group in the
world space is calculated. The system optimizes the 3D structure of the tag group more accurately
through reading performance to find the optimal 3D distribution and avoid the interference of
tag communication conflict. To more intuitively observe the improvement of the performance of
the designed system, different methods are used to read the different numbers of tag groups with
different 3D distributions. When the number of tags is different, the maximum reading distance
corresponding to the tag group is compared as shown in Fig. 14.

Fig. 14. Maximum reading distance to the tag group.

1–5 tags are selected in this paper to test the reading performance. The reading performance
of the tag group is evaluated by the reading distance. When the tag group enters the gate in the
system and all tags are read by the reader, it will trigger the laser rangefinder to read the distance
from the antenna to the tag group, which is called the reading distance of the tag group. When the
number of tags is the same, the previous template matching, YOLOv2 improved with Gaussian,
and our method are embedded into the RFID tag group performance measurement system.
The 3D distribution structure of the tag group is then changed to find the maximum reading
distance. Each method runs 100 times in the system, and the average results are calculated. The
ambient temperature of the semi-physical experiment simulation system is 26–28 ◦ and the relative
humidity is 40–60%. It can be seen from Fig. 14. that the YOLO series is better than the template
matching as it comes to the reading distance. Thus, it is proved that the end-to-end recognition
effect is better. In addition, in the process of RFID system performance measurement, the tag
movement makes the acquired tag group image blur. Compared with the only YOLOv2 improved
with the Gaussian, the reading performance of our method better by at least 2.1%. Compared
with the previous template matching, the reading performance is improved by at least 6.2%.

By changing the 3D structure of the tag group, the reading distance is improved. It proves that
the method proposed in this paper reduces the interference between tags in the reading process,
avoids the communication collision in the communication channel process, and improves the
anti-collision ability of the RFID system. In future work, the optimized RFID system can be
widely used in warehousing and logistics with the aim of restoring the false detection rate and
improving the identification efficiency.
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5. Conclusions

For more accurate identification of dynamic tag groups, this paper presents the of design a tag
group dynamic recognition measurement system based on motion blur estimation and YOLOv2
improved by the Gaussian. Firstly, blur angle is estimated with the Gabor filter, and blur length
is estimated by the GRNN. Secondly, the tag group region is roughly filtered by the Gaussian,
tags are recognized by YOLOv2, and the tag location is screened twice. Finally, the specific
location and range of tags are found. In this paper, the effective fusion of the two methods can
not only restore the information of the tag group image, but also identifies the location of the
tag more accurately. It helps to optimize the three-dimensional distribution of RFID tag groups,
improve their corresponding reading performance and avoid the collision of tags in the process of
communication. In the future, we will focus on the analysis of the factors influencing tag group
recognition. For example, complex environments, different kinds of tag recognition, and abundant
tags are read simultaneously. So, we will be committed to improving the detection of tag groups
faster and more accurately with YOLOv4. In addition, we will collect data in the actual logistics
environment and compare it with the experimental data to test the practicability and reliability of
the semi-physical experimental system.
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