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Abstract Artificial neural networks are gaining popularity thank to
their fast and accurate response paired with low computing power require-
ments. They have been proven as a method for compressor performance pre-
diction with satisfactory results. In this paper a new approach of artificial
neural networks modelling is evaluated. The auxiliary parameter of ‘rela-
tive stability margin Z’ was introduced and used in learning process. This
approach connects two methods of compressor modelling such as neural-
networks and auxiliary parameter utilization. Two models were created,
one with utilization of the ‘relative stability margin Z’ as a direct indication
of surge margin of any estimated condition, and other with standard com-
pressor parameters. The results were compared by determination of fitting,
interpolation and extrapolation capabilities of both approaches. The artifi-
cial neural networks used during the process was a two-layer feed-forward
neural-network with Levenberg–Marquardt algorithm with Bayesian regu-
larization. The experimental data was interpolated to increase the amount
of learning data for the neural network. With the two models created, ca-
pabilities of this relatively simple type of neural-network to approximate
compressor map was also assessed.
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Nomenclature
ANN – artificial neural networks
MPE – the mean percentage error
MLP – multilayer perceptron
Z – surge stability coefficient

1 Introduction

Thanks to their versatility, gas turbines found their way to multiple in-
dustries. Numerous advantages, i.e. good response for load variations, had
paved the way to their applications in aviation, marine, industrial or as
auxiliary power units. Such a wide range of possibilities to utilize gas tur-
bines put them in requirement of being capable to work in various and
often harsh conditions, with every unscheduled interruption of their work
time followed with significant costs. The necessity to monitor, diagnose and
foresee incoming maintenance has arisen.

For aviation, the pre-pandemic estimations said that its traffic will dou-
ble every 15 years [1]. On the other hand, the Flightpath 2050 Europe’s
Vision for Aviation challenges the aviation industry with achievements to
be accomplished by 2050 [2]. The constant growth of air traffic must be
paired with a constant drop in greenhouse emissions. That obviously puts
the propulsion system on the main stage.

Modelling and simulation are a step towards meeting the above-mentio-
ned goals. It allows not only to predict the performance of an engine at
given conditions but also to simulate certain conditions for identification
purposes. Modelling and simulation already play a vital role in the design
and development process of the gas turbine. It can be used to predict the
unit’s characteristics without time and money consuming tests. Every time
the unit’s test can be replaced by simulation, the industry save not only
money but reduce greenhouse and noise emissions to the environment.

To build a successful system model it is necessary to understand the
behavior of its main components. Many problems in creating a meaningful
gas turbine model are caused by inaccurate components’ performance pre-
diction [3]. The quality of the components’ map is of particular significance
for the purpose of simulation of off-design or transient states [4], because it
provides better insight for representing the behaviour of the full gas-turbine
system. The decisive component is the compressor and its characteristic,
which usually defines the quality of the whole model, especially considering



Neural network approach to compressor modelling. . . 91

that turbines operate mostly in choked conditions [5]. Compressor’s maps
are derived from extensive test campaigns and are not published by the
manufacturers.

The scientific society has developed many methods of compressor’s map
modelling. One of the most popular and easiest ways to model the com-
pressor is the utilization of a look-up table. It uses a linear interpolation
algorithm. For the best fit, the data should be well prepared – sorted, dense
and regular. This is really rare, hence alternative methods have to be de-
veloped.

The auxiliary parameter method is based on the introduction of an
additional parameter that helps present the compressor map in a more
modelling-alike form. Predominantly this parameter is called a β [4–7],
which has no physical meaning. Each β is basically a line crossing with
each corrected speed line. That said the β equal to 1 should be the close or
at the surge line, while the β equal to 0 indicates the choked region. Pre-
senting the map in such a way helps not only in interpretation but also in
the subsequent implementation of the raw data into the simulation model.
The introduction of the β parameter eliminates the problem of complicated
shape and non-uniqueness of the map in low and high-speed regions. More-
over, every operating point can be described as a function of the β paired
with the corrected rotational speed. Kurzke developed an alternative way
of deriving the β as parabolic lines, which are more suitable for later inter-
polation [8]. Miste and Benini investigated the possibility of an analytical
representation of the β in order to increase the precision of compressor map
modeling [9]. Two functions of the β were introduced. The first one, linear,
assuming that β is a simple plane crossing x and y planes. The second func-
tion is more complicated and composed of two parts – radial and tangential.
Through the modification of four parameters (density n, translation p, cur-
vature c, and slope a), the user can easily change the distribution of β lines,
leaving more degrees of freedom than the linear method. A mean relative
error of this method is less than 0.2%, much less than that of Kurzke’s
parabolic β method, which has around 1%.

Orkisz and Stawarz proposed to present a compressor map in an auxil-
iary coordinate system – in function of the corrected rotational speed and
Z parameter [3]. The analytical function Z has physical meaning denoted
as a surge stability coefficient and is given by the equation

Z =
(

πSsurge
ṁcorr surge

ṁcorr
πS

)
− 1, (1)
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where πS , πSsurge, ṁcorr, and ṁcorr surge denote the pressure ratio, surge line
pressure ratio, corrected mass flow rate and surge line corrected mass flow,
respectively. Building a complete compressor model requires additional de-
termination of a relationship between πSsurge, ṁcorr surge and corrected ro-
tational speed (ncorr). In [10], two-variable second-degree and third-degree
polynomials were used to determine the relationship between parameters.
The maximum error between the real data and the data calculated from
the model did not exceed 1.4%. However, in [11, 12] it was demonstrated
that this method is prone to error when used for extrapolation.

Jensen and Kristensen developed a model in which the compressor char-
acteristics are expressed by dimensionless parameters [13]. The compressor
work is represented as a head parameter ψ, and mass flow rate as flow
rate parameter ϕ. Then, the head parameter and compressor efficiency are
expressed by the relationship of dimensionless flow rate and inlet Mach
number (Ma), which is dependable on inlet conditions and compressor tip
speed. Subsequently, using the compressor manufacturers data, the fitting
equation was determined in the form of ψ(ϕ, Ma). Tsoutsanis, Meskin, Be-
nammar, Khorasani also used the equation fitting methodology, with an
equation of ellipse [5, 14, 15]. They showed that it is convenient to assume
that every speed line is an elliptic curve. The relationship between the pres-
sure ratio and mass flow rate can be described with the equation of ellipse.
Presuming that the ellipse can be rotated, three approaches of modelling
were proposed with different levels of complexity; the ellipse is fixed at:
(i) centre point at (0, 0) and no rotation, (ii) centre point at (0, 0) with
rotation by angle θ, and (iii) centre point at (x0, y0) with rotation by angle
θ, which represents the center coordinates of the ellipse. Similar approach
was presented in [16], with addition of consideration of bleed air extraction
and variable inlet guide vanes impact.

NASA and General Electric developed a method of compressor map rep-
resentation suitable for the simulation model [7, 17]. The main goal of this
work was to minimalize the computing power needed for calculations. The
method puts more focus on the pressure losses, which are presented in func-
tion of enthalpy and rotational speed. Then, from the minima of each curve,
a backbone is created which can be used for interpolation and extrapola-
tion. The last step is the linearization of differences between pressure losses
related to work output.

Kong proposed generating maps of individual engine components on the
basis of having partitive manufacturers data, e.g. test or exploitation data
or from engine deck [18–20]. In [18], scaling was performed by determining
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the scaling coefficients between the calculated parameters and the actual
data, then the relationship between pressure ratio, mass flow rate and effi-
ciency is approximated as a function of engine rotational speed. In subse-
quent publications [19,20] a genetic algorithm was used to determine these
relationships. It offers better accuracy. It should be mentioned that this
method may be less accurate when calculating parameters in operational
areas distant from those previously available to which the model was fitted.

Zagórowska and Thornhill proposed the utilization of Chebyshev poly-
nomials in order to approximate the compressor characteristics [21]. The
compressor mass flow rate and rotational speed were used as input to de-
termine the pressure ratio. The method was compared with the traditional
third order polynomial approximation. It was concluded that Chebyshev
polynomials allow the map to be reconstructed accurately from fewer points
compared to the third order polynomial and are less computationally de-
manding. On the other hand, they require initial data preparation. Li pre-
sented the results of using the statistical method of partial least squares
regression [22]. The authors used two basic functions of partial least squares
regression method, that is a traditional polynomial and a trigonometric
function. For comparison purposes, they did similar with popular look-up
tables and neural networks of back-propagation type. The results proved
that partial least squares regression method requires less computing power
to produce similar or even better results.

Ghorbanian and Gholamrezaei in their works analysed the use of four
types of neural networks: general regression neural network, rotated gen-
eral regression neural network, radial basis function network, and multi-
layer perceptron (MLP) [4,23,24]. They took two approaches to modeling;
one based on the pressure ratio as an output and the second based on
the corrected mass flow. The obtained results show that multilayer percep-
tron provides the best output accuracy. The rest of the evaluated neural
networks were displaying good precision in regions of known experimental
data, but performing poorly when used to interpolate or extrapolate. Yu,
Chen, Sun, and Wu used back-propagation neural network. They utilized
the method of double-learning resulting in good accuracy [25].

This paper proposes a new approach to compressor modelling, which
links the standard, well-known introduction of an auxiliary parameter with
the neural-network tool for interpolation. The neural network utilized in
this work is a shallow network, consisting of only one hidden layer and an
output layer. The ability of such network configuration to cover compressor
map is investigated since it is already proven that more sophisticated net-
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works are able to give reasonable outputs. The evaluation of performance
of this simple artificial neural networks (ANNs) is of particular importance
because it is easier and more intuitive to use, hence having low entry-level
difficulty. Thanks to that it may become a new tool for modelling and
analysis for gas turbine engineers, which are not specialists in the field of
artificial intelligence, or may be a first step for them to become one. Fur-
thermore, the relative stability margin Z was introduced as an auxiliary
parameter. The knowledge of the compressor’s working line is crucial dur-
ing simulation and analysis of its performance. Due to its clear and physical
meaning and surge margin indication, it was deemed to be highly benefi-
cial as an additional output of the model. Moreover, as aforementioned, the
auxiliary parameters were generally introduced to make a compressor map
representation more modelling-friendly. By comparison of two ANNs – one
with standard compressor parameters and the second with Z utilization,
the impact of different map representations was evaluated.

2 Methodology

2.1 Basic methodology of compressor map representation

The typical compressor’s map is depicted in Fig. 1. Usually, it is presented
in the form of:

πs = f (ncorr, ṁcorr) , (2)
ηs = f (ncorr, ṁcorr) . (3)

The above variables can be described with the following relationships:

• pressure ratio
πs = pout

pin
, (4)

• isentropic compressor efficiency

ηs = ∆his
∆hreal

, (5)

• corrected rotor speed
ncorr = n√

T

Tref

, (6)
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Figure 1: Exemplary compressor map representation.

• corrected mass flow rate

ṁcorr =
ṁ

√
T

Tref
p

pref

, (7)

where: pin, pout – compressor total inlet and outlet pressure, respectively,
∆his, ∆hreal – isentropic and actual enthalpy change, respectively, p, T –
pressure and temperature at chosen reference station, pref = 1013.25 kPa,
Tref = 288.15 K.

For the constant corrected rotor speed line, two particular points can
be identified. The upper limit is a surge line. The surge is a violent aero-
dynamic phenomenon, which due to excessive pressure rise downstream of
the compressor causes the flow oscillations in the axial direction of a com-
pressor. It usually leads to severe instability of the whole engine system,
which can be fatal in consequences. On the opposite end of a speed line,
a choke occurs. The choke is a state during which the flow speed through
the compressor is close to sonic velocity and further increase of mass flow
rate is not possible.

Generally, the compressor map is presented in the form of experimental
data collected in a discrete form of single test points taken at the con-
stant corrected rotational speed. This is a major problem of compressor
modelling. In order to simulate the off-design or transient cases, the whole
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compressor map has to be known. The most popular approach is to uti-
lize two-dimensional (2D) linear interpolation. It is easy to use and offers
fast results without overwhelming memory usage. Unfortunately, the accu-
racy is usually low. Potential modelling problems come from the following
facts [3]:

1) non-uniqueness – it is necessary that each pair of variables is unique
and do not repeat itself;

2) bad conditioning, when a low change in one parameter causes a big
change in another;

3) high variability of the parameters, when the whole envelope is of
interest;

4) usually unknown compressor low-speed performance.

Especially very high and very low corrected speed regions of compressor
map are problematic. The high-speed lines (Path 1 in Fig. 1) are nearly
vertical in contradiction to low-speed lines (Path 2 in Fig. 1) which are
almost horizontal. Due to a highly non-linear character of the compressor’s
performance, the interpolation method may lead to increased error.

2.2 The neural network

Artificial neural networks are gaining popularity thanks to their fast and
accurate response paired with low computing power requirements. Their
ability to process non-linearity and usage of an enormous amount of data
is exceptional in modelling. ANN can build a model creating non-linear
relationships without real physical meaning between inputs and outputs.
It can produce meaningful responses to inputs not used during the train-
ing process. The above-mentioned features allow neural networks to solve
very complex problems. Hornik et al. [26] have shown that a two-layer net-
work can be a universal approximator. Pinkus did further research on the
multilayer feed-forward perceptron and its approximation capabilities [27].
Hagan, Demuth and de Jesus [28] have described how the MLP can be used
in control systems, Fig. 2.

The two-layer feed-forward neural network is utilized in this paper. It is
available via neural fitting tool in Matlab [29]. The simplicity of the network
architecture makes it easier and more intuitive to use while offering fast and
reliable output. It consists of one hidden layer and one output layer. The
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Figure 2: Exemplary schematic of a two-layer feed-forward neural network with just one
input and two neurons in the hidden layer [28], where: a – transfer function
output, b – biases, n – weighted sum value, p – input, w – weights.

hidden layer uses a log-sigmoid transfer function, while the output layer
is fitted with a linear transfer function. The two inputs of the corrected
rotational speed and pressure ratio are fed to ten neurons in the hidden
layer, with one output acquired from the output layer – relative stability
margin, mass flow rate or isentropic efficiency for this particular case, Fig. 3.

Figure 3: Log-sigmoid transfer function [28].

The Levenberg–Marquardt back propagation algorithm with Bayesian reg-
ularization was used for learning [30]. Bayesian regularization requires more
memory but tends to be more robust and can eliminate the need for lengthy
cross-validation. Moreover, this approach mitigates the risk of overtraining
because of the objective criterion for stopping the training, and overfit
thanks to its ability to work only on effective network parameters [31].
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2.3 Compressor map data preparation

Amodelled compressor is a single-stage centrifugal compressor from an aux-
iliary power unit gas turbine. Its performance map is illustrated in Figs. 4
and 5. It is expressed in conventional approach, understood as the pressure
ratio and isentropic efficiency as a function of the corrected mass flow rate.

Figure 4: Compressor map under evaluation – pressure ratio.

Figure 5: Compressor map under evaluation – efficiency.

The experimental data of each speed line was purposely interpolated due
to two main reasons. The first was to reproduce compressor operation with
higher resolution. The utilization of cubic interpolation was successful in ac-
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curate representation of compressor operation at each evaluated corrected
speed. That results in learning more focused on the compressors perfor-
mance instead of just interpolation between the possessed test data. The
second benefit of test data interpolation is an increased amount of input
data used for learning, which results in better efficiency of the network.
Interpolated data points can be seen in Fig. 5. Having 76 experimental
test points results of compressor performance, each speed line was inter-
polated by 100 test points. Additionally, in order to enhance the efficiency
of learning, the maps were rescaled to relative parameters in the range
of [0, 1].

Obviously, the relative stability margin coefficient was calculated for
both experimental and interpolated data to feed one of the models. It was
defined as in Eq. (1).

The approach taken in the compressor map generation was based on the
corrected rotational speedNc and pressure ratio πc as an input. Considering
that assumption, two models were created:

I Model A – based on three neural networks fitting the following data:

– relative stability margin, Z = f(ncorr, πs);
– relative mass flow rate, mc = f(ncorr, Z);
– relative isentropic efficiency, ηc = f(ncorr, Z);

II Model B – based on two neural networks fitting the following data:

– relative mass flow rate, mc = f(ncorr, πs);
– relative isentropic efficiency, ηc = f(ncorr, πs).

Moreover, to evaluate the interpolation and extrapolation capabilities of
the network, three constant speed lines were excluded from the input data.
For interpolation purposes, the data from 95% of the corrected speed were
chosen (n 95%), as the simulated engine operates mostly around 100% of
the corrected speed (n 100%). Hence the interpolation accuracy between
n 90% and n 100% is of major importance. Also, the experimental data
above n 100% is denser having n 102% and n 105% speed lines determined.
Additionally, the n 20% and n 115% speed lines were not used. These were
extrapolated to come up with capabilities to simulate transient states like
start-up or over-speed of the engine.
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3 Results and discussion

The analysis of neural networks learning regression charts (Figs. 6 and 7)
shows that the learning quality stands high regardless of the model used.
The Y = T dotted curve represents the perfect fit. It can be observed that
the “fit” curve is overlapping the Y = T curve for both cases. Nevertheless,
it is visible that the quality is improved with the utilization of an auxiliary
parameter in the form of a relative stability margin (Model A). Figures 6
and 7 show that in terms of individual performance points prediction, the
amount of points outlying from Y = T and fit curves is significantly re-
duced. It can be concluded that the introduction of the relative stability
margin to the learning and modelling process results in a better accuracy.
The actual performance of the models can be estimated by the analysis of
Figs. 8 and 9.

a) b)

Figure 6: Regression plots learning and testing data for Model A: a) relative mass flow
rate, b) efficiency.

a) b)

Figure 7: Regression plots learning and testing data for Model B: a) relative mass flow
rate, b) efficiency.
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a) b)

Figure 8: Compressor map prediction of Model A.

a) b)

Figure 9: Compressor map prediction of Model B.

Furthermore, as an additional measure of the models’ capabilities, the mean
percentage error (MPE) was calculated between the experimental data and
predicted data for a given corrected rotational speed and pressure ratio.
The mean percentage error is defined as follows:

MPE = 1
n

n∑
i=1

|f (Expi)− fp (Predi)|
f (Expi)

× 100, (8)

where f (Expi) and fp (Predi) are the experimental data and predicted data,
respectively. The MPE results for each constant speed line and overall one
are presented with the interpolated and extrapolated speed lines included.

In the next step, the actual prediction from the considered models was
compared. The comparison takes into account the fitting, interpolation and
extrapolation accuracy. The fitting accuracy was assessed based on analysis
of the models’ prediction for each constant speed line, which was fitted
into the learning process. Additionally, the MPE was calculated between
the prediction and test data, and was presented in Figs. 10 and 11. It is
visible that in terms of fitting, the shallow neural network is capable of
providing robust results with MPE below 1% for the high-speed region of
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compressor operation (> n 80%). The MPE significantly increases for lower
speed regions (< n 80%), where it can even reach values of 3%. That is an
important error, which may cause unacceptable discrepancies during gas
turbine start-up and/or sub-idle operation simulation. Further research is
necessary to mitigate that issue.

The interpolation capability was evaluated based on the prediction of
n 95% of the compressor corrected speed. The performance test data for this

Figure 10: Compressor mass flow rate mean percentage error for given corrected rota-
tional speed.

Figure 11: Compressor efficiency mean percentage error for given corrected rotational
speed.
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constant speed line was excluded from the learning data provided to the
neural network, hence the ANN has to predict the compressor performance
based on residual data. The prediction was then compared to the actual
experimental data to assess the interpolation effectiveness. The accuracy of
n 95% prediction can be visually examined in Figs. 8 and 9, while the MPE
is presented in Figs. 10 and 11. It can be concluded that the interpolation
capabilities are also satisfactory for the shallow neural network. The MPE
for the mass flow rate and efficiency prediction is below 2% and 1.5%,
respectively. It should be emphasized that the interpolation capacity is
increased with the utilization of the relative stability margin in the learning
process (Model A). It is especially visible for efficiency modelling, where the
MPE is reduced thoroughly, reaching values below 1%.

The extrapolation capability was evaluated in a similar manner as the in-
terpolation one. The n 20% and n 115% of the compressor corrected speeds
were excluded from the learning data. Then, the trained networks were pre-
dicting the compressor’s performance at these speeds. Unfortunately, both
models A and B were unable to predict the performance at n 20%, which
makes the subsequent simulation of gas turbine start-up impossible. On the
other hand, the n 115% speed could be predicted. The MPE for this par-
ticular extrapolated speed was visibly higher compared to fitting. Worth
highlighting is the fact that the n 115% extrapolation ability of the network
was increased by the utilization of the auxiliary parameter, especially for
the mass flow rate prediction at which the MPE was below 1.5% (compared
to almost 4% of Model B).

3.1 Surge margin evaluation

The utilization of Z parameter brings a unique opportunity to track the
surge margin live during analysis and simulation. It is of high importance
during the analysis of various transient states like sequential loads applica-
tion or Bodie maneuvers of the gas turbine system. The accuracy of predic-
tion of surge margin was evaluated for the high-speed region (> 80%) of the
compressor map. The six constant relative stability margin lines were deter-
mined. These are considered as indicators of the surge margin at which the
compressor is expected to operate during steady-state and transient-state
operation. The model prediction of the constant relative stability margin
for each compressor’s speed was depicted in Fig. 12.

The results were presented on top of experimental data, based on which
the experimental relative stability margin was evaluated. It is visible that
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Figure 12: Compressor map high-speed region with constant relative surge margin lines.

the precision is satisfactory and similar to the previously obtained results.
The only exceptions are speeds of n 95% and n 115%, which are interpolated
and extrapolated speeds, respectively, at which the estimated Z values are
prone to bigger error. It can be concluded that the model is able to deter-
mine the surge margin correctly, similar to the compressor’s performance.

3.2 Validation of numerical results

In the research of [21,22] it was deemed that the MLP network is the most
versatile one, being able to fit, interpolate and extrapolate. The results
presented in this paper bring similar conclusions. With the utilization of
ANN of a less developed architecture (fewer hidden layers), the obtained
mean percentage error values of fitting and interpolation are at a similar
level to the one presented in [3]. However, it should be emphasized that
the accuracy of this tool is deteriorating at attempts of predicting the low-
speed regimes. It may be caused by various reasons. The research done in [3]
shows that the accuracy depends on the neural network input and output
data vector chosen for learning – either the mass flow rate or pressure
ratio accompanied with the rotational speed. By visual inspection of the
presented results, a similar conclusion can be drawn from [23], where the
low-speed regime prediction seems to be less accurate. Another suspected
reason is the structure of the test data fed to the network. The high-speed
data (at and above n 80%) was substantially denser than the low-speed
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data. There were 8 speed lines data used as learning data to the network,
from which 6 (75%) were above n 80%. This fact can explain the inferior
accuracy at lower operating speeds.

To mitigate the above-mentioned issues and furthermore decrease the
overall MPE of modelling with the shallow neural network, several new
ways need to be evaluated:

• Different approach to learning data organization – i.e. initial inter-
polation of experimental data to generate a variable amount of test
points per each speed line. Having more data at low speed, simultane-
ously with less data at high speeds may result in a better performance
without compromising the high-speed accuracy.

• Double learning method – the neural network can be learned fur-
ther after the first iteration. Some of the generated data, for example
from interpolation, can be fed to the network as an additional learn-
ing portion [23]. It can lead to an overall improvement of prediction
accuracy.

• Utilization of other methods – other compressor map modelling ap-
proaches, which show better precision in particular areas of perfor-
mance prediction, can be used. The data generated from the chosen
method can be used as additional learning data for the neural net-
work, as it was proven to have a very high accuracy of data fitting.

• Modification of the neural network – the number of neurons or learn-
ing methodology can lead to different results.

4 Summary
Summarizing, it can be concluded that the shallow neural network is a pow-
erful tool capable of compressor map modelling. The fitting accuracy is
comparable to current state-of-the-art approaches discussed in Introduc-
tion, simultaneously being intuitive to use and providing fast and reliable
response. It is valid for both Model A and Model B approach, indicating
that the shallow neural network is capable of interpolation and extrapola-
tion of compressor’s performance, and subsequently can be used for tran-
sient simulation. Furthermore, the introduction of an auxiliary parameter
of relative stability margin has a positive impact on the learning and output
quality of the ANN, improving the analysis’ capabilities at the same time.
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On the other hand, the extremes of compressor’s operating regimes (low
and high rotational speeds) tend to output less accurate results depending
on various factors.
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