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Research on optimization of unrelated parallel
machine scheduling based on IG–TS algorithm
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Abstract. This issue is a typical NP-hard problem for an unrelated parallel machine scheduling problem with makespan minimization as the
goal and no sequence-related preparation time. Based on the idea of tabu search (TS), this paper improves the iterative greedy algorithm (IG) and
proposes an IG–TS algorithm with deconstruction, reconstruction, and neighborhood search operations as the main optimization process. This
algorithm has the characteristics of the strong capability of global search and fast speed of convergence. The warp knitting workshop scheduling
problem in the textile industry, which has the complex characteristics of a large scale, nonlinearity, uncertainty, and strong coupling, is a typical
unrelated parallel machine scheduling problem. The IG–TS algorithm is applied to solve it, and three commonly used scheduling algorithms
are set as a comparison, namely the GA–TS algorithm, ABC–TS algorithm, and PSO–TS algorithm. The outcome shows that the scheduling
results of the IG–TS algorithm have the shortest manufacturing time and good robustness. In addition, the production comparison between the
IG–TS algorithm scheduling scheme and the artificial experience scheduling scheme for the small-scale example problem shows that the IG–TS
algorithm scheduling is slightly superior to the artificial experience scheduling in both planning and actual production. Experiments show that
the IG–TS algorithm is feasible in warp knitting workshop scheduling problems, effectively realizing the reduction of energy and the increase in
efficiency of a digital workshop in the textile industry.
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1. INTRODUCTION
The manufacturing industry is the pillar of the national econ-
omy. However, there are imbalances in the flow of material,
energy, capital, and data in the production process of tradi-
tional manufacturing workshops. It has become a trend to build
information-based, intelligent, and efficient digital workshops
to achieve optimal scheduling. Production scheduling optimiza-
tion is the core of the digital workshop and is the key to im-
proving and increasing efficiency and enhancing the competi-
tiveness of enterprises. Unrelated parallel machine scheduling
problem (UPMSP) is typical for the production processes of the
textile industry, electronic manufacturing, and machining [1].
Garey, Johnson, and other researchers [2] confirmed that the
scheduling problem of the realization of makespan minimiza-
tion on a parallel machine is an NP-hard complete problem.
For the scheduling problem of warp knitting workshops in the
textile industry, due to the different processing and production
times of the same cloth on different warp knitting machines, the
processing time depends on the matching relationship between
the workpiece and the machine. Therefore, this kind of issue is
an unrelated parallel machine scheduling problem. This prob-
lem studies the processing and distribution process of n cloth
orders on m warp knitting machines. And only one processing
procedure is required for each cloth order. The warp knitting
workshop scheduling problem is characterized by large scale,
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strong constraints, nonlinearity, multiple minima, strong cou-
pling, and uncertainty.

In recent years, many scholars at home and abroad have stud-
ied the unrelated parallel machine scheduling problem. Boże-
jko et al. [3] propose the introduction of new elimination block
properties allowing for accelerating the operation of approxi-
mate algorithms of local searches, solving this problem, and
improving the quality of solutions determined by them. Suresh
et al. [4] proposed a new hybrid meta-heuristic algorithm called
hybrid pathfinder algorithm (HPFA) to solve the optimal reac-
tive power dispatch (ORPD) problem. Ghaith Rabadi et al. [5]
proposed a meta-heuristic-RaPS algorithm for large-scale non-
preemptive unrelated parallel machine scheduling problems,
effectively reducing makespan. Considering the uncertainties
of processing time and delivery time, Torabi et al. [6] pro-
posed an effective multi-objective particle swarm optimization
(MOPSO) algorithm to minimize makespan and total tardi-
ness for the unrelated parallel machine scheduling problem.
Ridvan Gedik et al. [7] proposed a new constraint program-
ming (CP) model for this problem, proving that this model
had a better solving ability than all other algorithms on small-
scale problems. Luis Fanjul-Peyro et al. [8] suggested a new
mixed-integer linear programming algorithm (MILP) and com-
pared the results with the widely used CAM-PAGEN algorithm.
They found that the relative deviation was less than 0.8 % in
large-scale problems. Eva Vallada et al. [9] proposed a new
search algorithm based on the improved discrete search algo-
rithm and the iterative greedy algorithm. Its calculation results
for the same historical problem were superior to the optimal so-
lution in history. There is relatively less research on textile in-
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dustry scheduling at home and abroad. Combining local search
algorithms, Gao [10] proposed a diversity technology based
on a vector group. And the simulation results of it were bet-
ter than that of the vector immune genetic algorithm (VIGA).
These scheduling algorithms are mostly based on heuristic al-
gorithms and require a long solving time. In actual production,
as the order production has strong uncertainty and randomness,
the scheduling algorithm needs to respond quickly to the de-
mand. Based on the idea of TS (tabu search) and IG (iterative
greedy algorithm), this paper proposes an IG–TS hybrid algo-
rithm, which can quickly schedule the production orders of tex-
tile enterprises, solve the problem of production scheduling dif-
ficulty caused by frequent orders, and optimize the production
period and the utilization rate of the machine.

2. PROBLEM DESCRIPTION
2.1. Symbol definition
n number of cloth jobs to be produced;
m number of warp knitting machines;
J = {J1,J2, . . . ,Ji, . . . ,Jn} set of cloth to be produced, Ji is the

i-th cloth job;
M = {M1,M2, . . . ,Mk, . . . ,Mm} set of warp knitting machines,

Mk is the k-th warp knitting machine;
Cmax maximum completion time of all cloth production;
Clast maximum completion time of the last scheduled cloth

production;
Ci completion time of cloth Ji;
Ti,k the i-th shift in the future, production capacity of warp

knitting machine Mk;
xi, j,k if J j is next to Ji and is processed on Mk, then the num-

ber is 1, otherwise 0;
V a large enough positive real number;
Rk release time of Mk;
π final feasible scheduling solution.

2.2. Mathematical model
The model of warp knitting workshop scheduling problem is
described as follows: n cloth jobs are processed on m unrelated
warp knitting machines, and each cloth job only needs to com-
plete one process. In addition, the following assumptions are
made: each job needs to be executed once, and only one job can
be executed on one machine at the same time. The job release
time is 0, and the job is not allowed to be interrupted or pre-
emptible after its start. In this paper, the problem of minimizing
makespan is studied. And the mixed mathematical model [11]
is as follows:

MinCmax = max{Ci|i = 1,2, . . . ,n} , (1)

s.t.
n

∑
i 6= j

i = 0
m

∑
k=1

xi, j,k = 1,∀ j = 1,2, . . . ,n, (2)

n

∑
i=0
i6=h

xi,h,k =
n

∑
j=0
j 6=h

xh, j,k,∀h = 1,2, . . . ,n, ∀k = 1,2, . . . ,m, (3)

C j ≥Ci +
m

∑
k=1

xi, j,k
(
STi, j,k + t j,k

)
+V

(
m

∑
k=1

xi, j,k−1

)
,

∀i, j = 0,1, . . . ,n, (4)
n

∑
j=0

x0, j,k = 1, ∀k = 1,2, . . . ,m, (5)

xi, j,k ∈ {0,1}, ∀i, j = 0,1, . . . ,n; ∀k = 1,2, . . . ,m, (6)
C j ≥ 0, ∀ j = 1,2, . . . ,n. (7)

Equation (1) is the objective function of the problem. Equa-
tion (2) means that each cloth job needs to be processed and
can only be processed once by a warp knitting machine. Equa-
tion (3) indicates that each cloth job has at most one preorder
job and one post-order job. Equation (4) means that each cloth
job can only be processed after the completion of the preorder
job, and V can ensure that the inequality is permanent. Equa-
tion (5) indicates the uniqueness of the first job of each warp
knitting machine. Equation (6) represents the value range of
decision variables. Equation (7) indicates that the completion
time of all cloth jobs is non-negative.

3. SCHEDULING ALGORITHM DESIGN OF IG–TS
The iterative greedy (IG) algorithm is an algorithm with strong
local search ability, which has been successfully applied to
UPMSP scheduling problems without sequence-related prepa-
ration time [12]. The IG algorithm continuously searches in the
neighborhood of the current solution based on the greedy idea.
The algorithm is general and easy to implement, but this al-
gorithm is easy to fall into a minimum and cannot guarantee
global optimization. The tabu search (TS) algorithm is a global
iterative optimization algorithm with strong local search ability.

However, the TS algorithm is mainly based on neighborhood
search, which is highly dependent on the initial solution. An
effective and reasonable initial solution helps the search achieve
the optimal solution quickly.

The IG–TS scheduling algorithm proposed in this paper com-
bines the global search ability of TS and the local search abil-
ity of IG to solve the highly feasible warp knitting workshop
scheduling solution. Based on these two algorithms, the IG–TS
algorithm can draw the advantages of both algorithms. First,
the appropriate initial scheduling solution is calculated by the
IG algorithm, and then the TS algorithm is used to search for
the global optimal solution. The flow of the IG–TS scheduling
algorithm is shown in Fig. 1.

The IG–TS algorithm uses iterative greedy search to find
a feasible scheduling solution, which can avoid roundabout
search and achieve fast global optimal convergence. The im-
portant processing steps of each iteration include the decon-
struction stage, reconstruction stage, and neighborhood search
stage. The IG–TS algorithm mainly includes the following 12
processes:
1. Production information initialization. The cloth job to be

produced is n. The number of warp knitting machines avail-
able for processing is m. The production capacity of warp
knitting machines is Ti,k The tabu list is null set Φ.

2 Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 4, p. e141724, 2022



Research on optimization of unrelated parallel machine scheduling based on IG–TS algorithm

Generate a random initial solution

Solve Cmax

Cmax <Clast？

Update the tabu list

Meet the termination 
critetion?

Only one bottleneck machine?

Deconstruction Operation

Reconstruction Operation

Neighborhood Search Operation

Schedule new solution

Y

N

Y

N

Output optimal scheduling solution π

Y

N

Tabu Attribute Judgement of Candidate Solution

Current solution is the best solution for non-tabu objects

End

Start

Number of Iterations+1

Input Ti,k，Mk，Ji

Iterative 
Update

Fig. 1. IG–TS algorithm flow chart

2. Design of fitness function. The fitness function of the IG–TS
algorithm is as follows:

Cdiff =Cmax−Cmin.

In this equation, Cmax is the longest processing time in warp
knitting machine; Cmin is the shortest processing time in
a warp knitting machine.

3. Design of termination criterion. The maximum number of
iterations is set to 500, and the termination threshold of the
fitness value is set to 100 min. When makespan remains un-
changed for 200 consecutive times, the search is terminated
when either of the above criteria is met.

4. Generates an initial solution. Randomly assign cloth produc-
tion set J to warp knitting machine set M.

5. Update tabu list. If the fitness function value of the current
solution is superior to that of the previous generation, the
current solution is updated to the tabu list, and otherwise,
the current solution is maintained.

6. Termination criterion judgment. If the termination criterion
is reached, then jump to step 12, otherwise continue to exe-
cute.

7. Judgment of the number of bottleneck machines. When the
scheduling solution falls into a key bottleneck machine, the
neighborhood search is performed (jump to step 10). Other-
wise, it will continue to execute.

8. Deconstruction stage. In order to achieve faster convergence,
at each iteration, a job is randomly taken out on the machine
with the longest processing time.

9. Reconstruction stage. Put each removed job on each ma-
chine and then select the machine that can make the
makespan minimum into the operation.

10. Neighborhood search stage. Neighborhood search opera-
tions are mainly divided into intra-machine operations and
inter-machine operations. Common neighborhood search
methods include interchange, interpolation, and inversion.

This paper designs the following four search operations:
a. Intra-machine operations are as follows: without loss of

generality, let j > i. The detailed operation steps are
shown in Figs. 2 and 3:

• SWS(i, j,k): Exchange the location of the i-th and j-th
jobs on the table of the machine Mk.
• ISS(i, j,k): Place the i-th job on the machine Mk after

the j-th job on the same machine.

WiW2Mk : WnWjW1

WiW2 WnWjW1Mk :
Fig. 2. “SWS” neighborhood search

WiW2Mk : WnWjW1

WiW2 WnWjW1Mk :
Fig. 3. “ISS” neighborhood search

b. Inter-machine operations are as follows: k1 6= k2. The de-
tailed operation steps are shown in Figs. 4 and 5:

• SWD(i, j,k1,k2): Exchange the i-th job on the table of
the machine Mk1 with the j-th job on the table of the
machine Mk2 .

• ISD(i, j,k1,k2): Put the i-th job on machine Mk1 after
the j-th job on machine Mk2 .

11. Update the scheduling solution. Substitute the new schedul-
ing solution to the program and return to step 5;

12. Output optimal scheduling solution π .

W1iMk1 : W1nW11

W22Mk2 : W2mW2jW21

W12

W1i

W1nW11

W22 W2m

W2j

W21

W12Mk1 :

Mk2 :
Fig. 4. “SWD” neighborhood search
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W1iMk1 : W1nW11

W22Mk2 : W2mW2jW21

W12

W1i

W1nW11

W22 W2mW2jW21

W12Mk1 :

Mk2 :

Fig. 5. “ISD” neighborhood search

Adopt O Representation to present the algorithm complex-
ity of the IG–TS algorithm. The complexity of the deconstruc-
tion stage is O(n). The complexity of the reconstruction stage
is O(n). The complexity of solving processing time is O(mn).
The complexity of the neighborhood search stage is O(n2).
Therefore, the algorithm complexity of the IG–TS algorithm
is O(mn+n2).

4. CONTRAST ALGORITHM DESIGN
4.1. GA–TS algorithm
A genetic algorithm is an intelligent bionic algorithm based on
the biological idea of “survival of the fittest.” This algorithm
has been widely studied and applied in the field of job shop
scheduling [13–15]. GA has the ability of parallel search and
can quickly converge to the optimal or suboptimal solution from
multiple points in the solution space, which is suitable for solv-
ing multiple combinatorial optimization problems. However,
the local search ability of GA is poor, and it is easy for this algo-
rithm to converge prematurely. As mentioned above, the TS al-
gorithm has a unique memory function that enables GA to jump
out of the current local optimal solution and achieve global op-
timal optimization. The GA–TS hybrid algorithm based on the
two algorithms also achieves complementary advantages. In re-
cent years, scholars and researchers at home and abroad have
also made many studies and improvements to this algorithm.
Zhang Huizhen et al. [16] proposed the EGA–TS hybrid algo-
rithm based on an elite genetic algorithm and tabu search al-
gorithm to solve the quadratic allocation problem (QAP), the
classical combinatorial optimization problem, and compared it
with the solutions of other mainstream algorithms. The results
proved that the EGA–TS hybrid algorithm was feasible and
competitive. Lin Boliang and other researchers [17] managed
to use the GA–TS algorithm to solve the scheduling problem of
railway congestion. They compared the solution of the GA–TS
algorithm with the optimal solution obtained by the enumer-
ation method and the optimal solution obtained by commer-
cial optimization software, confirming the feasibility and ad-
vantages of this algorithm. Sukkerd [18] successfully applied

the GA–TS algorithm to solve the flexible job-shop scheduling
problem (FJSP). Thongwan et al. [19] combined the conditional
genetic algorithm (CGA) and conditional tabu search algorithm
(CTSA) and then proposed the hybrid algorithm, effectively re-
ducing the frequency of multi-objective future flood disasters
of reservoirs.

Based on the research results of the above scholars and re-
searchers, this paper grasps their core ideas and designs the
following GA–TS hybrid algorithm as one of the comparison
algorithms of the IG–TS algorithm. The algorithm flow chart is
shown in Fig. 6.

Parameter Initialization

Solve Cmax

Cmax <Clast？

Update the tabu list

Meet the termination 
critetion?

Roulette Wheel Selection

Schedule new solution

Y

N

Y

N

Output optimal scheduling solution π

Tabu Attribute Judgement of Candidate Solution

Current solution is the best solution for non-tabu objects

End

Start

Population Initialization

Crossover Operation

Mutation Operation

Number of Iterations+1

Input Ti,k，Mk，Ji

Iterative 
Update

Fig. 6. GA–TS algorithm flow chart

4.2. ABC–TS algorithm
The artificial bee colony algorithm is a swarm intelligence op-
timization algorithm that imitates the honey-harvesting process
of honeybees. This algorithm has also been widely studied and
applied in the field of job shop scheduling [20,21]. Although the
ABC algorithm has made some achievements in theoretical re-
search and practical application, the neighborhood searchability
of the standard ABC algorithm is not extraordinarily strong and
lacks clarity in the search process. Although the scout bee de-
signed in the algorithm can help the solution process jump out
of the local optimum, the lead bee may repeat the search in the
search process, which makes the artificial bee colony algorithm
easy to fall into a local optimum when solving large-scale prob-
lems. Scholars at home and abroad have proposed using a tabu
search algorithm to solve this problem by introducing a tabu
list to store the optimal solution in the search process, which
enables the ABC algorithm to have the function of memory and
improve the efficiency, accuracy, and robustness of search. Su et
al. [22] devised an artificial bee colony algorithm with variable
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neighborhood search and tabu list (ABC-VNS2019TL) to solve
the scheduling problem of the urban carpooling system. Lu et
al. [23] used the ABC–TS algorithm to solve the unrelated par-
allel machine scheduling problem to minimize makespan time,
and made a comparison among ABC, TS, and PSO algorithms
to prove the effectiveness and robustness of the ABC–TS algo-
rithm.

Based on the research results of the above scholars and re-
searchers, this paper grasps their core idea and designs the fol-
lowing ABC–TS hybrid algorithm as one of the comparison al-
gorithms of the IG–TS algorithm. The algorithm flow chart is
shown in Fig. 7.

Fig. 7. ABC–TS algorithm flow chart

4.3. PSO–TS algorithm
The particle swarm optimization (PSO) algorithm is a bionic
algorithm based on the predation of a group of birds, which
searches for the optimal solution through cooperation and in-
formation sharing among individuals in the group. At present,
this algorithm has also been widely studied and applied in the
field of job shop scheduling [24–26]. However, this algorithm
easily falls into the local optimal solution and its global opti-
mization ability is poor. In view of this, scholars at home and
abroad turned to the tabu search algorithm. They used a tabu list
to store the collected local optimal solution, which can effec-
tively avoid particle swarm optimization falling into a local op-
timal cycle, realize the diversity of the particle swarm optimiza-
tion search path, and is beneficial to the global optimal conver-
gence of the particle swarm optimization algorithm. Ibrahim

Alharkan et al. [27] solved the scheduling problem of two un-
related parallel machines using tabu search algorithm and parti-
cle swarm optimization algorithm. Adopting hybrid binary par-
ticle swarm optimization with tabu search (HBPSO–TS), Lin
Geng et al. [28] effectively solved the complex set-union knap-
sack problem (SUKP) and confirmed the feasibility of particle
swarm optimization with tabu search.

Based on the research results of the above scholars and re-
searchers, this paper grasps their core idea and designs the fol-
lowing PSO–TS hybrid algorithm as one of the comparison al-
gorithms of the IG–TS algorithm. The algorithm flow chart is
shown in Fig. 8.

Solve Cmax

Cmax <Clast？

Update the tabu list

Meet the termination 
critetion?

Update particle velocity and 
particle position

Schedule new solution Y

N

Y

N

Output optimal scheduling solution π

Tabu Attribute Judgement of Candidate Solution

Current solution is the best solution for non-tabu objects

End

Start

Particle Swarm Initialization

Number of Iterations+1

Input Ti,k，Mk，Ji

Iterative 
Update

Fig. 8. PSO–TS algorithm flow chart

5. EXPERIMENTAL STUDY
5.1. Algorithm comparison tests
To sum up, algorithms of IG–TS, GA–TS, ABC–TS, and PSO–
TS are implemented based on JavaScript. The runtime environ-
ment is Node.js, v10.16.3. And the processor is a 2.4 GHz CPU.

The number of warp knitting machines available for schedul-
ing in warp knitting workshops is 50. The production capacity
of these machines in the next five shifts is shown in Table 1.
There are seven types of production operations to be scheduled.
And the specific cloth length is shown in Table 2.

Algorithms of IG–TS, GA–TS, ABC–TS, and PSO–TS are
used to solve the scheduling of these cloth orders to be pro-
duced. In order to ensure the fairness of the algorithm, the same
iteration termination condition is set, which terminates when
the fitness function value remains unchanged for 200 consec-
utive times. Each example of each algorithm is evaluated 10
times, and the optimal solution (Min), average manufacturing
time (Ave), and standard deviation (S) of the results are com-
pared and analyzed.
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Table 1
The production capacity in the next five shifts

Machine
ID

Production capacity in future shifts Ti,k (min/m) Machine
ID

Production capacity in future shifts Ti,k (min/m)

T1,k T2,k T3,k T4,k T5,k T1,k T2,k T3,k T4,k T5,k

1 6 8 7 7 7 26 18 36 8 6 7

2 13 11 12 8 28 27 11 8 7 7 8

3 49 28 11 21 8 28 13 9 11 10 34

4 16 24 37 27 50 29 13 16 9 8 7

5 50 51 25 10 10 30 12 36 7 9 6

6 6 24 15 6 7 31 8 9 13 15 23

7 19 22 11 11 8 32 13 26 30 9 16

8 13 12 12 10 25 33 13 21 36 18 16

9 14 17 10 15 9 34 7 9 9 8 19

10 13 19 18 6 12 35 13 12 16 20 23

11 16 23 7 16 12 36 19 9 6 8 11

12 9 23 26 25 36 37 13 9 38 53 6

13 9 23 11 23 15 38 13 15 23 9 8

14 8 7 27 17 23 39 9 8 6 16 13

15 26 15 26 13 8 40 19 36 8 9 13

16 34 21 15 9 23 41 12 21 43 15 20

17 9 8 7 6 8 42 25 48 51 10 23

18 13 20 9 18 36 43 13 21 10 8 6

19 10 8 9 26 56 44 7 13 8 7 9

20 23 7 6 8 16 45 53 23 17 10 16

21 8 7 6 11 9 46 35 9 16 22 11

22 26 11 13 8 8 47 13 12 8 9 16

23 8 7 10 9 8 48 43 8 12 23 27

24 36 26 37 17 13 49 19 27 35 26 62

25 9 8 6 8 30 50 53 19 8 8 52

Table 2
Cloth job order information form

Number
Number

of
orders

Type A Type B Type C Type D
The total
length of
cloth/m

1 20 5 6 5 4 800

2 30 6 8 10 6 1320

3 40 10 8 8 14 2060

4 50 15 9 10 16 2430

5 100 26 28 22 24 4320

6 150 40 36 40 34 6520

7 200 63 45 44 48 8530

Note: Orders of type A are 10 meters, type B 20 meters,
type C 50 meters, and type D 100 meters.

In this paper, the relative percentage deviation (RPD) be-
tween the scheduling results of other algorithms and the
scheduling results of the IG–TS algorithm is used to evaluate
the performance of the algorithm. The calculation method of
the RPD value of each test example is shown in equation (8):

RDP =
Cc−CIG

CIG
×100%. (8)

In this equation, Cc is the optimal Cmax solved by contrast
algorithms and CIG is the optimal Cmax solved by the IG–TS
hybrid algorithm.

As there are five shifts of the production capacity in the fu-
ture, the acceptable initial maximum fitness function is set to
be 3600 minutes. The iterative convergence curves of all exam-
ples of the four algorithms are shown in Fig. 9. It can be seen
from the figure that these algorithms all converge at a faster
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(a) The iterative convergence curve of the example (20, 10) (b) The iterative convergence curve of the example (30, 10)

(c) The iterative convergence curve of the example (40, 10) (d) The iterative convergence curve of the example (50, 10)

(e) The iterative convergence curve of the example (50, 20) (f) The iterative convergence curve of the example (50, 30)

(g) The iterative convergence curve of the example (50, 40) (h) The iterative convergence curve of the example (50, 50)

Fig. 9 a–h
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(i) The iterative convergence curve of the example (100, 40) (j) The iterative convergence curve of the example (100, 50)

(k) The iterative convergence curve of the example (150, 40) (l) The iterative convergence curve of the example (150, 50)

(m) The iterative convergence curve of the example (200, 40) (n) The iterative convergence curve of the example (200, 50)

Fig. 9. Iterative convergence curve of four algorithms

rate, which results from the tabu search algorithm avoidance of
roundabout search, whereas the IG–TS algorithm usually con-
verges to a better Cmax.

The RPD values of the four algorithms are compared as
shown in Fig. 10, and the results of the comparison of schedul-
ing results of calculation examples are shown in Table 3. It can
be seen from Fig. 10 that in almost all test examples, the RPD
values of GA–TS, ABC–TS, and PSO–TS algorithms are all
above IG–TS, which also means that the IG–TS algorithm can
obtain better processing and manufacturing time. It can be seen
from Table 3 that the standard deviation of the IG–TS algorithm
is smaller than that of the other three algorithms and that this al-

gorithm can converge to the global optimal solution more stably
and has better robustness.

5.2. Production comparison tests
Figure 11 shows the Gantt chart of the scheduling results of
the above small-scale example problems, which displays the
scheduling information of orders. The scheduling solution is
applied to the warp knitting workshop of a textile company in
Fujian Province, China, to verify the effectiveness of scientific
scheduling. At the same time, as a comparison, workshop pro-
duction plan makers are required to schedule the production of
small-scale examples based on the artificial experience.
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Table 3
Comparison of scheduling results of calculation examples

Example scale n,m
IG–TS GA–TS| ABC–TS| PSO–TS

Min Ave S Min Ave S Min Ave S Min Ave S

Small-scale

20,10 1428.57 1481.71 30.01 1495.38 1505.65 33.22 1440.00 1449.22 48.10 1502.18 1528.58 54.63

examples

30,10 2002.18 2058.07 45.73 2002.18 2019.03 46.22 2040.00 2135.84 57.51 2040.00 2065.54 46.69

40,10 2713.29 2796.15 42.99 2772.00 2821.72 78.48 2793.29 2826.15 79.26 2753.16 2840.29 72.29

50,10 3136.50 3217.09 48.52 3186.82 3203.33 57.77 3195.38 3268.92 60.40 3200.65 3238.08 72.18

Large-scale

50,20 1865.65 1937.51 38.21 1920.97 1978.34 50.66 1872.00 1880.30 75.82 1930.00 1952.15 44.14

examples

50,30 1482.86 1501.89 8.46 1502.18 1561.16 9.35 1502.18 1571.99 13.51 1517.54 1586.30 9.34

50,40 1200.87 1245.55 19.82 1255.38 1351.19 20.24 1211.54 1258.69 24.08 1255.38 1273.04 31.38

50,50 1180.00 1202.49 20.62 1200.87 1217.21 22.58 1210.77 1215.32 32.59 1185.38 1211.35 34.59

100,40 1680.00 1714.83 24.46 1720.00 1817.91 39.42 1740.00 1815.67 25.73 1740.00 1741.58 31.67

100,50 1536.84 1563.14 22.68 1529.09 1562.96 34.75 1580.00 1590.39 44.03 1560.00 1569.32 26.09

150,40 2240.00 2277.09 28.43 2251.61 2317.99 48.96 2251.75 2314.48 38.18 2296.29 2308.47 48.29

150,50 1977.06 2029.29 31.69 2016.84 2072.72 55.79 2011.43 2096.31 49.41 2044.29 2057.22 48.29

200,40 2740.32 2790.14 28.98 2800.00 2830.88 36.05 2770.00 2827.50 53.77 2766.00 2826.56 40.46

200,50 2464.88 2470.65 30.99 2477.43 2520.69 45.40 2464.88 2482.73 39.14 2490.00 2562.98 37.76

Note: Data in bold is the optimal scheduling solution.

Fig. 10. Comparison of RPD values of the four algorithms

Table 4
Comparison of algorithm and experience scheduling results

n, m
IG–TS

Production based on
experience

tplan/min tmake/min tplan/min tmake/min

20, 10 0.50 1502.69 34.50 1658.08

30, 10 1.22 1980.85 48.59 2669.25

40, 10 1.34 2793.25 61.25 4160.58

50, 10 1.50 3085.68 80.20 5865.36

Note: tplan is the planned consuming time of production plan,
tmake is the consuming time of the production of examples.

After actual tests, the results shown in Table 4 are obtained.
It can be found that the production scheduling based on the
IG–TS algorithm consumes less than three minutes in terms
of the time-consuming production planning, while the man-
ual scheduling takes at least half an hour. The actual produc-
tion completion time of the example is close to the schedul-
ing results of the IG–TS algorithm, while the scheduling based
on artificial experience takes more time. Thus, it can be con-
cluded that scientific scheduling is particularly important for
order-oriented enterprises such as textile enterprises that can ef-
fectively reduce energy consumption and costs, save resources,
and optimize the production period with the adoption of scien-
tific scheduling.
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(a) IG–TS scheduling Gantt chart (20, 10)

(c) IG–TS scheduling Gantt chart (40, 10)

(b) IG–TS scheduling Gantt chart (30, 10)

(d) IG–TS scheduling Gantt chart (50, 10)

Fig. 11. Gantt chart for small-scale examples

6. CONCLUSIONS

In this paper, the iterative greedy (IG) algorithm is improved
based on the idea of tabu search, and the IG–TS hybrid al-
gorithm is proposed for solving the minimum makespan of
the unrelated parallel machine scheduling problem without
sequence-related preparation time. The IG–TS algorithm can
avoid roundabout search and approach the global optimal solu-
tion with an amazingly fast convergence speed. The complexity
of the algorithm is O

(
mn+n2

)
. This algorithm is applied to

the warp knitting workshop scheduling problem with complex
characteristics such as large scale, strong constraints, nonlinear-
ity, and uncertainty. Having scheduled seven kinds of cloth or-
ders, the scheduling results are compared with those of the GA–
TS algorithm, ABC–TS algorithm, and PSO–TS algorithm. The
experimental results show that the IG–TS algorithm has the best
scheduling results and more stable robustness in the production
scheduling problem of warp knitting digital workshops in tex-
tile enterprises. In addition, in view of the small-scale example
problem, the actual production is conducted according to the
scheduling results of the IG–TS algorithm and the scheduling
scheme based on artificial experience. The results show that the
scheduling based on the IG–TS algorithm can effectively save
the time of planning and production, improve production effi-
ciency, and better optimize the production period. This can fur-

ther promote the cost reduction, energy saving, and efficiency
improvement of warp knitting digital workshops in textile en-
terprises. In addition, this algorithm is also applicable to the
unrelated parallel machine scheduling problem in other indus-
tries.
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