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Abstract: This article provides an optimized solution to the problem of passive shielding
against static magnetic fields with any number of spherical shells. It is known, that the
shielding factor of a layered structure increases in contrast to a single shell with the same
overall thickness. For the reduction of weight and cost by given material parameters and
available space the best system for the layer positions has to be found. Because classic
magnetically shielded rooms are very heavy, this system will be used to develop a trans-
portable Zero-Gauss-Chamber. To handle this problem, a new way was developed, in which
for the first time the solution with regard to shielding and weight was optimized. Therefore,
a solution for the most general case of spherical shells was chosen with an adapted boundary
condition. This solution was expanded to an arbitrary number of layers and permeabilities.
With this analytic solution a differential evolution algorithm is able to find the best partition
of the shells. These optimized solutions are verified by numerical solutions made by the
Finite Element Method (FEM). After that the solutions of different raw data are determined
and investigated.
Key words: differential evolution, evolutionary algorithm, magnetostatic passive shielding,
mobile application, optimization, spherical shells

1. Introduction

The shielding against electromagnetic fields is in many domains of industry and science vitally
important. A special challenge is represented by the static magnetic fields, because they permeate
matter more or less unhindered. There are only three ways to shield against magnetostatic fields,
which are the Meissner effect of superconductivity, active shielding with counter-fields or refrac-
tion by high permeable material. In this paper, only the shielding with high permeable materials
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will be treated. This type of shielding is necessary in different technical applications and scientific
experiments. For an application-oriented example, there are a lot of manufactured parts which
have to be free of magnetism to a certain degree. This could be tools during precise manufacturing
processes [11], parts with high requirements like rolling elements, injectors, or gear drives in the
automobile industry [12] as well as measuring equipment like the magnaflux test [1]. These parts
can be measured in nearly field-free environments only. In some research areas, for example,
electron microscopy, magnetometry or in ultracold atomic physics, nonmagnetic components are
mandatory in experiments [2]. The demand for degaussing technology is projected to grow in
the next years by about several percent [3]. Therefore, particularly in an industrial environment,
a need for local measurements at the customer exists as a unique feature. The common magnetic
shielding rooms (MSRs) with very high shielding factors are large and heavy, and that is why
they are stationary and fixed in buildings. To make an equivalent MSR transportable, the weight
has to be minimized. For this reason, the phenomena of multi-lamellar shells [4] in an optimal
arrangement of layers is used. Therefore, a modified, known way to describe the shielding factor
analytically is generated and is used further to optimize this solution with respect to shielding
performance and weight by a differential evolution algorithm. Because there are no direct compa-
rable findings in the recent literature, it is important to advance this problem statement. Besides
the analytical solution, different works treat this problem approximately. In 1916, Ernest Wilson
and John William Nicholson introduced a solution by recurrence formulae [13]. Louis V. King
generated a solution for thin shells at low frequencies in 1933 [14]. The solution by Wilson and
Nicholson was improved by Felix Schweizer in 1961, and his error was corrected by Y.Y. Reutov
in 2001 [15]. The optimization by the FEM was made in 2019 for a multilayered cylindrical
system [2].

2. Analytical foundations

An analytical way to calculate the magnetic field with permeable material inside the so-
lution space is always by solving proper Maxwell’s equations. In the magnetostatic case these
equations are

®∇ · ®𝐻 = 0, (1)

®∇ × ®𝐻 = ®𝑗 . (2)

In Eqs. (1) and (2) ®𝐻 is the magnetic field strength and ®𝑗 is the current density. Because the
external magnetic field shall be given as a source in the boundary conditions, there are no currents
inside the solution space, and therefore, the current density is zero: ®𝑗 = ®0. Further, a magnetic
scalar potential of the form −®∇𝜓 = ®𝐻 can be defined [7]. If this scalar potential is inserted into
Eq. (1) a Laplace equation arises as:

®∇2𝜓 = 0. (3)

Equation (2) is automatically fulfilled. A solution for the potential 𝜓 is necessary to use an
evolutionary algorithm for finding the best parameters of the shielding geometry. In this case,
these solutions have to describe the shielding factor 𝑆 for multi-lamellar centric spheres against
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the outer static magnetic field 𝐻0, which is defined as the relation between the external to the
innermost field 𝐻shield:

𝑆 =
𝐻0

𝐻shield
. (4)

Spherical shells were chosen because they represent the most general case and an analytical
solution exists [5]. The shielding problem of a single hollow sphere with a magnetic source inside
has been solved by James Clerk Maxwell [6] and it has been expanded to an infinite amount of
shells by Arthur William Rücker [4]. A solution for a hollow sphere inside an infinite magnetic
field was found by John Davin Jackson [7]. To get the suitable solution, the way of A.W. Rücker
will be combined with the boundary conditions of J.D. Jackson.

2.1. Combined solution of J.C. Maxwell and J.D. Jackson
The following equations are expressed in the International System of Units and solved ac-

cording to today’s standards. The final solution is based upon the solution of the Laplace equation
of the scalar potential 𝜓 by J.C. Maxwell for a hollow sphere. To solve the Laplace equation
for spherical problems, it is often necessary to use spherical coordinates (Fig. 2). To solve this
equation, a mathematical approach with the separation of variables is made in the following form:

𝜓(𝑟𝑢𝜑) = 𝑅(𝑟)𝑈 (𝑢)Φ(𝜑). (5)

In Eq. (5) 𝑟 is the radial component, 𝜑 is the azimuthal component and 𝑢 represents the polar
component, as well as 𝑅, Φ and 𝑈 are the dedicated functions. The usual notation 𝜃 for the
polar component was replaced by the substitution 𝑢 = cos 𝜃 to simplify the basic equation. By
converting the Laplace equation, the equation can be separated into a system of three ordinary
differential equations (ODEs):

d
d𝑥

(
𝑟2 d𝑅

d𝑟

)
= 𝑙 (𝑙 + 1)𝑅, (6)

d2Φ

d𝜑2 +Φ𝑚2 = 0, (7)

1 − 𝑢2

𝑈

d
d𝑢

(
(1 − 𝑢2) d𝑈

d𝑢

)
= 𝑚2 − 𝑙 (𝑙 + 1) (1 − 𝑢2). (8)

For lack of space, the input arguments are omitted. The constants 𝑙 and 𝑚 appear during the
separation and they are chosen in such a way, that it is easier to solve the equations later. The
solutions of these ODEs are generated by the power approach 𝑅 = 𝑟𝜆, an exponential ansatz
Φ = 𝑒𝜆𝜑 and by a power series method for𝑈 [9]. The solutions are

𝑅𝑙 (𝑟) = 𝐴𝑙𝑟 𝑙 + 𝐵𝑙𝑟−𝑙−1, (9)

Φ𝑚 (𝜑) = 𝐴𝑚 exp (i𝑚𝜑) + 𝐵𝑚 exp (−i𝑚𝜑) , (10)

𝑈𝑙𝑚 (𝑢) = (−1)𝑚
(
1 − 𝑢2

) 𝑚
2 1

2𝑙𝑙!
d 𝑙+𝑚

d𝑢𝑙+𝑚
(
𝑢2 − 1

) 𝑙
. (11)
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In these solutions 𝐴𝑙𝑚 and 𝐵𝑙𝑚 are constants. Equation (10) can be transformed to

Φ𝑚 (𝜑) = 𝐾𝑚 exp (i𝑚𝜑) ,

with

𝐾𝑚 =

√︃
(𝐶𝑚 cos(𝑚𝜑))2 + (𝐷𝑚 sin(𝑚𝜑))2,

𝐶𝑚 = 𝐴𝑚 + 𝐵𝑚 and 𝐷𝑚 = 𝐴𝑚 − 𝐵𝑚 .

If the angular dependent equations are scaled, then Eqs. (9) to (11) are inserted into the
separation approach (Eq. (5)), the following solution for the potential is generated:

𝜓(𝑟𝑢𝜑) =
(
𝐴𝑙𝑚𝑟

𝑙 + 𝐵𝑙𝑚
𝑟 𝑙+1

)
𝑒i𝑚𝜑 1

√
2𝜋
𝑁𝑙𝑚𝑈𝑙𝑚 (𝑢). (12)

Here is 𝐴𝑙𝑚 =
𝐴𝑙

𝐾𝑚

and 𝐵𝑙𝑚 =
𝐵𝑙

𝐾𝑚

as well as the scaling factor

𝑁𝑙𝑚 =

√︄
(𝑙 − 𝑚)!
(𝑙 + 𝑚)!

2𝑙 + 1
2

.

With the definition of the spherical harmonics 𝑌𝑙𝑚 [10], the Rodrigues formula and after the
inverse substitution of 𝑢, it follows that:

𝜓(𝑟𝜃𝜑) =
(
𝐴𝑙𝑚𝑟

𝑙 + 𝐵𝑙𝑚
𝑟 𝑙+1

)
𝑌𝑙𝑚 (𝜃, 𝜑). (13)

This solution only depends on the control variables 𝑙 and 𝑚. Because the geometry as well
as the arising field are radial symmetric to the axis in the direction of the field ®𝐻0, the control
variable 𝑚 can be set to zero (𝑚 = 0) [10]. This means the solution does not depend on the angle
𝜑, whereby the imaginary term disappears and the spherical harmonics 𝑌 become real, they are
called now surface harmonics S:

S𝑙 (𝜃) =
√︂

2𝑙 + 1
4𝜋

𝑃𝑙 (cos 𝜃). (14)

In Eq. (14), 𝑃𝑙 represents the Legendre polynomials, which are generated from the spherical
harmonics for 𝑚 = 0. The general solution is, therefore:

𝜓(𝑟𝜃) =
∑︁
𝑙

𝐶𝑙𝑟
𝑙S𝑙 (𝜃), (15)

where 𝑙 ∈ Z. For this solution of the Laplace equation, a distinction of cases has to be made,
because there are three different areas for a hollow sphere. In the inner area, the constant 𝐶𝑙 for
all negative powers of 𝑟 has to be zero to avoid singularities for 𝑟 = 0. Inside the shell there are
no restrictions concerning the constants.

In the outer area, 𝐶𝑙 has to be zero for all positive powers of 𝑟 , because the magnetic field
cannot become an infinite magnitude. If the solution is changed by the boundary conditions of



Vol. 71 (2022) Novel optimization method for mobile magnetostatic shield 631

J.D. Jackson, there are three different solutions for each solution space ((16) – inside, (17) – shell,
(18) – outside):

𝜓𝑖 (𝑟𝜃) =
∑︁
𝑙

𝛼𝑙𝑟
𝑙S𝑙 (𝜃), (16)

𝜓𝑚 (𝑟𝜃) =
∑︁
𝑙

(
𝛽𝑙𝑟

𝑙 + 𝛾𝑙

𝑟 𝑙+1

)
S𝑙 (𝜃), (17)

𝜓𝑎 (𝑟, 𝜃) = 𝐻0𝑟 cos 𝜃 +
∑︁
𝑙

𝛿𝑙

𝑟 𝑙+1 S𝑙 (𝜃). (18)

In Eqs. (16) to (18) 𝛼, 𝛽, 𝛾 and 𝛿 are the coefficients of the general solution.

2.2. Solution of A.W. Rücker
For the case of an arbitrary number of layers, the boundary conditions for each layer has to

be defined. They are necessary to get the coefficients of the equations above. These can be found
by the interface conditions between the surfaces of the layers (see Fig. 1). Currently, the sums in
Eqs. (16) up to (18) are not restricted. The crucial summand is the one with 𝑙 = 1 [4,7]. For every
interface of the layers there are two conditions, both for the normal part of the field ®𝐻𝑛 as well as
the tangential part of the field ®𝐻𝑡 . For the magnetic field they are

𝜇1 ®𝐻1𝑛 = 𝜇2 ®𝐻2𝑛 , (19)

®𝐻1𝑡 = ®𝐻2𝑡 . (20)

Fig. 1. A cross section of k layers for the mathemat-
ical model

Fig. 2. The spherical coordinates of a three layer
model for example

Respectively, with the definition of the scalar potential, where the indices are 𝑛 = 𝑟 and 𝑡 = 𝜃

𝜕𝜓1
𝜕𝑟

=
𝜇2
𝜇1

𝜕𝜓2
𝜕𝑟

, (21)
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𝜕𝜓1
𝜕𝜃

=
𝜕𝜓2
𝜕𝜃

. (22)

Together with Eqs. (16) to (18) a linear system of equations can be generated (see Eqs. (23)
to (28)) for the transition from the inner area to the first shell, between the layers and from the
last shell to the outer area:

𝜇∞𝑅
3
0𝛼 − 𝜇1𝑅

3
0𝛽1 + 𝜇12𝛾1 = 0, (23)

−𝑅3
0𝛼 + 𝑅3

0𝛽1 + 𝛾1 = 0, (24)

𝜇𝜅𝑅
3
𝜅 𝛽𝜅 − 𝜇𝜅2𝛾𝜅 − 𝜇𝜅+1𝑅

3
𝜅 𝛽𝜅+1 + 𝜇𝜅+12𝛾𝜅+1 = 0, (25)

−𝑅3
𝜅 𝛽𝜅 − 𝛾𝜅 + 𝑅3

𝜅 𝛽𝜅+1 + 𝛾𝜅+1 = 0, (26)

𝜇𝑘𝑅
3
𝑘 𝛽𝑘 − 𝜇𝑘2𝛾𝑘 + 𝜇∞2𝛿 = 𝜇∞𝑅3

𝑘

1
𝐶𝑁

𝐻0 , (27)

−𝑅3
𝑘 𝛽𝑘 − 𝛾𝑘 + 𝛿 = −𝑅3

𝑘

1
𝐶𝑁

𝐻0 . (28)

Because 𝑙 = 1, the sum over 𝑙 in Eqs. (16) to (18) is eliminated, so that Eqs. (23) to (28) are
indicated by the number of shells 𝑘 with 𝜅 ∈] 0 . . . 𝑘 [. In these equations the variable 𝜇∞ is the
relative permeability of the inner and outer space, 𝑅 is the radius of the shells and 𝐶𝑁 is a scaling
factor from the surface harmonic. In the general solution the polar and the azimuthal terms are
scaled to make the input arguments become independent because the general solution is valid for
all spherical geometries. With this scaling the surface harmonics become more general spherical
harmonics, which are necessary to represent the solution of the Laplace equation. With the radial
term and the (scaled) spherical harmonics, every possible solution of the Laplace equation can
be generated.

3. Verification by FEM

To prove that the analytical way of describing the problem is correct, some analytical solutions
will be compared with numerical solutions made by the FEM using the Ansys Maxwell program.
Therefore, the analytical solution is added into a Matlab code, which graphs the magnetic field
strength as well as the potential, magnetic induction and streamlines of the field. Further, it
calculates the magnitude of the inner field

��� ®𝐻��� respective to
��� ®𝐵���. For the comparison, an arbitrary

model can be used. To show that the analytical solution works for each number of shells, a few
models with a different number of shells will be investigated. For example, a model with two
shells (three layers) is shown in Fig. 3.

If the field profile from Fig. 3 is compared with this from Fig. 4, it shows that they are equal
to each other. The difference in colors is a result of differently stored color maps of the computer
programs. From Table 1 it is apparent that the difference between the solutions is very small. This
deviation may be caused by the implied approximation of the FEM and a middle coarse mesh.
Because of this result it can be acted on the assumption, that the analytical solution is correct.
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Fig. 3. A cross section in the direction of the field
profile. The colors show the magnitude of the mag-

netic field strength of the analytical solution

Fig. 4. A cross section in the direction of the field
profile. The colors show the magnitude of the mag-

netic field strength of the numerical solution

Table 1. Comparison of two different positions

Position |H| Matlab
in A/m

|H| FEM
in A/m

Deviation
in %

A 0.002353 0.002379 1.105

B 0.501 0.5084 1.477

4. Optimization by a differential evolution algorithm

For the global optimization of this problem, the method of differential evolution (DE) is used.
This algorithm belongs to the class of evolutional algorithms, whose natural evolution is ideal.
That means that there are individuals, which represent a population whose parameters will be
changed in every iteration step, which makes a new generation. In this process, an optimum of
a defined output value (the best generation) will be found by varying different parameters and
continued every time with the best population (see Fig. 5).

The optimal solution is the best individual from the last population. Like in nature, there are
different operators, which have an effect on individuals depending on the population. In this case
these are: the differential weight 𝐹, the crossover probability CR and the mutation probability
𝑀 [8]. These parameters have a significant effect on the behavior of the algorithm, and therefore,
they are shown in Table 2.

The differential weight 𝐹 defines the percentage of the used differences, which are added
to the population during the variation/mutation. These differences are made by both the pop-
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Fig. 5. A flowchart of the main loop of the differential evolutional algorithm

Table 2. Values of the different operators

Parameter F CR M

Value 0.85 0.7 0.5

ulation with only the best members of the actual population (direction of the algorithm) and
the shuffled populations (exploration of the solution space). The crossover probability CR de-
fines the random part of the mutated population, which will be recombined. For CR = 1, the
recombined population is the mutated population and for CR = 0 there is no recombination. The
mutation probability 𝑀 defines which random individuals from the old population should be
variated/mutated. For 𝑀 = 1, all members of the population will be mutated, and for 𝑀 = 0,
no one will be mutated. The values of these parameters, based on the programming code, are
constant and were chosen according to the approved values from [8]. The number of populations
was set to 100.

In this DE the minimum of this output value is sought after. To start with, a random population
is generated, which individuals consist of a vector with the positions of the shells as components.
This type of evolutionary algorithm is in principle able to optimize after every existing value.
But not all values are meaningful to optimize. If the permeability were some of these values,
the algorithm would always find the highest value inside the solution range. Therefore, some
definitions have to be made. A common case, where the permeability and thickness of the shells
are constant will be used. Furthermore, the air between the shells and the inner- and outermost
position of the shells are constant too. The optimization looks for the optimal system of the shells
inside. During the procedure, a number of solutions are generated by a fitness function, which
assigns a quality value to every individual. With this quality value the best individuals can be
localized.
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4.1. The fitness function

The fitness function is crucial in which direction the optimization process will be regulated.
In this case the fitness function identifies the best positions of the shells. That means the input
arguments are the positions and the output variable is the shielding factor for the simplest case.
For a given number of shell positions, the best system generates the highest shielding factor. For
this purpose, the solved variables from heading 2 are used for the calculation of the magnetic
field. The base for the fitness function is the analytical solution. It consists of solving the system
of linear equations (see Eqs. (23) to (28)) in heading 2.2. With the solved constants, Eqs. (16) to
(18) are complete and the magnetic field can be calculated by differentiation. Because the inner
field is homogeneous and do not depend on 𝑟 (see Eqs. (29) and (30)), the variable 𝛼 · 𝐶𝑁 is
a measure for the magnitude of the inner magnetic field.

𝐻𝑟 ,𝑖 = 𝛼 · 𝐶𝑁 · cos 𝜃, (29)

𝐻𝜃,𝑖 = −𝛼 · 𝐶𝑁 · sin 𝜃. (30)

Because the algorithm searches for a global minimum, the output value of the fitness function
has to be small if an individual is a good solution. Because a good shielding factor 𝑆 should be
very high, the fitness function 𝑓 has to be adjusted. Further, it shall be optimized in terms of
weight. Therefore, the fitness function is expanded with an equation, which calculates the whole
volume 𝑉 of the shells. Because of that, the fitness function has the form:

𝑓 (𝑅1, 𝑅2, . . . , 𝑅𝑘 ) =
𝑉 (𝑅1, 𝑅2, . . . , 𝑅𝑘 )
𝑆 (𝑅1, 𝑅2, . . . , 𝑅𝑘 )

. (31)

In the last step, unphysical solutions have to be eliminated. It is possible, that there are
individuals in the random start population, whose position values are not sorted. This means the
position of a larger shell is before a smaller shell. This also can happen due to the mutation of
some individuals. Mathematically, the algorithm and fitness function are able to find a solution,
but negative shielding factors or voluminal are not physically reasonable. This problem is solved
by assigning very high values to these solutions by means of a retrieval loop. At least it has to
be verified that the algorithm can find an approximated global optimum. The algorithm has to
find the same solution every time and it has to be the right solution. For the first condition, the
algorithm will be run 10 times and controlled if the solution does not change. This procedure has
shown, that the solution is always the same, it only differs in the 4th decimal place (see Table 3).
For this, a model with five shells (9 layers) was used. The inner radius is 0.5 m, the outer radius
is 1 m and the permeability is 15 000. This is the permeability of Mu-metal, a common alloy for
magnetic shields. It was chosen because a prototype for later experiments will be made of this
material.

For the second condition a model with three shells is used, where the position of the middle
shell is changed numerically to find the best solution iterative. The reference value, found by the
DE, is 0.6709 m. As part of the approximation of the FEM, the optimal solution of the numerical
calculation is about 0.668 m. Summarized, it follows that the algorithm works correctly.
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Table 3. Positions of the shells

Trial no. Position 1 in m Position 2 in m Position 3 in m

1 0.5731 0.6671 0.7967

2 0.5730 0.6670 0.7967

3 0.5730 0.6670 0.7967

4 0.5730 0.6670 0.7967

5 0.5730 0.6670 0.7967

6 0.5730 0.6670 0.7967

7 0.5731 0.6670 0.7967

8 0.5730 0.6670 0.7967

9 0.5730 0.6670 0.7967

10 0.5731 0.6671 0.7967

4.2. Results for selected cases

In this section, the influence of constant model parameters shall be investigated. For this
purpose, the basic model with three shells is used. There are four parameters that can be varied.
These are the inner radius 𝑅0, the outer radius 𝑅𝑘 , the thickness of the shells 𝑙𝑡 and the permeability
𝜇. First of all, the thickness and permeability are constant and the radii will be varied. The thickness
is set to 0.001 m and the relative permeability is 15 000. The range of the radii goes up to 1 m.

Figure 6 shows that there are only for the nonphysical cases of 𝑅0 � 0 or 𝑅0 � 𝑅𝑘 a linear
behavior of the graph. For the regular cases there is a nonlinear behavior. That means there is
no fixed relation of the optimal position of the middle shell to the position of the inner shell
respective to the outer shell. The optimal solution depends directly on the model itself and its
parameters.

Fig. 6. All optimized solutions for the position of the
middle shell in dependence of the inner and outer

radii

Fig. 7. All optimal solutions for the position of the
middle shell in dependence of the thickness and the

permeability
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The dependence of the thickness and the permeability can be investigated if the radii are
constant. The permeability goes from zero to 15 000 and the thickness from zero to 0.05 m.
Figure 7 shows, that there is no dependence of the permeability on the solution. All values along
the permeability axis are constant. The effect of the thickness of the shells causes a larger radius
of the middle shell with an approximately linear behavior. If the permeability or the thickness of
the shells goes to zero, there is some kind of singularity (see Fig. 8). At this point, the algorithm
is still able to find a solution but it converges to 0.5 m. All things considered the geometry in
general has a significant effect on the optimal position of the middle shell. In the case of models
with more shells, the same effect of nonlinearity can be observed (see Figs. 9 and 10).

Fig. 8. A closer view of the singularity from Fig. 7

Fig. 9. The optimal positions for a model with 5 shells
(9 layers) and constant thickness and permeability

Fig. 10. The optimal positions for a model with 5
shells (9 layers) and constant inner and outer radii

It shows that the effect of the optimized positions of the shells is different. For constant
permeability and thickness, the behavior of the position with the smallest radius is more or less
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linear, whereas the position with the biggest radius shows a strong nonlinear behavior. In contrast
to the case where the radii are constant, each behavior is equal and the relation between the
positions is the same.

5. Summary and conclusion

In the first section, it was shown, that the analytical solution for the general case of spherical
shielding with the theoretical boundary condition of an infinite external magnetic field is, on the
one hand, correct and, on the other hand, sufficiently represents the solution close to the shielding
geometry. This is important because the used evolutional algorithm needs a good working fitness
function to work accurately. After the adaptation of the analytical solution into the fitness function
by generating a correct relation of the command variables and eliminating unphysical solutions,
FEM analyses have shown that the differential algorithm works proper.

With this algorithm, different solutions for diverse models were investigated to make fun-
damental statements about a general optimal system for high permeable shells. The solutions
show that the optimal system for the shells depends strongly on the positions, as well as on the
thickness of the shells. That means, on the one hand, there is always an optimal solution but, on
the other hand, there is no constant relation between systems with the same number of shells. For
further investigations and/or constructions, it is now possible to minimize the size and hence the
weight as well as the cost for any multi-layered magnetically shielded chambers. It is obvious that
for other problems with different geometries such as cylinders or cubes, there are also optimal
solutions.

For practical use, it is necessary either to calculate the optimal solution for an individual
problem statement every time, or its possible to generate empiric equations for a defined area
of applications. In the first procedure the developed Matlab code has to be slightly modified, or
a graphic user interface has to be programmed. If the maximum size of the shielding is known, it
is easier to store some empiric equations for usual problem statements, that can be used for a fast
calculation of a constructional sketch.
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