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Abstract: This article presents a new efficient optimization technique namely the Multi-
Objective Improved Differential Evolution Algorithm (MOIDEA) to solve the multi-
objective optimal power flow problem in power systems. The main features of the Dif-
ferential Evolution (DE) algorithm are simple, easy, and efficient, but sometimes, it is
prone to stagnation in the local optima. This paper has proposed many improvements, in
the exploration and exploitation processes, to enhance the performance of DE for solv-
ing optimal power flow (OPF) problems. The main contributions of the DE algorithm are
i) the crossover rate will be changing randomly and continuously for each iteration, ii) all
probabilities that have been ignored in the crossover process have been taken, and iii) in
selection operation, the mathematical calculations of the mutation process have been taken.
Four conflicting objective functions simultaneously have been applied to select the Pareto
optimal front for the multi-objective OPF. Fuzzy set theory has been used to extract the
best compromise solution. These objective functions that have been considered for setting
control variables of the power system are total fuel cost (TFC), total emission (TE), real
power losses (RPL), and voltage profile (VP) improvement. The IEEE 30-bus standard
system has been used to validate the effectiveness and superiority of the approach proposed
based on MATLAB software. Finally, to demonstrate the effectiveness and capability of the
MOIDEA, the results obtained by this method will be compared with other recent methods.
Key words: Multi-objective Improved Differential Evolution Algorithm (MOIDEA), opti-
mal power flow (OPF), set of Pareto front solutions, multi-objective function problems, fuel
costs considering emissions, fuel costs considering real power losses, fuel costs considering
voltage deviation
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1. Introduction

Nowadays, the increasing demand for electricity, the development of technology, and the
deregulation of the power system pushed the power system to operate near its operating limits.
At the same time, due to financial and political issues, the power systems are slowly installed.
The optimal power flow (OPF) is one of the most important issues in the power system operation
because of the ability to achieve the most efficient operation and planning in the power system.
The main goal of the OPF is to optimize objective functions by setting the control variables while
fulfilling equality and inequality constraints. Fuel cost, pollution, losses, the voltage profile, and
voltage stability are factors that must be provided in the power system to achieve proper operation
and planning.

In the past three decades, meta-heuristics optimization algorithms have been very popular
among researchers. These algorithms are inspired by different concepts such as evolutionary,
human, and natural. The main reasons to increase the huge number of optimization methods
are flexibility, simplicity, local optima avoidance, and derivation-free mechanism. To avoid the
local optima solution and discover the global optima, these algorithms are performed by random
operators. Lately, many meta-heuristic methods have been applied to the OPF problem with
an impressive success such as the Genetic Algorithm (GA) [1], Particle Swarm Optimization
(PSO) [2], Modified Artificial Bee Colony (MABC) [3], Differential Evolution (DE) [4], Lightning
Attachment Optimization Technique (LAOT) [5], Glowworm Optimization Algorithm (GOA) [6],
Salp Swarm Algorithm (SSA) [7], Modified Bacteria Foraging Algorithm (MBFA) [8], Modified
JAYA Algorithm (JAYA) [9], Hybrid Firefly and Particle Swarm Optimization (HFPSO) [10],
Fruit Fly Optimization Algorithm (FOA) method [11].

Multi-objective optimal power flow (MOOPF) is an important tool in power systems operation
planning [12]. Numerous methods have been introduced to solve multi-objective (MO) optimiza-
tion such as the weighted sum approach [25], 𝜀-constant [15], penalty function method [16],
strength Pareto evolutionary algorithm [17], non-dominated sorting genetic algorithm-based ap-
proach [18]. The Pareto optimization (PO) is one of the most common methods to solve a
multi-objective optimization problem [19]. This method compares a set of conflicting objective
functions (OFs) with each other in a multi-objective search space to select the most preferable
solutions [20]. One of the most important aspects related to the Pareto front computation in
the decision-making process is the selection of the best compromise solution because it is not
obtained in an automatic way. Selection of the best compromise solution has been proposed by
several methods in the literature, such as a similar philosophy is followed by the entropy method,
the fuzzy membership approach, and the pseudo-weight vector approach [33]. Several algorithms
are incorporated with the Pareto concept to rank non-dominated solutions and determine the
reproduction probability of each individual, such as Harris Hawks Optimization (HHO) [23],
Jaya Optimization [24], the Fruit Fly Optimization (FFO) algorithm [25], Harmony Search (HS)
algorithm [26], Modified Shuffled Frog Leaping (MSFL) algorithm [27], Artificial Bee Colony
(ABC) [28].

Differential Evolution (DE) is one of the important optimization algorithms due to its ability
to give the optimal solutions and its superiority of performance over the other recent optimization
methods [29]. The DE algorithm was proposed by Storn and Price in 1997 [30]. In this work,
the Multi-objective Improved Differential Evolution Algorithm (MOIDEA) has been proposed to



Vol. 71 (2022) Improved Differential Evolution Algorithm to solve multi-objective 643

OPF problems by using multiple Pareto front-optimal solutions to find non-dominated solutions.
This proposed approach is based on improving the DE variant (DE/ best/1) for solving OPF
formulations. The set of Pareto front solutions is assessed by fuzzy set theory to find the best
compromise solution. Three improvements have been proposed to develop the DE algorithm.
These improvements are:

– The values of crossover (CR) and scale factor (F) are not fixed numbers, they are variable
numbers ranging from 0–1 for each generation.

– Creating a new process in the crossover stage represents a new vector trail.
– The mutation calculations will be a consideration in the selection process.
These improvements will result in diversity, efficiency, and an increasing rate of accelerating

convergence with less iteration. Total fuel cost (TFC) minimization, minimization of total emission
(TE), real power losses (RPL) reduction, and voltage profile (VP) improvement have been handled
as objective functions.

The rest of this paper can be arranged as follows: the mathematical formulation of OPF is intro-
duced in section 2. Section 3 declares the strategies of multi-objective solutions. Multi-objective
based on Improved Differential Evolution will be presented in section 4. Section 5 discusses the
simulation results and compares these results with other recent methods of optimization. Finally,
the conclusions are presented in section 6.

2. The mathematical formulation of OPF problems

The OPF problem is mathematically demonstrated. The objectives are optimized by adjusting
the control-variables values with respect to inequality and equality constraints. The mathematical
formulation of the OPF problem can be expressed as follows:

Optimize 𝑓𝑖 (𝑥, 𝑢), 𝑖 = 1, 2, . . . , 𝑁,

subjected to 𝑔 𝑗 (𝑥, 𝑢) = 0, 𝑗 = 1, 2, . . . , 𝑀,

ℎ𝑘 (𝑥, 𝑢) ≤ 0, 𝑘 = 1, 2, . . . , 𝐾,

(1)

where: 𝑓 (𝑥, 𝑢) represents objective functions to be minimized; 𝑔(𝑥, 𝑢) and ℎ(𝑥, 𝑢) are the sets of
equality and inequality constraints, respectively; 𝑁 , 𝑀 , and 𝐾 refer to the number of objectives,
equality constraints, and inequality constraints, respectively; 𝑥 represents the vectors of state
variables and can be symbolized as:

𝑥𝑇 =

[
𝑃𝐺1 ,

��𝑉𝐿1

�� , . . . , ���𝑉𝐿𝑁𝐿

��� , 𝑄𝐺1 , . . . , 𝑄𝐺𝑁𝐺

]
, (2)

where: 𝑁𝐿 and NG are the numbers of load terminals and generators, respectively; 𝑃𝐺1 is the
active power output at the swing bus; 𝑄𝐺 is the reactive power output at PV busses; 𝑉𝐿 is the
voltage magnitude at P-Q buses; 𝑢 is the vectors of control variables and can be defined as below:

𝑢𝑇 =
[
𝑃𝐺2 , . . . , 𝑃𝐺𝑁𝐺

,
��𝑉𝐺1

�� , . . . , ��𝑉𝐺𝑁𝐺

�� , 𝑇1, . . . , 𝑇𝑁𝑇
, 𝑄𝐶1 , . . . , 𝑄𝐶𝑁𝐶

]
, (3)

where: NC and 𝑁𝑇 are the numbers of shunt VAR compensation and taps changing transformers,
respectively; 𝑃𝐺 and 𝑉𝐺 are the real power generation and the magnitude voltage at PV gen-
erator nodes except for the slack generator, respectively; 𝑇 denotes the tap setting of regulating
transformers; 𝑄𝑐 is the number of shunt VAR compensation.
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2.1. Objective functions
In this article, four objectives are carried out to demonstrate the performance of Improved

Differential Evolution (IDE) of multi-objective functions. These objective functions are the total
fuel cost (TFC), the total emission (TE), the real power losses (RPL) minimization, and voltage
profile (VP) improvement.

a. Total fuel cost (TFC) minimization
The total fuel cost ( 𝑓1) of generation units can be expressed as:

𝑓1 =

𝑁𝐺∑︁
𝑖=1

(
𝑎𝑖𝑃

2
𝐺𝑖

+ 𝑏𝑖𝑃𝐺𝑖
+ 𝑐𝑖

)
[$/h], (4)

where: 𝑓1 denotes the total fuel cost of the generation units, 𝑃𝐺 is the active power output of the
generation units, 𝑁𝐺 is the numbers of the generators, and 𝑎𝑖 , 𝑏𝑖 and 𝑐𝑖 represent the fuel cost
coefficients of the generating unit 𝑖.

b. The total emission (TE) minimization
The second objective is the reduction of polluted gases based on environmental emission

minimization such as 𝑁𝑂𝑥 and 𝑆𝑂2 issued by fossil-fueled thermal units. This objective function
can be expressed as:

𝑓2 =

𝑁𝐺∑︁
𝑖=1

10−2
(
𝛼𝑖 + 𝛽𝑖𝑃𝐺𝑖

+ 𝛾𝑖𝑃2
𝐺𝑖

)
+ 𝜁𝑖 exp

(
𝜆𝑖𝑃𝐺𝑖

)
[ton/h] , (5)

where: 𝑓2 denotes total emission of generation units, 𝛼𝑖 , 𝛽𝑖 , 𝛾𝑖 , 𝜁𝑖 and 𝜆𝑖 represent the emission
coefficients of the generating unit 𝑖.

c. The real power losses (RPL) minimization
This objective function aims to reduce real power losses in the transmission network of the

power system which given by:

𝑓3 =

𝑁𝑇 𝐿∑︁
𝑘=1

𝑔(𝑖, 𝑗)
(
𝑉2
𝑖 +𝑉2

𝑗 − 2𝑉𝑖𝑉 𝑗 cos 𝛿𝑖, 𝑗
)

[MW], (6)

where: 𝑓3 is the total active power losses on transmission lines, 𝑁𝑇 𝐿 is the number of transmission
lines, 𝑔(𝑖, 𝑗) is the transmission conductance.

d. The voltage profiles (VPs) improvement
The voltage profile improvement is the fourth objective function by reducing the voltage

deviation from 1.0 p.u. at load buses, which can be expressed as:

𝑓4 = 𝑉𝑑 =

𝑁𝐿∑︁
𝑖=1

|𝑉𝑖 − 1| [p.u.], (7)

where: 𝑓4 is the voltage deviation, 𝑁𝐿 represents the numbers of load terminals, 𝑉𝑖 denotes the
voltage in each load bus of the network.
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2.2. Constraints
The constraints of the OPF are classified into two types: equality constraints and inequality

constraints. Power balance represents equality constraints and the operating system components
represent inequality constraints.

a. Equality constraints
Equality constraints can be expressed as:

𝑃𝐺𝑖
− 𝑃𝐷𝑖

= 𝑉𝑖

𝑁𝐵∑︁
𝑗=1
𝑉 𝑗

[
𝐺𝑖 𝑗 cos 𝜃𝑖 𝑗 + 𝐵𝑖 𝑗 sin 𝜃𝑖 𝑗

]
, (8)

𝑄𝐺𝑖
−𝑄𝐷𝑖

= 𝑉𝑖

𝑁𝐵∑︁
𝑗=1
𝑉 𝑗

[
𝐺𝑖 𝑗 sin 𝜃𝑖 𝑗 − 𝐵𝑖 𝑗 cos 𝜃𝑖 𝑗

]
, (9)

where: 𝑁𝐵 denotes the number of the grid terminals; 𝜃𝑖 𝑗 is the difference of the voltage phase
angles between the buses 𝑖 and 𝑗 ; 𝑉𝑖 , and 𝑉 𝑗 are the voltages magnitude of the bus 𝑖 and 𝑗 ,
respectively;𝐺𝑖 𝑗 and 𝐵𝑖 𝑗 indicate the conductance and susceptance connecting the terminal 𝑖 and
terminal 𝑗 .

b. Inequality constraints
The inequality constraints can be divided into two groups: the control variables’ limits and

state variables’ limits.
i) Control variables’ limits

𝑃min
𝐺𝑖

≤ 𝑃𝐺𝑖
≤ 𝑃max

𝐺𝑖
𝑖 = 2, 3, . . . , 𝑁𝐺 , (10)

𝑉min
𝐺𝑖

≤ 𝑉𝐺𝑖
≤ 𝑉max

𝐺𝑖
𝑖 = 2, 3, . . . , 𝑁𝐺 , (11)

𝑄min
𝐶𝑘

≤ 𝑄𝐶𝑘
≤ 𝑄max

𝐶𝑘
𝑘 = 1, 2, . . . , 𝑁𝐶 , (12)

𝑇min
𝑗 ≤ 𝑇𝑗 ≤ 𝑇max

𝑗 𝑗 = 1, 2, . . . , 𝑁𝑇 . (13)

𝑃min
𝐺

and 𝑃max
𝐺

are the minimum and maximum real power generation at the PV generator nodes
except for the slack generator, respectively; 𝑉min

𝐺
and 𝑉max

𝐺
are the minimum and maximum

voltage magnitude at the PV generator nodes, respectively; 𝑄min
𝐶𝑘

and 𝑄max
𝐶𝑘

are the maximum and
maximum of the reactive power output of the VAR source, respectively; 𝑇min

𝑗
and 𝑇max

𝑗
are the

minimum and maximum tap settings limit of the 𝑖-th transformer, respectively; 𝑁𝐺 , 𝑁𝐶 , and 𝑁𝑇

are the number of generators, VAR, and transformers, respectively.
ii) State variables’ limits

𝑃min
𝐺1

≤ 𝑃𝐺1 ≤ 𝑃max
𝐺1

, (14)

𝑉min
𝐿𝑞

≤ 𝑉𝐿𝑞
≤ 𝑉max

𝐿𝑞
𝑞 = 1, 2, . . . , 𝑁𝐿 , (15)

𝑄min
𝐺𝑖

≤ 𝑄𝐺𝑖
≤ 𝑄max

𝐺𝑖
𝑖 = 1, 2, . . . , 𝑁𝐺 , (16)

𝑆𝐿𝑚
≤ 𝑆max

𝐿𝑚
𝑚 = 1, 2, . . . , 𝑁𝑇 𝐿 , (17)

where 𝑉min
𝐿𝑞

and 𝑉max
𝐿𝑞

are the minimum and maximum load voltage of the 𝑖-th bus. 𝑆𝐿𝑚
is the

apparent power flow limit of the 𝑖-th branch.
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3. The strategy of multi-objective solutions

Multi-objective optimization is the simultaneous optimization of many objective functions
which includes mostly non-commensurable and conflicting objectives. Due to these conflicting
objective functions, a set of optimal solutions will appear instead of one optimal solution which
is called Pareto-optimal solutions. The approach of Pareto optimal represents one of the effec-
tive methods to solve multi-objective problems. According to these objective functions, Pareto
dominance can be divided into dominated and non-dominated solutions. The decision-maker is
responsible to choose the best compromise solution of the non-dominated solutions. The fuzzy
set theory, centroid concept, and entropy criterions are proposed strategies to choose the best
compromise solution [31]. The fuzzy decision-maker is the most known approach to choosing
the best compromise and using it widely [22,26,27,32]. In this paper, the fuzzy decision-making
approach has been chosen to determine the best compromise solution from the final Pareto front
as follows:

3.1. Pareto optimization approach
The set of acceptable solutions will be found in the Pareto optimization. The solution 𝑋1 is

assumed to dominate the solution 𝑋2 if the two conditions have been satisfied [33]:

∀𝑖 ∈ {1, 2, . . . , 𝑛} : 𝐹𝑖 (𝑋1) ≤ 𝐹𝑖 (𝑋2) ,
∀ 𝑗 ∈ {1, 2, . . . , 𝑛} : 𝐹𝑗 (𝑋1) ≤ 𝐹𝑗 (𝑋2) .

(18)

The solutions that could not overcome each other are Pareto optimal solutions and called a set of
dominant solutions. These Pareto sets are stored and updated to solve multi-objective problems.

3.2. Selection of the best compromise solution
The numerical values of multi-objective problems are not of the same kind and in different

ranges often. Therefore, the conversion of the numerical values in a similar range became neces-
sary. Equation (19) represents the value of corresponding membership function for each objective
function (Fig. 1):

𝑢𝑘𝑖 =


1 𝐹𝑖 ≤ 𝐹min

𝑖

𝐹max
𝑖

− 𝐹𝑖
𝐹max
𝑖

− 𝐹min
𝑖

𝐹min
𝑖

< 𝐹𝑖 < 𝐹
max
𝑖

0 𝐹𝑖 ≥ 𝐹max
𝑖

, (19)

where 𝐹min
𝑖

and 𝐹max
𝑖

represent the minimum and the maximum value of the objective function
𝐹𝑖 among all non-dominated solutions. The membership function (𝑢𝑘 ) of each non-dominated
solution (𝑘) can be calculated as:

𝑢𝑘𝑖 =

𝑁obj∑︁
𝑖=1

𝑢𝑘𝑖

𝑀∑︁
𝑘=1

𝑁obj∑︁
𝑖=1

𝑢𝑘𝑖

, (20)
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where: 𝑀 is the total number of non-dominated solutions, 𝑢𝑘
𝑖

is the weight factor of the 𝑖-th
objective function, the maximum value of 𝑢𝑘 represents the best compromise solution [24].

1

u(f)

f
f maxf min

0

Fig. 1. Membership function [24]

4. Multi-objective Improved Differential Evolution Algorithm
(MOIDEA)

The Improved Differential Evolution (IDE) algorithm is an improved version of the Differential
Evolution (DE) algorithm. This proposed algorithm proved its effectiveness to solve single-
objective optimal power flow applied on the IEEE 30-bus and IEEE 57-bus [34,35]. In this paper,
the authors prove the effectiveness of the proposed algorithm to solve the multi-objective OPF.
Three main improvements to the original DE algorithm have been proposed as follows:

a. Crossover rate CR

In the original DE algorithm, the crossover rate is a user-specified constant within the range
[0, 1] only once for all iterations. In this section, the crossover rate will be changing randomly and
continuously for each iteration. This improvement leads to giving more diversity and efficiency,
expedites the convergence and maintains the exploratory feature of the trail process. It can be
described as follows:

[CR] =

rand [0, 1]1,1 . . . rand [0, 1]1,𝐷

rand [0, 1]2,1 rand [0, 1]2,𝐷
...

rand [0, 1]𝑁𝑃,1 rand [0, 1]𝑁𝑃,𝐷

. (21)

CR is the crossover rate within [0, 1], rand [0, 1] is the matrix of random numbers in the
range [0–1].

b. Crossover operation

To increase the population size 𝑁𝑝 and cover all potential solutions, the proposed process
has been carried out on the original DE algorithm. In this process, all probabilities that have
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been ignored in the crossover process will be taken into consideration according to the following
formula:

𝑌𝑖 𝑗 (𝐺) =
{
𝑉𝑖 𝑗 (𝐺) if 𝑗 ≠ 𝑗rand or

(
rand 𝑗 (0, 1)

)
≥ 𝐶𝑟

𝑋𝑖 𝑗 (𝐺) otherwise
. (22)

𝑌𝑖 𝑗 (𝐺) refers to the new trail vector that will be added to the calculations in the selection
process 𝑗rand and is randomly chosen in the range [1, 𝐷],𝐶𝑟 is the crossover probability ∈ [0, 1].

This modification leads to producing new genes in the mutation process, and therefore,
increases the probability of the exploration for the search space.

c. Mutation operation

In the DE algorithm, during the selection operation, the mathematical calculations of the
mutation process have not been taken into consideration. These calculations have been taken
into consideration at the selection stage, and therefore, increased the probability to select the
best control variable by comparing the vectors of the target, mutant, trail, and new trail. This
improvement can be expressed by Eq. (13).

𝑋𝑖 𝑗 (𝐺 + 1) =



𝑌𝑖 𝑗 (𝐺) → 𝑓
(
𝑌𝑖 𝑗 (𝑡)

)
≤

(
𝑓
(
𝑈𝑖 𝑗 (𝑡)

)
and 𝑓

(
𝑉𝑖 𝑗 (𝑡)

)
and 𝑓

(
𝑋𝑖 𝑗 (𝑡)

) )
𝑈𝑖 𝑗 (𝐺) → 𝑓

(
𝑈𝑖 𝑗 (𝑡)

)
≤

(
𝑓
(
𝑉𝑖 𝑗 (𝑡)

)
and 𝑓

(
𝑋𝑖 𝑗 (𝑡)

) )
𝑉𝑖 𝑗 (𝐺) → 𝑓

(
𝑉𝑖 𝑗 (𝑡)

)
≤ 𝑓

(
𝑉𝑖 𝑗 (𝑡)

)
𝑋𝑖 𝑗 (𝐺) otherwise

. (23)

𝑌𝑖 𝑗 (𝐺), 𝑈𝑖 𝑗 (𝐺), 𝑉𝑖 𝑗 (𝐺) and 𝑋𝑖 𝑗 (𝐺) are the components of the new trail, trail, mutant, and
target vectors, 𝑋𝑖 𝑗 (𝐺+1) is the target vector at the current iteration. These improvements expedite
the convergence and give more ability to produce good genes in the subsequent generations. The
procedure of multi-objective function optimization stops whenever the number of non-dominated
solutions equals the predetermined number. The structure of control variables that used to solve
OPF problems is shown in Fig. 2. Figure 3 illustrates the flowchart of the MOIDEA.

Generator slack 
bus [MW]

 Generator voltages 
[p.u.]

Reactive power 
output [MVAr]

... ...

(a)

Generator 
output [MW]

 Generator 
voltages [p.u.]

Transformer 
settings

Shunt elements 
[MVAr]

... ... ... ...

(b)

Fig. 2. Structure of: control variable (a); state variable (b)
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Fig. 3. Flow chart of proposed approach Multi-objective Improved Differential Evolution Algorithm
(MOIDEA)

5. Simulation results

To investigate the efficiency and performance of the proposed MOIDEA, the IEEE 30-bus
test system, which has 6 generators, 41 transmission lines, 4 off-nominal tap ratio transformers
and 9 shunt VAR compensators, has been employed. The system demand is 283.4 [MW]. To
demonstrate the effectiveness of the proposed MOIDEA, three cases have been applied to solve
the multi-objective optimization problem for every two objectives as shown below.

Case 1: fuel cost considering emission
Case 2: fuel cost considering real power loss
Case 3: fuel cost considering voltage deviation

5.1. Case 1: fuel cost considering emission

In this case, the fuel cost of generating units and emission have been minimized simultaneously
to reach an optimal operating point, in the economic sense, for the power system. The fuzzy set
theory is the strategy used to select the best compromise solutions using Pareto front solutions
with a population size of 200 pollinators. The best compromise solutions for fuel and emission
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cost obtained by the developed framework are 832.4283 [$/h] and 0.2336 [ton/h], respectively.
Figure 4(a) shows the best Pareto front solutions obtained from the proposed MOIDEA for
total fuel cost, considering the emission of the IEEE 30-bus system. The proposed approach
provided the results better than the other method for all three objective functions because of the
modifications of the original DE. Table 1 confirmed the advantage of this method. The best Pareto
front solutions obtained by the developed framework with other recent optimization techniques
have been presented in Table 1.
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Fig. 4. The best Pareto set solutions obtained: Case 1 (a); Case 2 (b); Case 3 (c)

5.2. Case 2: fuel cost considering real power losses

The set of Pareto front solutions obtained by the proposed approach illustrated the relationship
between the total fuel cost of generation units and real transmission power losses which have been
minimized together simultaneously, as shown in Fig. 4(b). The results of the comparison of this
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Table 1. Comparison results with other recent optimization algorithms for Case 1 to Case 3

Algorithms
Case 1 Case 2 Case 3

TFC [$/h] TE [ton/h] TFC [$/h] RPL [MW] TFC [$/h] VD [p.u]
Proposed approach
MOIDEA 832.4283 0.2336 831.8407 5.1699 802.4803 0.1452

MPIO-COSR [36] 832.4655 0.2351 NA NA NA NA

MPIO-PFM [36] 833.1703 0.2397 832.2274 5.1270 NA NA

NSGA-II [36] 833.2605 0.2367 833.5363 5.3483 NA NA

ESDE [37] 833.4743 0.2540 NA NA NA NA

ESDE-EC [37] 831.0943 0.2510 NA NA NA NA

ESDE-MC [37] 830.7185 0.2483 827.1592 5.2270 NA NA

BSA [38] 835.0199 0.2425 NA NA NA NA

MODFA [39] 831.6652 0.2432 NA NA NA NA

NSGA-III [39] 832.5323 0.2483 836.8076 5.1775 NA NA

MOPSO [39] 833.7139 0.2492 852.8083 5.2310 NA NA

NHBA [40] 832.6471 0.2375 831.8513 5.1096 NA NA

MODA [41] 838.6037 0.2536 849.3526 4.8143 807.2807 0.0227

MOABC/D [42] NA NA 827.636 5.2451 NA NA

ESDE-MC [37] NA NA 827.1592 5.2270 NA NA

MOMICA [43] NA NA 848.0544 4.5603 804.9611 0.0952

MOICA [43] NA NA NA NA 805.0345 0.1004

Jaya [24] NA NA 817.13 6.04 NA NA

DE [44] NA NA NA NA 805.2619 0.1357

BHBO [45] NA NA NA NA 804.5975 0.1262

BBO [46] NA NA NA NA 804.9982 0.102

NKEA [43] NA NA NA NA 804.9612 0.099

BB-MOPSO [43] NA NA NA NA 804.9639 0.1021

MNSGA-II [43] NA NA NA NA 805.0076 0.0989
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method with other recent optimization methods are in Table 1. The best compromise solution
obtained by this algorithm for total fuel cost and real power transmission loss are 831.8407 [$/h]
and 5.1699 [MW], respectively.

5.3. Case 3: fuel cost considering voltage deviation
The set dominant points of Pareto-optimal solutions are illustrated in Fig. 4(c). Table 1

compares the best compromise value for the total fuel cost of generation units and voltage
deviation of busses calculated by the MOIDEA with other recent algorithms. The best results
for fuel cost and voltage deviation according to the proposed algorithm are 802.4803 [$/h] and
0.1452 [p.u.].

In Fig. 4, Pareto optimal solutions are distributed very well for Cases 1–3. It is difficult to obtain
the optimal solution with the MOOPF. Moreover, the best compromise solutions (BCs) obtained
by the proposed approach of Case 1 can get better solutions than compared to other algorithms
such as Modified pigeon-inspired and constraint-objective sorting rule (MPIO-COSR) [36], Non-
dominated Sorting GA-II (NSGA-II) [36], a modified pigeon-inspired optimization algorithm
with the commonly used penalty function method (MPIO-PFM) [36], Enhanced Self-adaptive
Differential Evolution (ESDE) [37], Backtracking Search Optimization Algorithm (BSA) [38],
Nondominated Sorting GA-III (NSGA-III) [39], Multi-Objective Particle Swarm Optimization
(MOPSO) [39], Novel Hybrid Bat Algorithm (NHBA) [40], and Multi-Objective Dragonfly Al-
gorithm (MODA) [41] is given in Table 1. In addition, the BCs of the MOIDEA achieve better
solutions than other optimization algorithms such as MPIO-PFM [36], NSGA-II [36], NSGA-
III [39], MOPSO [39], as shown in Table 1. Case 3 cannot demonstrate that the proposed approach
achieves the best solution amongst the rest of the algorithms because the best compromises (BCs)
of the MOIDEA are not dominated by the other algorithms, as shown in Table 1.

It is interesting to note that the final solution of the MOIDEA for the three cases has not
violated the limits of constraints, keeping the control variables within permissible limits. Table 2
presents a summary of the obtained optimal setting of control variables for the best solution in
the MOIDEA method. Remarkably, several methods that have been applied in the OPF do not
constantly respect the entire boundaries and violated the feasibility limits. Therefore, Table 3 and
Fig. 5 illustrated the solution feasibility of the MOIDEA for three cases.

0.95

1.00

1.05

1.10

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

V
ol

ta
ge

 [p
.u

.]

No. of bus

Voltage profile

Case 1 Case 2 Case 3

Fig. 5. Voltage profile comparison for three Cases



Vol. 71 (2022) Improved Differential Evolution Algorithm to solve multi-objective 653

Table 2. Optimal control variables obtained by MOIDEA for three Cases

Item Max Min Initial Case 1 Case 2 Case 3

Generator active power [MW]

P1 50 200 99.23 116.5440 118.1093 176.9236

P2 20 80 80 58.0791 55.8706 49.0064

P5 15 50 50 26.5986 30.4243 21.4749

P8 10 35 20 34.6228 34.8392 21.4564

P11 10 30 20 26.2468 28.6865 12.0778

P13 12 40 20 26.7211 20.6600 12.0307

Generator voltage [p.u.]

V1 0.95 1.1 1.05 1.0984 1.0996 1.0608

V2 0.95 1.1 1.04 1.0926 1.0917 1.0391

V5 0.95 1.1 1.01 1.0653 1.0713 1.0069

V8 0.95 1.1 1.01 1.0840 1.0789 1.0068

V11 0.95 1.1 1.05 1.0906 1.0915 1.0315

V13 0.95 1.1 1.05 1.0971 1.0948 1.0193

Tap position

T11 0.9 1.1 1.078 1.0736 1.0534 1.0082

T12 0.9 1.1 1.069 1.0114 1.0265 1.0317

T15 0.9 1.1 1.032 1.0033 0.9851 0.9507

T36 0.9 1.1 1.068 0.9968 0.9890 0.9722

Shunt element [MVAr]

Qc10 0 5.0 0 3.4539 4.5503 4.9907

Qc12 0 5.0 0 2.8678 2.7963 2.2003

Qc15 0 5.0 0 3.7728 2.7539 4.8655

Q17 0 5.0 0 1.2646 4.2483 3.3013

Qc20 0 5.0 0 2.1706 4.1297 4.9986

Q21 0 5.0 0 2.0606 3.8469 4.9432

Qc23 0 5.0 0 2.0555 2.5057 4.8004

Q24 0 5.0 0 2.3472 3.9952 4.9703

Q29 0 5.0 0 0.2526 2.1121 2.4890

Fuel cost [$/h] 901.56 832.4283 831.8407 802.4803

Emission [ton/h] 0.2430 0.2336 0.2352 0.3286

Active power losses [MW] 5.6803 5.5393 5.1699 9.5496

Voltage deviation [p.u.] 1.1747 1.1228 1.3761 0.1452
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Table 3. Reactive power of the generators obtained by MOIDEA for three Cases

Unit number
QGi [MVAr]

Min Max Case 1 Case 2 Case 3

1 –20 200 –14.96 –9.61 14.15

2 –20 100 28.59 22.64 30.23

5 –15 80 25.40 31.79 32.42

8 –15 60 47.17 35.96 31.02

11 –10 50 14.46 14.75 13.49

13 –15 60 30.90 24.19 7.03

6. Conclusions

This article proposes a developed optimization algorithm of the Multi-objective Improved
Differential Evolution Algorithm (MOIDEA) for solving the multi-objective optimal power flow
problem. Four conflicting objective functions have been considered, namely: total fuel cost (TFC)
of generation units, total emission (TE), real power loss (RPL) of transmission lines, and voltage
profile (VP) improvement at all busses whilst satisfying equality and inequality constraints.
The Pareto optimization approach has been used to solve the multi-objective OPF problem by
determining a set of nondominated solutions (Pareto front) and by using fuzzy set theory to select
the best compromise solution. The Multi-objective Improved Differential Evolution Algorithm
– MOIDEA – has been applied to the IEEE 30-test bus system with four cases to validate the
efficiency of the approach proposed. The results of the comparison demonstrate the effectiveness
and the superiority of the MOIDEA method over other recent optimization methods to solve the
multi-objective optimal power flow problem, as well as its ability to solve two objective function
problems by selecting a set of non-dominated feasible solutions. The solution feasibility of the
MOIDEA has been eligible. The dispersion of the solutions in the MOIDEA is relatively low due
to the strong convergence of Pareto front solutions.

In future work, the proposed approach, MOIDEA, can be used to solve more difficult power
systems with more control variables, such as the, IEEE 118-bus, and IEEE 300-bus systems. In
addition, it can be used with multiple objective functions, such as the three-objective function,
four-objective function, and five-objective function. Also, we can use more methods to determine
the best compromise solutions, such as the centroid method, and entropy method.
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