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Abstract: This paper presents an algorithm and optimization procedure for the optimization
of the outer rotor structure of the brushless DC (BLDC) motor. The optimization software
was developed in the Delphi Tiburón development environment. The optimization procedure
is based on the salp swarm algorithm. The effectiveness of the developed optimization
procedure was compared with genetic algorithm and particle swarm optimization algorithm.
The mathematical model of the device includes the electromagnetic field equations taking
into account the non-linearity of the ferromagnetic material, equations of external supply
circuits and equations of mechanical motion. The external penalty function was introduced
into the optimization algorithm to take into account the non-linear constraint function.

Key words: brushless DC motor, constrained optimization, finite element analysis, salp
swarm algorithm

1. Introduction

Nowadays, heuristic algorithms [1] are commonly used in the process of constrained optimiza-
tion of permanent magnet motors. Such optimization algorithms are well-suited to cooperation
with mathematical models based on the finite element method (FEM) [2, 3]. Moreover, heuris-
tic algorithms, often called metaheuristics are very effective to solve constrained optimization
problems.
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In the mathematical model describing electrical machines, it is necessary to take into account
many coupled phenomena, such as: (a) electromagnetic field equations with the nonlinearity of
the magnetic core, (b) Kirchhoff equations for electric circuits and (c) equations of the mechanical
equilibrium equation [4–7]. The FEM models are very accurate, but also computationally time-
consuming. Due to the long total time of the optimization process, highly convergent optimization
algorithms are sought by researchers. In order to shorten the calculation time at the preliminary
optimization stage, analytical models [8] or models with lumped parameters [9] are used.

In the present day, heuristic algorithms are developing rapidly. Among them, swarm intelli-
gence algorithms form a very robust group. The following algorithms belong to this group: (a) the
particle swarm optimization algorithm [10], (b) ant colony algorithm, (c) artificial bee colony,
(d) firefly algorithm [11] and (e) salp swarm algorithm (SSA). The results of the latest research
show a very good convergence of the SSA algorithm in comparison to other swarm intelligence
methods [12].

The aim of this paper is to develop a constrained optimization procedure using the salp swarm
algorithm. The convergence of the elaborated procedure was compared with the convergence of
the genetic algorithm (GA) and particle swarm optimization (PSO). Next, the developed procedure
was applied to optimize a brushless DC motor for an electric bike.

2. Salp swarm algorithm

Based on the swarming behaviour of salps, the salp swarm algorithm was proposed in 2017
by Mirjalili [13]. The way in which salps move is similar to jellyfish and their living environments
are very difficult to access, usually on the ocean floor [14]. The nature of the swarm formation
known as the salp chain was mathematically modelled by treating a group of salps as a leader
and its followers. The name itself defines that the follower salps will follow the leader salp in
the salp chain. The behaviour of the leader salp’s positioning within the search space can be
mathematically modelled in the form of Eq. (1)

x𝑙 =
{

x𝑠 + 𝑎1 [𝑎2 (xmax − xmin) + xmin] for 𝑎3 ≥ 0
x𝑠 − 𝑎1 [𝑎2 (xmax − xmin) + xmin] for 𝑎3 < 0

, (1)

where: x is the vector composed of the design variable of the optimization procedure, x𝑙 is the
position of the leader, x𝑠 is the target foodstuff, 𝑎1, 𝑎2, and 𝑎3 are the arbitrary values, xmin and
xmax are the lower and upper limits of vectors for each design variable.

The positions of the leaders and followers are determined by using the following equation:

x 𝑓 =
1
2
𝛼𝜏2 + 𝛽𝜏 𝑓 ≥ 2. (2)

Equation (2) is derived from Newton’s law of motion with the time 𝜏, and initial speed 𝛽0 [15].
The salp swarm coefficient 𝑎1 for each 𝑘 th iteration is determined by Eq. (3)

𝑎1 = 2𝑒
(

𝑘
𝑘max

)
, (3)

where 𝑘max is the maximum number of iteration.
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The balance between the exploration and exploitation phases can be achieved by proper
selection of the 𝑎1 factor. It is obtained for a particular iteration 𝑘 from Eq. (3) at the total
number of iterations 𝑘max. In addition, arbitrary values 𝑎2, and 𝑎3 are selected randomly in the
range [0, 1].

The flow chart of the SSA is presented in Fig. 1.

Fig. 1. Flowchart of the salp swarm algorithm

3. Test of the algorithm by the using the benchmark functions

The developed optimization procedure for the optimal synthesis of a BLDC motor was tested
using the benchmark functions. Each heuristic algorithm is a stochastic algorithm [16]. The
quality of the optimal solution can depend on: the starting population and the random numbers
used to determine the new positions of the salps. In order to verify the correctness of the algorithm,
the global minimum point of the Goldstein–Price function 𝑓1 (𝑥1, 𝑥2) was searched [17]. The 𝑓1
function described by Formula (4) is

𝑓1 (𝑥1𝑥2) =
[
1 + (𝑥1 + 𝑥2 + 1)2

(
19 − 14𝑥1 + 3𝑥2

1 − 14𝑥2 + 6𝑥1𝑥2 + 3𝑥2
2

)]
·
[
30 + (2𝑥1 − 3𝑥2)2

(
18 − 32𝑥1 + 12𝑥2

1 + 48𝑥2 − 36𝑥1𝑥2 + 27𝑥2
2

)]
, (4)

where: 𝑥1 is in the range (–3.0, 3.0), 𝑥2 is in the range (–3.0, 3.0).
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The analyzed function has one global minimum [18] at the point (0, –1), and 𝑓1 (0, −1) is
equal to 3. Additionally, the Goldstein–Price function has three local minima points: (a) (1.2, 0.8),
(b) (1.8, 0.2) and (c) (–0.6, –0.4). The plot of the Goldstein–Price function is presented in Fig. 2.

Fig. 2. Visualization of the Goldstein–Price function

Next, the calculation was performed for the six-hump camel function 𝑓2. The 𝑓2 function is
defined by Eq. (5)

𝑓2 (𝑥1𝑥2) = 𝑥2
1

(
4 − 2.1𝑥2

1 +
𝑥4

1
3

)
+ 𝑥1𝑥2 + 𝑥2

2

(
4𝑥2

2 − 4
)
, (5)

where: 𝑥1 is in the range (–3.0, 3.0), 𝑥2 is in the range (–3.0, 3.0).
The multimodal six-hump camel function has two global minima. Both global minima are

equal to –1.0316 and have coordinates (0.0899, –0.7126) or (–0.0899, 0.7126).
In the case of heuristic algorithms, the solutions obtained may depend on many coefficients.

In order to obtain more reliable results, the optimization process was run 20 times for random
positions of the salps during the initialization procedure.

The computations were done by the following parameters of the SSA: the number of salps,
𝑁 = 50, and the maximum number of iterations, 𝑘max = 80. The statistical analysis has been
performed. The average, best, worst and standard deviation (SD) results of the optimization
process were calculated.

Next, the simulation calculations were executed for the GA and PSO [15]. The number of
individuals was 50. The probability of mutation was 𝑝𝑚 = 0.005. The values of the constant
factors for PSO algorithm were used: 𝑤 = 0.2, 𝑐1 = 0.35 and 𝑐2 = 0.45. The results of the
computations are presented in Table 1.

When comparing the computer simulations for both benchmark functions, it can be observed
that the best results are similar for all analyzed optimization algorithms. Better values of the
average function and standard deviations were obtained for the SSA.

Convergence curves for the best optimization process for the SSA, GA and PSO are shown in
Fig. 3 and Fig. 4.
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Table 1. Statistical analysis to benchmark functions for compared optimization algorithms

Algorithm Benchmark
function Range Best Worst Average SD

SSA
𝑓1 (–3.5, 3.5) 3.000000 3.000001 3.0000001 0.0000001

𝑓2 (–3.0, 3.0) –1.031628 –1.031627 –1.031628 0.0000025

GA
𝑓1 (–3.5, 3.5) 3.000011 3.000248 3.000264 0.0006112

𝑓2 (–3.0, 3.0) –1.031628 –1.026659 –1.031345 0.0011091

PSO
𝑓1 (–3.5, 3.5) 3.000001 3.000034 3.000026 0.0000456

𝑓2 (–3.0, 3.0) –1.031628 –1.00955 –1,029354 0.0036027

Fig. 3. The comparison of convergence curves for 𝑓1

Fig. 4. The comparison of convergence curves for 𝑓2
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It can be observed, that the SSA allows one to obtain better results than the GA. The genetic
algorithm has faster convergence than the SSA. The convergence curve of the PSO is very fast
for the 𝑓1 benchmark function. It can be observed, that after ten iterations of the algorithm the
position of the leader is near the global minimum.

The SSA belongs to swarm intelligence algorithms. During the process of searching for
a global extreme, all individuals cooperate with each other. The process of searching for the
global minimum of the “heart” benchmark function is shown in Fig. 5. The red point denotes the
global minimum of the analyzed function.

(a) 1st iteration (b) 10th iteration

(c) 17th iteration (d) 20th iteration

Fig. 5. Distribution of the slaps in selected iterations
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Based on the distribution of individuals, it can be concluded that salps search the permissible
area for up to 10 iterations. Subsequent iterations show swarming behavior when all salps are
gathered around the extreme point. In the SSA, the particles concentrate slower around the global
minimum point than in the PSO, in which the swarming behavior is very fast.

4. Field-circuit model of BLDC

In permanent magnet machines, the electromagnetic field is excited simultaneously by perma-
nent magnets and stator windings. The equations describing the electromagnetic field in devices
containing soft ferromagnetic material, permanent magnets and areas with constant magnetic
permeability, are [19]:

curl
(

1
𝜇

curl A
)
= J𝑢 + J𝑀 , (6)

J𝑢 = 𝜎

(
grad𝑉𝑒 −

𝜕A
𝜕𝑡

)
, (7)

where: 𝜇 is the magnetic permeability, A is the magnetic vector potential, J𝑢 is the vector of
current density in the stator winding, J𝑀 is the vector of magnetizing current density in the
regions with permanent magnets, 𝜎 is the electric conductivity, 𝑉𝑒 is the scalar electric potential.

In the regions containing permanent magnets, the magnetizing current density vector depends
on the magnetization vector M.

J𝑀 = curl M, (8)

where M is the magnetization vector within the permanent magnet area.
The electric machines are usually supplied by voltage sources. Due to the non-linearity of the

ferromagnetic core and back-electromotive force induced in the stator winding, the waveforms of
current waveforms in the phases of the BLDC motor are not known in advance. These waveforms
are necessary to determine the electromagnetic field distribution. Thus, it is necessary to take into
consideration the Kirchhoff equations for electric circuits

d𝚿
d𝑡

+ Ri = u, (9)

where: u is the vector of supply voltages, 𝚿 is the matrix of flux linkage, R is the diagonal matrix
of winding resistances, i is the vector composed from phase currents.

In transient states (start-up and load change), the rotational velocity is not known in advance.
Therefore, it is necessary to take into account the mechanical equilibrium equation

𝐽𝑖
d𝜔
d𝑡

= 𝑇 − 𝑇𝑙 − 𝐵𝜔, (10)

where: 𝐽𝑖 is the moment of inertia, 𝜔 is the angular velocity, 𝑇 is the electromagnetic torque, 𝑇𝑙
is the loading torque, 𝐵 is the friction constant.

A two-dimensional (2-D) finite element method (FEM) model of the BLDC motor was
developed. In order to solve the non-linear system of FEM equations the iterative Newton–
Raphson process was adopted. The set of coupled field-circuit equations can be written in the
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form [20] [
H𝑘

𝑛 −z
z𝑇 Δ𝑡R

] [
𝛿𝚽𝑘

𝑛

𝛿i𝑘𝑛

]
=

[
𝚯𝑀𝑛 − S𝑘

𝑛𝚽
𝑘−1
𝑛 + zi𝑘−1

𝑛

Δ𝑡u𝑛 + z𝑇𝚽𝑛−1 − z𝑇𝚽𝑘−1
𝑛 − Δ𝑡Ri𝑘−1

𝑛

]
, (11)

where: H𝑘
𝑛 is the Hessian matrix of the Newton–Raphson process, z is the matrix of turn numbers

associated with the nodes within the windings area, Δ𝑡 = 𝑡𝑛 − 𝑡𝑛1 is the time step length, Θ𝑀𝑛 is
the vector of magneto-motive forces in the permanent magnets area, S𝑛 is the stiffness matrix at
the time 𝑡𝑛, 𝚽𝑛 = 𝑙A𝑛 is the vector of nodal potentials multiplied by the machine length 𝑙, 𝑘 is
the Newton–Raphson iteration, 𝛿𝚽𝑘

𝑛 = 𝚽𝑘
𝑛 −𝚽𝑘−1

𝑛 and 𝛿i𝑘𝑛 = i𝑘𝑛 − i𝑘−1
𝑛 are the unknown vectors

𝚽𝑘
𝑛 and i𝑘𝑛 increments.

All parameters (𝑇av and 𝜀) used in the optimization procedure were calculated on the basis of
the electromagnetic field distribution.

The pulsation factor is determined

𝜀 =
𝑇max − 𝑇min

𝑇av
100%, (12)

where: 𝑇max, 𝑇min are the maximum and minimum electromagnetic torque values, 𝑇av is the
average electromagnetic torque.

5. Optimization of BLDC motor

To analyze the convergence of the salp swarm algorithm, the optimization of the outer rotor
BLDC motor was executed. The structure of the BLDC motor was described by four design
variables: 𝑠1 = 𝛿 – air gap length, 𝑠2 = ℎPM – the height of the permanent magnet, 𝑠3 = 𝜏PM –
a span of the permanent magnet, 𝑠4 = ℎFE = 𝜉ℎPM – the height of the ferromagnetic tooth. The
structure of the BLDC motor is presented in Fig. 6.

Fig. 6. Structure of BLDC motor
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The more important steady-state parameters in BLDC motors are: (a) average torque and
(b) pulsation factor. The electromagnetic torque is very frequently maximized while the pulsation
factor is minimized [21–23].

The adopted objective function for the 𝑖th salp has the following form:

𝑓 𝑖 (𝛿, ℎPM, 𝜏PM, ℎFE) =
𝑇 𝑖

av (𝛿, ℎPM, 𝜏PM, ℎFE)
𝑇𝑎𝑣0

, (13)

where: 𝑇 𝑖
av (𝛿, ℎPM, 𝜏PM, ℎFE) is the average value of electromagnetic torque for the 𝑖-th salp and

𝑇av0 is the average value of electromagnetic torque after the initiation procedure.
The non-linear constraint function is taken into account. During the optimization process, the

permissible pulsation factor was imposed [24]. The constraint function was normalized and had
the following form:

𝑔𝑖 (𝛿, ℎPM, 𝜏PM, ℎFE) =
𝜀𝑖 (𝛿, ℎPM, 𝜏PM, ℎFE) − 𝜀𝜒

𝜀 𝜒
≤ 0, (14)

where 𝜀𝜒 was the permissible pulsation factor.
The SSA convergence is not fast at the beginning of the optimization process (see Fig. 3),

therefore an external penalty can be effective. In the approach with an external penalty, a modified
objective function ℎ is created.

ℎ𝑖𝑚 (𝛿, ℎPM, 𝜏PM, ℎFE) =
{
𝑓 𝑖 for 𝜀𝑖 ≤ 𝜀𝜒

𝑓 𝑖 − 𝑃𝑖 for 𝜀𝑖 > 𝜀𝜒
, (15)

where: 𝑚 is the number of external penalty iterations, 𝑃 is the penalty component.
In the external penalty function, the penalty component represents the penalty for exceeding

the permissible value of the pulsation factor 𝜀𝜒. The value of 𝑃 depends on the number (𝑚) of
external penalty iterations and is formed as follows:

𝑃𝑖
𝑚 (𝛿, ℎPM, 𝜏PM, ℎFE) = 𝑟𝑚𝑔𝑖 (𝛿, ℎPM, 𝜏PM, ℎFE) , (16)

where 𝑟 is the penalty coefficient [10].
Optimization calculations were performed for the following parameters: the number of salps

is equal to 45, the maximum number of iterations is equal to 40, the permissible pulsation factor
𝜀𝜒 ≤ 0.15 and penalty coefficient 𝑟 = 1.2. The calculation was performed for 𝑚 equal to 4 (i.e.
the number of iterations of the slap swarm algorithm executed in one external penalty iteration).
The course of the optimization process for the best individual is presented in Table 2.

According to the results shown in Table 2, the optimal results were obtained after about 20
iterations of the SSA. In earlier iterations of the optimization process, a successive increase in the
average value of the electromagnetic torque and a decrease in the value of the pulsation coefficient
can be observed.

Next, the distribution of the salps in the selected iterations of the optimization process of the
BLDC motor in the space 𝛿 and ℎPM are presented in Fig. 7.

Based on the distributions of the salps in the space of two design variables, it can be observed
that until the 10th iteration, the salps recognize the area around the best-adapted individual. In the
10th iteration, most of the slaps have a value of 𝛿 in the range of 1.25, 1.32 mm.
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Table 2. Comparison of the results for selected iterations of optimization process

k 𝜹 hPM 𝝉PM 𝝃 Tav 𝜺 h

1 1.256 4.152 0.751 0.89 2.645 0.371 0.3435

5 1.249 4.713 0.751 0.84 2.693 0.268 0.3657

9 1.305 4.956 0.751 0.82 2.751 0.213 0.4102

13 1.312 4.984 0.833 0.81 2.749 0.193 0.7765

16 1.315 4.987 0.833 0.81 2.751 0.189 0.9365

20 1.153 4.348 0.917 0.80 2.756 0.151 1.2172

40 1.153 4.348 0.917 0.80 2.786 0.151 1.2172

(a) 2nd iteration (b) 5th iteration

(c) 10th iteration (d) 20th iteration

Fig. 7. Distribution of the slaps in selected iterations

Next, the FEM calculations for optimal values of design variables at: (a) the 1st iteration and
(b) the last iteration optimization process were executed. The obtained waveforms of electromag-
netic torque are presented in Fig. 8.

It can be observed that for the best salp in the 1st iteration, the maximum value of elec-
tromagnetic torque is greater than the maximum value of torque for the best salp in the last
iteration.
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Fig. 8. The waveforms of electromagnetic torque for selected iterations of optimization process

Despite the bigger value of the maximum value of the electromagnetic torque, the mean value
of the output torque is lower in the first iteration. The reduction of the pulsation coefficient by
approximately 59% was obtained during the optimization process.

6. Conclusions

This paper presents the application of the salp swarm algorithm for constrained optimization
of the BLDC motor. The salp swarm algorithm belongs to swarm intelligence optimization
algorithms. The developed optimization procedure was tested on the analytical functions. Next,
the optimization procedure was tied with an FEM model describing coupled phenomena in
the BLDC motor. The result of the optimization process for the BLDC motor confirmed the
effectiveness of the SSA in solving constrained optimization tasks.

The performed research has shown, that the SSA is a very interesting alternative to the
classical particle swarm algorithm. The process of searching for the global extreme for the SSA
is slightly slower in relation to the PSO. Therefore, in the case of connecting the SSA with the
external penalty method, the external iteration linked with the increasing penalty component may
be changed more slowly that in the PSO algorithm. The obtained results encourage a deeper
analysis of such an algorithm.
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