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Multi-attribute decision-making based on q-rung dual
hesitant power dual Maclaurin symmetric mean

operator and a new ranking method

Li LI, Jun WANG and Chunliang JI

The ability of q-rung dual hesitant fuzzy sets (q-RDHFSs) in dealing with decision makers’
fuzzy evaluation information has received much attention. This main aim of this paper is to
propose new aggregation operators of q-rung dual hesitant fuzzy elements and employ them
in multi-attribute decision making (MADM). In order to do this, we first propose the power
dual Maclaurin symmetric mean (PDMSM) operator by integrating the power geometric (PG)
operator and the dual Maclaurin symmetric mean (DMSM). The PG operator can reduce or
eliminate the negative influence of decision makers’ extreme evaluation values, making the final
decision results more reasonable. The DMSM captures the interrelationship among multiple
attributes. The PDMSM takes the advantages of both PG and DMSM and hence it is suitable and
powerful to fuse decision information. Further, we extend the PDMSM operator to q-RDHFSs
and propose q-rung dual hesitant fuzzy PDMSM operator and its weighted form. Properties
of these operators are investigated. Afterwards, a new MADM method under q-RDHFSs is
proposed on the basis on the new operators. Finally, the effectiveness of the new method is
testified through numerical examples.

Key words: q-rung dual hesitant fuzzy sets, power geometric, dual Maclaurin symmetric
mean, power dual Maclaurin symmetric mean, multi-attribute decision-making

1. Introduction

Multiple attribute decision-making (MADM) theory aims to rank feasible
alternatives based on decision makers’ (DMs’) evaluation values under multiple
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attributes. MADM has a wide range of applications and it has gotten extensive
interests [1–6]. One of the methods to get the rank of candidate alternatives is to
arrange all the possible alternatives according to their corresponding overall eval-
uation values, which can be obtained by aggregating attribute values provided by
DMs under multiple attributes. Hence, aggregation operator (AO) is an efficient
and powerful tool in MADM. The power average (PA) operator proposed by Prof.
Yager [7], which allows argument values to support each other in the informa-
tion aggregation process, is a powerful information aggregation technology. The
most prominent characteristic of the PA operator is that it is capable to reduce
or eliminate the negative effect of unduly high or low arguments on the informa-
tion aggregation results. In MADM process, the PA operator can reduce the bad
influence of DMs extreme evaluation values, making the final decision results
more reasonable. In addition, due to the complexity and uncertainty of MADM
problems, the intuitionistic fuzzy sets [8], hesitant fuzzy sets [9], dual hesitant
fuzzy sets [10], Pythagorean fuzzy sets [11] and q-rung orthopair fuzzy sets (q-
ROFSs) [12], etc., have been extensively employed to express DMs’ complicated
and fuzzy evaluation values. Hence, the traditional PA operator has been ex-
tensively to the above-mentioned decision-making environment to propose new
MADM methods [13–17]. Moreover, there usually exists interrelationship be-
tween multiple attributes when calculating the comprehensive evaluation values.
TheMaclaurin symmetric mean (MSM) [18] operator has the ability of reflecting
the interrelationship among multiple correlated. Similarly, the MSM operator has
been also widely generalized to different decision-making environments. Qin and
Liu [19] originally extended MSM to IFSs and proposed weighted intuitionis-
tic fuzzy MSM operator to deal with MADM problems. Thereafter, Wang and
Liu [20] and Liu PD and LiuWQ [21] proposed new intuitionistic fuzzyMSMop-
erator under Schweizer-Sklar operations and interaction operations, respectively.
Sun and Xia [22] continued to investigate MSM under interval-valued IFSs. Wei
and Lu [23] and Wei et al. [24] extended MSM to PFSs and interval-valued
PFSs, respectively. Similarly, Wei and his colleagues studied the new forms of
MSM under q-ROFSs [25] and interval-valued q-ROFSs [26], respectively. Be-
sides, the MSM operator has been extended to probabilistic linguistic sets [27],
two-dimensional uncertain linguistic sets [28], etc.
Recently, Teng et al. [29] combined PA with MSM and proposed the power

Maclaurin symmetric mean (PMSM) operator. The PMSM operator takes the full
advantages of PA andMSM. That is to say, the PMSM operator has the capability
of reducing the negative influence of DMs’ unreasonable evaluation values and
reflecting the interrelationship among multiple input arguments. Due to these
characteristics, the PMSM has been incorporated in Pythagorean fuzzy linguistic
sets [29], interval-valued intuitionistic fuzzy sets [30], and q-ROFSs [31], and
a series of novel AOs have been proposed. In these references, the advantages
and superiorities of these new AOs were investigated in detail, and they were



MULTI-ATTRIBUTE DECISION-MAKING BASED ON Q-RUNG DUAL HESITANT POWER
DUAL MACLAURIN SYMMETRIC MEAN OPERATOR AND A NEW RANKING METHOD 629

also successfully applied in solving practical MADM problems. In the theory
of AO, each AO has its dual form. For example, the dual form of Bonferroni
mean (BM) [32] is geometric Bonferroni mean (GBM) [33]. The dual form of
Heronian mean (HM) [34] is geometric Heronian mean (GHM) [35]. The dual
form of power BM operator [36] is power GBM (PGBM) operator [37]. The dual
form of power HM operator [38] is power GHM (PGHM) operator [39]. Hence,
the PMSM operator also has a dual form, i.e. the power dual Maclaurin sym-
metric mean (PDMSM). Actually, the PDMSM is a combination of the power
geometric (PG) [40] with the dual Maclaurin symmetric mean (DMSM) [41].
The PDMSM has the similar characteristics as the PMSM operator. In addition,
the PDMSM is more powerful than the PGBM and PGHM, as it proceeds the
interrelationship among multiple input variables. Therefore, it is necessary to
investigate the PDMSM as well as its applications in decision-making. Neverthe-
less, up to present, nothing has been done on the PDMSM and its applications.
This is the first motivation of this paper. In our works, we give the definition
of PDMSM operator, investigate its properties and further study its applica-
tions.
Additionally, the q-RDHFS proposed by Xu et al. [42] is an efficient tool

to depict DMs’ evaluation values. The advantages of the q-RDHFS are two-
fold. First, due to its lax constraint that the sum of 𝑞-th power of membership
degree and 𝑞-th power of non-membership degree is less than or equal to one,
the q-RDHFS gives enough freedom for DMs to comprehensively express their
evaluation values. Second, the q-RDHFSs effectively deal with DMs’ hesitancy
when providing their evaluation information. In [42], Xu et al. proposed aMADM
method based on q-rung dual hesitant fuzzy (q-RDHF) HM operators. However,
Xu et al.’s [42] method still have some shortcomings. First, it fails to effectively
deal with DMs’ unreasonable evaluation values. In other word, if DMs provide
extreme evaluation values, the decision results produced by Xu et al.’s [42]
method maybe become unreasonable or unreliable. Second, it does not consider
the interrelationship that exists in multiple attributes.
Based on the above analysis, the main purpose of this paper is to propose

novel decision-making method, which can overcome the drawbacks of Xu et
al.’s [42] method. The main works and contributions of this paper are three-fold.
First, a new AO, called PDMSM is proposed, which fulfills the theory vacancy.
We combine the PG with DMSM, and present the definition of the PDMSM
operator. Characteristics of the PDMSM operator are also discussed. Second,
novel AOs for q-RDHF elements (q-RDHFEs) based on PDMSM are proposed.
We generalize the PDMSM into q-RDHFSs and introduce the q-rung dual hesitant
fuzzy PDMSM operator and its weighted form. The properties and special cases
of the proposed AOs are also investigated. Third, a novel MADM method based
on the proposed AOs is presented, and a series of numerical examples are further
provided to show the validity and merits of our new method.
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To clearly report our works and contributions, we organize the rest of this
paper as follows. Section 2 reviews basic concepts. Section 3 develops a new
score function and ranking method. Section 4 proposes a series of AOs and dis-
cusses their properties. Section 5 gives the main steps of a new MADM method.
Section 6 demonstrates the effectiveness advantages of our method through nu-
merical examples. Summarization and future research directions are given in
Section 7.

2. Basic concepts

In this section, we review basic notions such as q-RDHFSs, PG, and DMSM
operators. These concepts are important for the rest of this manuscript.

2.1. The q-rung dual hesitant fuzzy sets

Definition 1 [42] Let X be a given fixed set, a q-RDHFS A defined on X is
expressed as

𝐴 = {〈𝑥, ℎ𝐴 (𝑥), 𝑔𝐴 (𝑥)〉 |𝑥 ∈ 𝑋 } , (1)

where ℎ𝐴 (𝑥) and 𝑔𝐴 (𝑥) are two sets of some values in the interval [0, 1], denoting
the possible MD and NMD of the element 𝑥 ∈ 𝑋 to the set A, such that 0 ¬ 𝛾,
𝜂 ¬ 1 and 𝛾𝑞 + 𝜂𝑞 ¬ 1, where 𝛾 ∈ ℎ𝐴 (𝑥) and 𝜂 ∈ 𝑔𝐴 (𝑥) for all 𝑥 ∈ 𝑋 . For
convenience, the ordered pair (ℎ𝐴 (𝑥), 𝑔𝐴 (𝑥)) is called a q-RDHFE, which can
be denoted by 𝑑 = (ℎ, 𝑔) for simplicity.

Xu et al. [42] gave some basic operations of q-RDHFEs.

Definition 2 [42] Let 𝑑1 = (ℎ1, 𝑔1), 𝑑2 = (ℎ2, 𝑔2) and 𝑑 = (ℎ, 𝑔) be any three
q-RDHFEs and 𝜆 be a positive real number, then

(1) 𝑑1 ⊕ 𝑑2 =
⋃

𝛾1∈ℎ1,𝛾2∈ℎ2,𝜂1∈𝑔1,𝜂2∈𝑔2

{{(
𝛾
𝑞

1 + 𝛾
𝑞

2 − 𝛾
𝑞

1𝛾
𝑞

2

)1/𝑞}
, {𝜂1𝜂2}

}
;

(2) 𝑑1 ⊗ 𝑑2 =
⋃

𝛾1∈ℎ1,𝛾2∈ℎ2,𝜂1∈𝑔1,𝜂2∈𝑔2

{
{𝛾1𝛾2} ,

{(
𝜂
𝑞

1 + 𝜂
𝑞

2 − 𝜂
𝑞

1𝜂
𝑞

2

)1/𝑞}}
;

(3) 𝜆𝑑 =
⋃

𝛾∈ℎ,𝜂∈𝑔

{{(
1 − (1 − 𝛾𝑞)𝜆

)1/𝑞}
,
{
𝜂𝜆

}}
;

(4) 𝑑𝜆 =
⋃

𝛾∈ℎ,𝜂∈𝑔

{{
𝛾𝜆

}
,

{(
1 − (1 − 𝜂𝑞)𝜆

)1/𝑞}}
.

Xu et al. [42] proposed a method to compare any two q-RDHFEs.
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Definition 3 [42] Let 𝑑 = (ℎ, 𝑔) be a q-RDHFE, then the score function of d is
defined as

𝑆(𝑑) = ©« 1#ℎ
∑︁
𝛾∈ℎ

𝛾
ª®¬
𝑞

−
(
1
#𝑔

∑︁
𝜂∈𝑔

𝜂

)𝑞
, (2)

and the accuracy function of d is expressed as

𝐻 (𝑑) = ©« 1#ℎ
∑︁
𝛾∈ℎ

𝛾
ª®¬
𝑞

+
(
1
#𝑔

∑︁
𝜂∈𝑔

𝜂

)𝑞
, (3)

For any two q-RDHFEs d1 and d2,
(1) If 𝑆(𝑑1) > 𝑆(𝑑2), then 𝑑1 > 𝑑2;
(2) If 𝑆(𝑑1) = 𝑆(𝑑2), then

if 𝐻 (𝑑1) > 𝐻 (𝑑2), then 𝑑1 > 𝑑2;
if 𝐻 (𝑑1) = 𝐻 (𝑑2), then 𝑑1 = 𝑑2.

In the following,we present the distancemeasure between any two q-RDHFEs.

Definition 4 Let 𝑑1 = (ℎ1, 𝑔1) and 𝑑2 = (ℎ2, 𝑔2) be any two q-RDHFEs, then the
distance between d1 and d2 is expressed as

dis (𝑑1, 𝑑2) =

#ℎ∑︁
𝑖=1

���(𝛾1𝜎(𝑖)

)𝑞
−

(
𝛾2
𝜎(𝑖)

)𝑞 ��� + #𝑔∑︁
𝑗=1

���(𝜂1𝜎( 𝑗)

)𝑞
−

(
𝜂2
𝜎( 𝑗)

)𝑞 ���
#ℎ + #𝑔 , (4)

where #ℎ denotes the number of values of ℎ1 and ℎ2, and #g represents the
number of values of 𝑔1 and 𝑑2. 𝜎(𝑖) is a permutation of (1, 2, . . . , 𝑛), satisfying
𝛾1
𝜎(𝑖) ¬ 𝛾1

𝜎(𝑖+1) , 𝛾
2
𝜎(𝑖) ¬ 𝛾2

𝜎(𝑖+1) , 𝜂
1
𝜎( 𝑗) ¬ 𝜂1

𝜎( 𝑗+1) , and 𝜂2
𝜎( 𝑗) ¬ 𝜂2

𝜎( 𝑗+1) , where
𝛾1
𝜎(𝑖) ∈ ℎ1, 𝛾2𝜎(𝑖) ∈ ℎ2, 𝜂1𝜎( 𝑗) ∈ 𝑔1 and 𝜂2

𝜎( 𝑗) ∈ 𝑔2.

Remark 1 From Definition 4, it is noted that when calculating the distance
between any two q-RDHFEs, the two q-RDHFEs should have the numbers of
MDs and NMDs. In other word, let 𝑑1 = (ℎ1, 𝑔1) and 𝑑2 = (ℎ2, 𝑔2) be any two
q-RDHFEs, then #ℎ1 should be equal to #ℎ2, and #𝑔1 should be equal to #𝑔2.
However, in most situations, #ℎ1 ≠#ℎ2, and #𝑔1 ≠#𝑔2. To operate correctly, we
usually extend the shorter one by adding some values until both of them have the
same length. In addition, if DMs are optimistic about their evaluation values, they
usually add the maximum value. If DMs are pessimistic about their decisions,
they usually add the minimum value. In this paper, we assume DMs are optimistic



632 L. LI, J. WANG, C. JI

about their decision values. Hence, we extend the shorter q-RDHFE by adding
the maximum values. For example, let 𝑑1 = {{0.1, 0.2}, {0.7, 0.8, 0.9}} and 𝑑2 =
{{0.6, 0.7, 0.8}, {0.3, 0.4}} be two q-RDHFEs (𝑞 = 2), then we can extend 𝑑1 to
{{0.1, 0.2, 0.2}, {0.7, 0.8, 0.9}} and extend 𝑑2 to {{0.6, 0.7, 0.8}, {0.3, 0.4, 0.4}}.
Then, according to Eq. (4), we can obtain dis(𝑑1, 𝑑2) = 0.4883.

2.2. Power geometric and dual Maclaurin symmetric mean

In the following, we review some basic AOs that will be used in the following
sections.

Definition 5 [40]. Let 𝑎𝑖 (𝑖 = 1, 2, . . . , 𝑛) be a collection of non-negative real
number, then PG operator is defined as

𝑃𝐺 (𝑎1, 𝑎2, . . . , 𝑎𝑛) =
𝑛∏
𝑖=1

𝑎
1+𝑇 (𝑎𝑖)

/ 𝑛∑
𝑖=1

(1+𝑇 (𝑎𝑖))

𝑖
, (5)

where 𝑇 (𝑎𝑖) =
𝑛∑︁

𝑗=1;𝑖≠ 𝑗

Sup(𝑎𝑖, 𝑎 𝑗 ), and Sup(𝑎𝑖, 𝑎 𝑗 ) is the support measure for 𝑎𝑖

from 𝑎 𝑗 , satisfying the following conditions:

(1) Sup
(
𝑎𝑖, 𝑎 𝑗

)
∈ [0, 1];

(2) Sup
(
𝑎𝑖, 𝑎 𝑗

)
= Sup

(
𝑎 𝑗 , 𝑎𝑖

)
;

(3) Sup
(
𝑎𝑖, 𝑎 𝑗

)
 Sup (𝑎𝑚, 𝑎𝑛), if

��𝑎𝑖 − 𝑎 𝑗

�� ¬ |𝑎𝑚 − 𝑎𝑛 |.

Qin and Liu [41] proposed the dual form of MSM, called DMSM operator.

Definition 6 [41]. Let 𝑎𝑖 (𝑖 = 1, 2, . . . , 𝑛) be a set of nonnegative real numbers
and 𝑘 = 1, 2, . . . , 𝑛. If

𝐷𝑀𝑆𝑀 (𝑘) (𝑎1, 𝑎2, . . . , 𝑎𝑛) =
1
𝑘

©«
∏

1¬𝑖1<...<𝑖𝑘¬𝑛

©«
𝑘∑︁
𝑗=1

𝑎𝑖 𝑗
ª®¬
1/𝐶𝑘

𝑛 ª®®¬ , (6)

then 𝐷𝑀𝑆𝑀 (𝑘) is called the dual Maclaurin symmetric mean (DMSM) operator,
where (𝑖1, 𝑖2, . . . , 𝑖𝑘 ) traverses all the k-tuple combinations of (𝑖 = 1, 2, . . . , 𝑛)
and 𝐶𝑘

𝑛 is the binomial coefficient.
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3. A new score function and ranking method for q-RDHFEs

In this section, we aim to propose a new ranking method for q-RDHFEs
by introducing a new score function, which enriches the theory of q-RDHFSs.
Obviously, the positive ideal q-RDHFE is 𝑑+ = {{1}, {0}} and the negative
ideal q-RDHFE is 𝑑− = {{0}, {1}}. From Definition 4, we can obtain the distance
between the q-RDHFE 𝑑 = (ℎ, 𝑔) and the positive ideal q-RDHFE 𝑑+ = {{1}, {0}}
as follows:

dis
(
𝑑, 𝑑+

)
=

#ℎ∑︁
𝑖=1

���𝛾𝑞
𝜎(𝑖) − 1

��� + #𝑔∑︁
𝑗=1

���𝜂𝑞
𝜎( 𝑗)

���
#ℎ + #𝑔 =

#ℎ∑︁
𝑖=1

(
1 − 𝛾

𝑞

𝜎(𝑖)

)
+
#𝑔∑︁
𝑗=1

𝜂
𝑞

𝜎( 𝑗)

#ℎ + #𝑔 , (7)

and the distance between the q-RDHFE 𝑑 = (ℎ, 𝑔) and the negative ideal q-
RDHFE 𝑑− = {{0}, {1}} as follows:

dis(𝑑, 𝑑−) =

#ℎ∑︁
𝑖=1

���𝛾𝑞
𝜎(𝑖)

��� + #𝑔∑︁
𝑗=1

���𝜂𝑞
𝜎( 𝑗) − 1

���
#ℎ + #𝑔 =

#ℎ∑︁
𝑖=1

𝛾
𝑞

𝜎(𝑖) +
#𝑔∑︁
𝑗=1

(
1 − 𝜂

𝑞

𝜎( 𝑗)

)
#ℎ + #𝑔 . (8)

It is easy to find out that the smaller the distance dis(𝑑, 𝑑+) is, the bigger the
q-RDHFE 𝑑 is; the larger the distance dis(𝑑, 𝑑−) is, the bigger q-RDHFE d is.
Hence, we propose a new score function for a q-RDHFE 𝑑 = (ℎ, 𝑔). Based on
this, we propose a novel ranking method for q-RDHFEs.

Definition 7 Let 𝑑 = (ℎ, 𝑔) be a q-RDHFE, 𝑑+ = {{1}, {0}} be the positive ideal
q-RDHFE and 𝑑− = {{0}, {1}} be the negative ideal q-RDHFE, then the score
function of d is defined as

𝑆(𝑑) = dis (𝑑, 𝑑−)
dis (𝑑, 𝑑−) + dis (𝑑, 𝑑+)

=

#ℎ∑︁
𝑖=1

𝛾
𝑞

𝜎(𝑖) +
#𝑔∑︁
𝑗=1

(
1 − 𝜂

𝑞

𝜎( 𝑗)

)
#ℎ∑︁
𝑖=1

𝛾
𝑞

𝜎(𝑖) +
#𝑔∑︁
𝑗=1

(
1 − 𝜂

𝑞

𝜎( 𝑗)

)
+
#ℎ∑︁
𝑖=1

(
1 − 𝛾

𝑞

𝜎(𝑖)

)
+
#𝑔∑︁
𝑗=1

𝜂
𝑞

𝜎( 𝑗)

, (9)

For any two q-RDHFEs 𝑑1 = (ℎ1, 𝑔1) and 𝑑2 = (ℎ2, 𝑔2), then if 𝑆(𝑑1) 
𝑆(𝑑2), we have 𝑑1  𝑑2; if 𝑆(𝑑1) < 𝑆(𝑑2), then we have 𝑑1 < 𝑑2.

Example 1 Let 𝑑1 = {{0.1, 0.2}, {0.7, 0.8, 0.9}} and 𝑑2 = {{0.6, 0.7, 0.8},
{0.3, 0.4}} be two q-RDHFEs (𝑞 = 3), then we can get that 𝑆(𝑑1) = 0.285
and 𝑆(𝑑2) = 0.596. Hence, we have 𝑑1 < 𝑑2 because 𝑆(𝑑1) < 𝑆(𝑑2).
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4. Power dual Maclaurin symmetric mean operator
and its extension to q-RDHFSs

If we combine the PG with DMSM operators, the PDMSM operator can
be obtained. Evidently, the PDMSM operator takes the advantages of both PG
and DMSM operators. Hence, the PDMSM operator is useful and powerful in
information aggregation process. In this section, we first give the definition of
the PDMSM operator. Afterwards, we extend the PDMSM to q-RDHFSs and
propose some novel AOs of q-RDHFEs.

4.1. The power dual Maclaurin symmetric

Definition 8 Let 𝑎𝑖 (𝑖 = 1, 2, . . . , 𝑛) be a collection of crisp numbers and 𝑘 =

1, 2, . . . , 𝑛. The PDMSM operator is expressed as

PDMSM(𝑘) (𝑎1, 𝑎2, . . . , 𝑎𝑛) =
1
𝑘

©«
∏

1¬𝑖1<...<𝑖𝑘¬𝑛

©«
𝑘∑︁
𝑗=1

𝑎

𝑛

(
1+𝑇

(
𝑎𝑖 𝑗

))
𝑛∑
𝑡=1

(1+𝑇 (𝑎𝑡 ))

𝑖 𝑗

ª®®®®®¬

1/𝐶𝑘
𝑛 ª®®®®®®¬

, (10)

where 𝑇 (𝑎𝑖) =
𝑛∑︁

𝑗=1;𝑖≠ 𝑗

Sup
(
𝑎𝑖, 𝑎 𝑗

)
, and Sup

(
𝑎𝑖, 𝑎 𝑗

)
is the support measure for 𝑎𝑖

from 𝑎 𝑗 , satisfying properties presented in Definition 5. If we assume

𝜀𝑖 =
1 + 𝑇 (𝑎𝑖)

𝑛∑︁
𝑡=1

(1 + 𝑇 (𝑎𝑡))
, (11)

then Eq. (10) can be written as

𝑃𝐷𝑀𝑆𝑀 (𝑘) (𝑎1, 𝑎2, . . . , 𝑎𝑛) =
1
𝑘

©«
∏

1¬𝑖1<...<𝑖𝑘¬𝑛

©«
𝑘∑︁
𝑗=1

𝑎
𝑛𝜀𝑖 𝑗

𝑖 𝑗

ª®¬
1/𝐶𝑘

𝑛 ª®®¬ , (12)

where 0 ¬ 𝜀𝑖 ¬ 1 and
𝑛∑︁
𝑖=1

𝜀𝑖 = 1.

Remark 2 From Definition 8, we can see the PDMSM operator is based on the
combination of PG and DMSM. Hence, the PDMSM absorbs the advantages
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and superiorities of PG and DMSM. In other word, the PDMSM reduces the
bad influence of the unduly high or low inputs variables on the final aggregation
results and captures the interrelationship among multiple attributes. In addition,
the PDMSM is the dual form of the PMSM operator. Moreover, some special
cases of the PDMSM operator with different parameters can be obtained.

Case 1: If 𝑘 = 1, then the PDMSM operator reduces to PG operator, i.e.

PDMSM(𝑘) (𝑎1, 𝑎2, . . . , 𝑎𝑛) =
𝑛⊗
𝑖=1

𝑎
𝜀𝑖 𝑗

𝑖
= 𝑃𝐺 (𝑎1, 𝑎2, . . . , 𝑎𝑛) . (13)

Case 2: If 𝑘 = 2, then the PDMSM operator reduces to the power geometric
Bonferroni mean (PGBM) [43] operator, i.e.,

PDMSM(𝑘) (𝑎1, 𝑎2, . . . , 𝑎𝑛) =
1
2

©«
𝑛⊗

𝑖, 𝑗=1,𝑖≠ 𝑗

(
𝑎
𝑛𝜀𝑖
𝑖

⊕ 𝑎
𝑛𝜀 𝑗

𝑗

) 2
𝑛(𝑛−1) ª®¬

= PGBM1,1 (𝑎1, 𝑎2, . . . , 𝑎𝑛) . (14)

Definition 8 presents the PDMSM operator for crisp numbers. Given the good
performance of PDMSM operator in aggregating information, it is necessary to
extend PDMSM to q-RDHFSs. In the following, we present novel AOs of q-
RDHFEs and discuss their properties.

4.2. The q-rung dual hesitant fuzzy power dual Maclaurin symmetric mean operator

By extending the powerful PDMSMoperator to q-RDHFSs, we propose some
novel AOs for q-RDHFEs and investigate their properties.

Definition 9 Let 𝑑𝑖 (𝑖 = 1, 2, . . . , 𝑛) be a collection of q-RDHFEs and 𝑘 =

1, 2, . . . , 𝑛. The q-rung dual hesitant fuzzy power dual Maclaurin symmetric
mean (q-RDHFPDMSM) operator is expressed as

q-RDHFPDMSM(𝑘) (𝑑1, 𝑑2, . . . , 𝑑𝑛) =
1
𝑘

©«
⊗
1¬𝑖1<...
<𝑖𝑘¬𝑛

©«
𝑘⊕
𝑗=1

𝑑

𝑛

(
1+𝑇

(
𝑑𝑖 𝑗

))
𝑛∑
𝑡=1

(1+𝑇 (𝑑𝑡 ))

𝑖 𝑗

ª®®®®®¬

1/𝐶𝑘
𝑛 ª®®®®®®¬

, (15)

where 𝑇 (𝑑𝑖) =
𝑛∑︁

𝑗=1,𝑖≠ 𝑗

Sup
(
𝑑𝑖, 𝑑 𝑗

)
, and Sup

(
𝑑𝑖, 𝑑 𝑗

)
is the support measure for 𝑑𝑖

from 𝑑 𝑗 , satisfying the following condition:
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(1) 0 ¬ Sup
(
𝑑𝑖, 𝑑 𝑗

)
¬ 1;

(2) Sup
(
𝑑𝑖, 𝑑 𝑗

)
= Sup

(
𝑑 𝑗 , 𝑑𝑖

)
;

(3) Sup
(
𝑑𝑖, 𝑑 𝑗

)
 Sup (𝑑𝑚, 𝑑𝑛), if and only if dis

(
𝑑𝑖, 𝑑 𝑗

)
¬ dis (𝑑𝑚, 𝑑𝑛).

For convenience, we assume

𝜎𝑖 =
1 + 𝑇 (𝑑𝑖)

𝑛∑︁
𝑡=1

(1 + 𝑇 (𝑑𝑡))
, (16)

then Eq. (15) can be written as

q-RDHFPDMSM(𝑘) (𝑑1, 𝑑2, . . . , 𝑑𝑛) =
1
𝑘

©«
⊗

1¬𝑖1<...<𝑖𝑘¬𝑛

©«
𝑘⊕
𝑗=1

𝑑
𝑛𝜎𝑖 𝑗

𝑖 𝑗

ª®¬
1/𝐶𝑘

𝑛 ª®®¬ , (17)
where 0 ¬ 𝜎𝑖 ¬ 1 and

𝑛∑︁
𝑖=1

𝜎𝑖 = 1.

According to the operations of q-RDHFEs presented in Definition 2, we can
obtain the calculation result of the q-RDHFPDMSM operator.

Theorem 1 Let 𝑑𝑖 = (ℎ𝑖, 𝑔𝑖) (𝑖 = 1, 2, . . . , 𝑛) be a collection of q-RDHFEs and
𝑘 = 1, 2, . . . , 𝑛. The aggregated value by the q-RDHFPDMSM operator is still a
q-RDHFE and

q-RDHFPDMSM(𝑘) (𝑑1, 𝑑2, . . . , 𝑑𝑛) =
⋃

𝛾𝑖 𝑗 ∈ℎ𝑖 𝑗 ,𝜂𝑖 𝑗 ∈𝑔𝑖 𝑗

©«1 −

©«1 −
∏

1¬𝑖1<...<𝑖𝑘¬𝑛

©«1 −
𝑘∏
𝑗=1

(
1 − 𝛾

𝑛𝑞𝜎𝑖 𝑗

𝑖 𝑗

)ª®¬
1

𝐶𝑘
𝑛 ª®®¬

1
𝑘 ª®®®¬
1/𝑞

,


©«1 −

∏
1¬𝑖1<...<𝑖𝑘¬𝑛

©«1 −
𝑘∏
𝑗=1

(
1 −

(
1 − 𝜂

𝑞

𝑖 𝑗

)𝑛𝜎𝑖 𝑗
)ª®¬

1
𝐶𝑘
𝑛 ª®®¬

1
𝑞𝑘


 . (18)

Proof. According to Definition 4, we can obtain

𝑑
𝑛𝜎𝑖 𝑗

𝑖 𝑗
=

⋃
𝛾𝑖 𝑗 ∈ℎ𝑖 𝑗 ,𝜂𝑖 𝑗 ∈𝑔𝑖 𝑗

{{
𝛾
𝑛𝜎𝑖 𝑗

𝑖 𝑗

}
,

{(
1 −

(
1 − 𝜂

𝑞

𝑖 𝑗

)𝑛𝜎𝑖 𝑗
)1/𝑞}}

,
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and

𝑘⊕
𝑗=1

𝑑
𝑛𝜎𝑖 𝑗

𝑖 𝑗
=

⋃
𝛾𝑖 𝑗 ∈ℎ𝑖 𝑗 ,
𝜂𝑖 𝑗 ∈𝑔𝑖 𝑗


©«1 −

𝑘∏
𝑗=1

(
1 − 𝛾

𝑛𝑞𝜎𝑖 𝑗

𝑖 𝑗

)ª®¬
1/𝑞 ,


𝑘∏
𝑗=1

(
1 −

(
1 − 𝜂

𝑞

𝑖 𝑗

)𝑛𝜎𝑖 𝑗
)1/𝑞

.
Thus,

©«
𝑘⊕
𝑗=1

𝑑
𝑛𝜎𝑖 𝑗

𝑖 𝑗

ª®¬
1/𝐶𝑘

𝑛

=
⋃

𝛾𝑖 𝑗 ∈ℎ𝑖 𝑗 ,𝜂𝑖 𝑗 ∈𝑔𝑖 𝑗



©«1 −

𝑘∏
𝑗=1

(
1 − 𝛾

𝑛𝑞𝜎𝑖 𝑗

𝑖 𝑗

)ª®¬
1

𝑞𝐶𝑘
𝑛

 ,


©«1 −

©«1 −
𝑘∏
𝑗=1

(
1 −

(
1 − 𝜂

𝑞

𝑖 𝑗

)𝑛𝜎𝑖 𝑗
)ª®¬

1
𝐶𝑘
𝑛 ª®®¬
1/𝑞

 .

Then,

⊗
1¬𝑖1<...<𝑖𝑘¬𝑛

©«
𝑘⊕
𝑗=1

𝑑
𝑛𝜎𝑖 𝑗

𝑖 𝑗

ª®¬
1/𝐶𝑘

𝑛

=
⋃

𝛾𝑖 𝑗 ∈ℎ𝑖 𝑗 ,
𝜂𝑖 𝑗 ∈𝑔𝑖 𝑗




∏
1¬𝑖1<...<𝑖𝑘¬𝑛

©«1 −
𝑘∏
𝑗=1

(
1 − 𝛾

𝑛𝑞𝜎𝑖 𝑗

𝑖 𝑗

)ª®¬
1

𝑞𝐶𝑘
𝑛

,
©«1 −

∏
1¬𝑖1<...<𝑖𝑘¬𝑛

©«1 −
𝑘∏
𝑗=1

(
1 −

(
1 − 𝜂

𝑞

𝑖 𝑗

)𝑛𝜎𝑖 𝑗
)ª®¬

1
𝐶𝑘
𝑛 ª®®¬
1/𝑞

.
Hence,

1
𝑘

©«
⊗
1¬𝑖1<...
<𝑖𝑘¬𝑛

©«
𝑘⊕
𝑗=1

𝑑
𝑛𝜎𝑖 𝑗

𝑖 𝑗

ª®¬
1

𝐶𝑘
𝑛 ª®®®¬ =

⋃
𝛾𝑖 𝑗 ∈ℎ𝑖 𝑗 ,
𝜂𝑖 𝑗 ∈𝑔𝑖 𝑗



©«
1 −

©«1 −
∏
1¬𝑖1<
...<𝑖𝑘¬𝑛

©«1 −
𝑘∏
𝑗=1

(
1 − 𝛾

𝑛𝑞𝜎𝑖 𝑗

𝑖 𝑗

)ª®¬
1

𝐶𝑘
𝑛 ª®®®¬

1
𝑘 ª®®®®¬

1
𝑞

,


©«1 −

∏
1¬𝑖1<
...<𝑖𝑘¬𝑛

©«1 −
𝑘∏
𝑗=1

(
1 −

(
1 − 𝜂

𝑞

𝑖 𝑗

)𝑛𝜎𝑖 𝑗
)ª®¬

1
𝐶𝑘
𝑛 ª®®®¬

1
𝑞𝑘



.
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Theorem 2 (Idempotency): Let 𝑑𝑖 = (ℎ𝑖, 𝑔𝑖) (𝑖 = 1, 2, . . . , 𝑛) be a collection of
q-RDHFEs, if 𝑑𝑖 = 𝑑 = (ℎ, 𝑔) for all i, and d has only one MD and one NMD,
then,

q-RDHFPDMSM(𝑘) (𝑑1, 𝑑2, . . . , 𝑑𝑛) = 𝑑. (19)

Proof. As 𝑑𝑖 = 𝑑 = (ℎ, 𝑔) (𝑖 = 1, 2, . . . , 𝑛) and 𝑑 only has one MD and one
NMD, then we have Sup

(
𝑑𝑖, 𝑑 𝑗

)
= 1 for 𝑖, 𝑗 = 1, 2, . . . , 𝑛 (𝑖 ≠ 𝑗). Thus, 𝜎𝑖 𝑗 = 1/𝑛

(𝑖, 𝑗 = 1, 2, . . . , 𝑛; 𝑖 ≠ 𝑗) holds for all 𝑖. According to Theorem 1, we have

q-RDHFPDMSM(𝑘) (𝑑1, 𝑑2, . . . , 𝑑𝑛)

=
⋃

𝛾𝑖 𝑗 ∈ℎ𝑖 𝑗 ,
𝜂𝑖 𝑗 ∈𝑔𝑖 𝑗



©«1 −

©«1 −
∏

1¬𝑖1<...<𝑖𝑘¬𝑛

©«1 −
𝑘∏
𝑗=1

(
1 − 𝛾

𝑛𝑞𝜎𝑖 𝑗

𝑖 𝑗

)ª®¬
1

𝐶𝑘
𝑛 ª®®¬

1
𝑘 ª®®®¬
1/𝑞

,


©«1 −

∏
1¬𝑖1<...<𝑖𝑘¬𝑛

©«1 −
𝑘∏
𝑗=1

(
1 −

(
1 − 𝜂

𝑞

𝑖 𝑗

)𝑛𝜎𝑖 𝑗
)ª®¬

1
𝐶𝑘
𝑛 ª®®¬

1
𝑞𝑘




=
⋃

𝛾𝑖 𝑗 ∈ℎ𝑖 𝑗 ,
𝜂𝑖 𝑗 ∈𝑔𝑖 𝑗



©«1 −

©«1 −
∏

1¬𝑖1<...<𝑖𝑘¬𝑛

©«1 −
𝑘∏
𝑗=1

(
1 − 𝛾

𝑞

𝑖 𝑗

)ª®¬
1

𝐶𝑘
𝑛 ª®®¬

1
𝑘 ª®®®¬
1/𝑞

,


©«1 −

∏
1¬𝑖1<...<𝑖𝑘¬𝑛

©«1 −
𝑘∏
𝑗=1

(
𝜂
𝑞

𝑖 𝑗

)ª®¬
1

𝐶𝑘
𝑛 ª®®¬

1
𝑞𝑘




=
⋃

𝛾𝑖 𝑗 ∈ℎ𝑖 𝑗 ,
𝜂𝑖 𝑗 ∈𝑔𝑖 𝑗



(
1 −

((
1 − 𝛾

𝑞

𝑖 𝑗

) 𝑘 ) 1𝑘 )1/𝑞 ,

{((
𝜂
𝑞

𝑖 𝑗

) 𝑘 ) 1
𝑞𝑘

} = (ℎ, 𝑔) = 𝑑.

Theorem 3 (Boundedness) Let 𝑑𝑖 = (ℎ𝑖, 𝑔𝑖) (𝑖 = 1, 2, . . . , 𝑛) be a collection of
q-RDHFEs, 𝑑− = min (𝑑1, 𝑑2, . . . , 𝑑𝑛) and 𝑑+ = max (𝑑1, 𝑑2, . . . , 𝑑𝑛), then

𝑥 ¬ q-RDHFPDMSM(𝑘) (𝑑1, 𝑑2, . . . , 𝑑𝑛) ¬ 𝑦, (20)
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where

𝑥 =
1
𝑘

©«
⊗
1¬𝑖1<...
<𝑖𝑘¬𝑛

©«
𝑘⊕
𝑗=1

(𝑑−)𝑛𝜎𝑖 𝑗
ª®¬
1/𝐶𝑘

𝑛 ª®®®¬
and

𝑦 =
1
𝑘

©«
⊗
1¬𝑖1<...
<𝑖𝑘¬𝑛

©«
𝑘⊕
𝑗=1

(
𝑑+

)𝑛𝜎𝑖 𝑗
ª®¬
1/𝐶𝑘

𝑛 ª®®®¬ .
Proof. From Definition 3, we can obtain

(𝑑−)𝑛𝜎𝑖 𝑗 ¬ 𝑑
𝑛𝜎𝑖 𝑗

𝑖 𝑗
,

and
𝑘⊕
𝑗=1

(𝑑−)𝑛𝜎𝑖 𝑗 ¬
𝑘⊕
𝑗=1

𝑑
𝑛𝜎𝑖 𝑗

𝑖 𝑗
.

Therefore, ©«
𝑘⊕
𝑗=1

(𝑑−)𝑛𝜎𝑖 𝑗
ª®¬
1/𝐶𝑘

𝑛

¬
©«

𝑘⊕
𝑗=1

𝑑
𝑛𝜎𝑖 𝑗

𝑖 𝑗

ª®¬
1/𝐶𝑘

𝑛

,

thus, ⊗
1¬𝑖1<...
<𝑖𝑘¬𝑛

©«
𝑘⊕
𝑗=1

(𝑑−)𝑛𝜎𝑖 𝑗
ª®¬
1/𝐶𝑘

𝑛

¬
⊗
1¬𝑖1<...
<𝑖𝑘¬𝑛

©«
𝑘⊕
𝑗=1

𝑑
𝑛𝜎𝑖 𝑗

𝑖 𝑗

ª®¬
1/𝐶𝑘

𝑛

.

Finally,

1
𝑘

©«
⊗
1¬𝑖1<...
<𝑖𝑘¬𝑛

©«
𝑘⊕
𝑗=1

(𝑑−)𝑛𝜎𝑖 𝑗
ª®¬
1/𝐶𝑘

𝑛 ª®®®¬ ¬
1
𝑘

©«
⊗
1¬𝑖1<...
<𝑖𝑘¬𝑛

©«
𝑘⊕
𝑗=1

𝑑
𝑛𝜎𝑖 𝑗

𝑖 𝑗

ª®¬
1/𝐶𝑘

𝑛 ª®®®¬ ,
which means that 𝑥 ¬ q-RDHFPDMSM(𝑘) (𝑑1, 𝑑2, . . . , 𝑑𝑛).
Similarly, we can also prove q-RDHFPDMSM(𝑘) (𝑑1, 𝑑2, . . . , 𝑑𝑛) ¬ 𝑦. Thus,

the proof of Theorem 3 is completed. In addition, it is worth to point out that
the q-RDHFPDMSM operator does not has the property of monotonicity. This
is because the PG operator fails to provide the monotonicity property. Hence,
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the PDMSM and q-RDHFPDMSM operators do not exhibit the monotonicity
property either.
In the following, we investigate the special cases of the q-RDHFPDMSM

operator with respect to the parameters 𝑘 and 𝑞.
Special case 1: If 𝑘 = 1, then the q-RDHFPDMSMoperator reduces to the q-rung
dual hesitant fuzzy power geometric (q-RDHFPG) operator, i.e.

q-RDHFPDMSM(1) (𝑑1, 𝑑2, . . . , 𝑑𝑛)

=
⋃
𝛾𝑖∈ℎ𝑖 ,
𝜂𝑖∈𝑔𝑖


{

𝑛∏
𝑖=1

𝛾
𝜎𝑖

𝑖

}
,


(
1 −

𝑛∏
𝑖=1

(
1 − 𝜂

𝑞

𝑖

)𝜎𝑖

)1/𝑞


=

𝑛⊗
𝑖=1

𝑑
𝜎𝑖 𝑗

𝑖
= q-RDHFPG (𝑑1, 𝑑2, . . . , 𝑑𝑛) . (21)

Special case 2: If 𝑘 = 2, then the q-RDHFPDMSM operator reduces to the
q-rung dual hesitant fuzzy power geometric Bonferroni mean (q-RDHFPGBM)
operator, i.e.

q-RDHFPDMSM(2) (𝑑1, 𝑑2, . . . , 𝑑𝑛)

=
⋃
𝛾𝑖∈ℎ𝑖 ,
𝛾 𝑗∈ℎ 𝑗 ,
𝜂𝑖∈𝑔𝑖 ,
𝜂 𝑗∈𝑔 𝑗



©«
1 −

©«1 −
𝑛∏

𝑖, 𝑗=1
𝑖≠ 𝑗

(
1 −

(
1 − 𝛾

𝑛𝑞𝜎𝑖

𝑖

) (
1 − 𝛾

𝑛𝑞𝜎𝑗

𝑗

)) 1
𝑛(𝑛−1)

ª®®®¬
1
2 ª®®®®¬
1/𝑞

,


©«1 −

𝑛∏
𝑖, 𝑗=1
𝑖≠ 𝑗

(
1 −

(
1 −

(
1 − 𝜂

𝑞

𝑖

)𝑛𝜎𝑖
) (
1 −

(
1 − 𝜂

𝑞

𝑗

)𝑛𝜎𝑗
)) 1

𝑛(𝑛−1)
ª®®®¬
1
2𝑞 


=
1
2

©«
𝑛⊗

𝑖, 𝑗=1,
𝑖≠ 𝑗

(
𝑑
𝑛𝜎𝑖

𝑖
⊕ 𝑑

𝑛𝜎𝑗

𝑗

) 2
𝑛(𝑛−1)

ª®®®¬
= q-RDHFPGBM1,1 (𝑑1, 𝑑2, . . . , 𝑑𝑛) . (22)

Special case 3. If 𝑞 = 1, then the q-RDHFPDMSM operator reduces to the dual
hesitant fuzzy power dual Maclaurin symmetric mean (DHFPDMSM) opera-
tor, i.e.
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q-RDHFPDMSM(𝑘)
𝑞=1 (𝑑1, 𝑑2, . . . , 𝑑𝑛)

=
⋃

𝛾𝑖 𝑗 ∈ℎ𝑖 𝑗 ,
𝜂𝑖 𝑗 ∈𝑔𝑖 𝑗


1 −

©«1 −
∏

1¬𝑖1<...<𝑖𝑘¬𝑛

©«1 −
𝑘∏
𝑗=1

(
1 − 𝛾

𝑛𝜎𝑖 𝑗

𝑖 𝑗

)ª®¬
1

𝐶𝑘
𝑛 ª®®¬

1
𝑘
 ,


©«1 −

∏
1¬𝑖1<...<𝑖𝑘¬𝑛

©«1 −
𝑘∏
𝑗=1

(
1 −

(
1 − 𝜂𝑖 𝑗

)𝑛𝜎𝑖 𝑗
)ª®¬

1
𝐶𝑘
𝑛 ª®®¬

1
𝑘



= DHFPDMSM (𝑑1, 𝑑2, . . . , 𝑑𝑛) . (23)

Special case 4. If 𝑞 = 2, then the q-RDHFPDMSM operator reduces to the dual
hesitant Pythagorean fuzzy power Maclaurin symmetric mean (DHPFPDMSM)
operator, i.e.

q-RDHFPDMSM(𝑘)
𝑞=2 (𝑑1, 𝑑2, . . . , 𝑑𝑛)

=
⋃

𝛾𝑖 𝑗 ∈ℎ𝑖 𝑗 ,
𝜂𝑖 𝑗 ∈𝑔𝑖 𝑗



©«
1 −

©«1 −
∏
1¬𝑖1<...
<𝑖𝑘¬𝑛

©«1 −
𝑘∏
𝑗=1

(
1 − 𝛾

2𝑛𝜎𝑖 𝑗

𝑖 𝑗

)ª®¬
1

𝐶𝑘
𝑛 ª®®®¬

1
𝑘 ª®®®®¬
1/2

,


©«1 −

∏
1¬𝑖1<...
<𝑖𝑘¬𝑛

©«1 −
𝑘∏
𝑗=1

(
1 −

(
1 − 𝜂2𝑖 𝑗

)𝑛𝜎𝑖 𝑗
)ª®¬

1
𝐶𝑘
𝑛 ª®®®¬

1
2𝑘 


. (24)

Special case 5. If 𝑞 = 3, then the q-RDHFPDMSM operator reduces to dual
hesitant Fermatean fuzzy PDMSM (DHFFPDMSM) operator, i.e.,

q-RDHFPDMSM(𝑘)
𝑞=3 (𝑑1, 𝑑2, . . . , 𝑑𝑛)

=
⋃

𝛾𝑖 𝑗 ∈ℎ𝑖 𝑗 ,
𝜂𝑖 𝑗 ∈𝑔𝑖 𝑗



©«1 −

©«1 −
∏

1¬𝑖1<...<𝑖𝑘¬𝑛

©«1 −
𝑘∏
𝑗=1

(
1 − 𝛾

3𝑛𝜎𝑖 𝑗

𝑖 𝑗

)ª®¬
1

𝐶𝑘
𝑛 ª®®¬

1
𝑘 ª®®®¬
1/3

,


©«1 −

∏
1¬𝑖1<...<𝑖𝑘¬𝑛

©«1 −
𝑘∏
𝑗=1

(
1 −

(
1 − 𝜂3𝑖 𝑗

)𝑛𝜎𝑖 𝑗
)ª®¬

1
𝐶𝑘
𝑛 ª®®¬

1
3𝑘 

 . (25)
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Remark 3 We can discover more special cases of the proposed q-RDHFPDMSM
operator by adopting some special parameters. For instance, if 𝑘 = 𝑞 = 1 in the
q-RDHFPDMSM operator, then the dual hesitant fuzzy power geometric operator
is obtained. If 𝑘 = 2 and 𝑞 = 1, then the q-RDHFPDMSM operator reduces to the
dual hesitant fuzzy power geometric Bonferroni mean operator. The other special
AOs, such as dual hesitant Pythagorean fuzzy power geometric operator, dual
hesitant Pythagorean fuzzy power geometric Bonferroni mean operator, the dual
hesitant Fermatean fuzzy power geometric operator, and dual hesitant Fermatean
fuzzy power geometric Bonferroni mean operator, etc.

4.3. The q-rung dual hesitant fuzzy power weighted dual Maclaurin
symmetric mean operator

As seen in above section, the q-RDHFPDMSM operator does not consider
the importance of q-RDHFEs. However, the weights of input q-RDHFEs usually
play an important role in the aggregation results. Therefore, it is necessary to take
the weights of aggregated q-RDHFEs into account. By considering the weight
vector, we propose the weighted form of q-RDHFPDMSM operator.

Definition 10 Let 𝑑𝑖 (𝑖 = 1, 2, . . . , 𝑛) be a collection of q-RDHFEs and 𝑘 =

1, 2, . . . , 𝑛. Let 𝑤 = (𝑤1, 𝑤2, . . . , 𝑤𝑛)𝑇 be the weight vector, such that 0 ¬ 𝑤𝑖 ¬ 1

and
𝑛∑︁
𝑖=1

𝑤𝑖 = 1. The q-RDHFPWDMSM operator is expressed as

q-RDHFPWDMSM(𝑘) (𝑑1, 𝑑2, . . . , 𝑑𝑛)

=
1
𝑘

©«
⊗

1¬𝑖1<...<𝑖𝑘¬𝑛

©«
𝑘⊕
𝑗=1

𝑑

𝑛𝑤𝑖 𝑗

(
1+𝑇 (𝑑𝑖 𝑗 )

)
𝑛∑
𝑡=1

𝑤𝑡 (1+𝑇 (𝑑𝑡 ))

𝑖 𝑗

ª®®®®®¬

1/𝐶𝑘
𝑛 ª®®®®®®¬

, (26)

where 𝑇 (𝑑𝑖) =
𝑛∑︁

𝑗=1;𝑖≠ 𝑗

Sup
(
𝑑𝑖, 𝑑 𝑗

)
, and Sup

(
𝑑𝑖, 𝑑 𝑗

)
is the support measure for 𝑑𝑖

from 𝑑 𝑗 , satisfying the properties in Definition 9. To simplify Eq. (26), we assume

𝛿𝑖 =
𝑤𝑖 (1 + 𝑇 (𝑑𝑖))
𝑛∑︁
𝑡=1

𝑤𝑡 (1 + 𝑇 (𝑑𝑡))
, (27)
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then Eq. (26) can be written as

q-RDHFPWDMSM(𝑘) (𝑑1, 𝑑2, . . . , 𝑑𝑛) =
1
𝑘

©«
⊗
1¬𝑖1<...
<𝑖𝑘¬𝑛

©«
𝑘⊕
𝑗=1

𝑑
𝑛𝛿𝑖 𝑗

𝑖 𝑗

ª®¬
1/𝐶𝑘

𝑛 ª®®®¬ , (28)

where 0 ¬ 𝛿𝑖 ¬ 1 and
𝑛∑︁
𝑖=1

𝛿𝑖 = 1.

Based on the operational rules of q-RDHFEs, the following decision result is
obtained.

Theorem 4 Let 𝑑𝑖 = (ℎ𝑖, 𝑔𝑖) (𝑖 = 1, 2, . . . , 𝑛) be a collection of q-RDHFEs and
𝑘 = 1, 2, . . . , 𝑛. The aggregated value by the q-RDHFPWDMSM operator is also
a q-RDHFE and

q-RDHFPWDMSM(𝑘) (𝑑1, 𝑑2, . . . , 𝑑𝑛) =
⋃

𝛾𝑖 𝑗 ∈ℎ𝑖 𝑗 ,𝜂𝑖 𝑗 ∈𝑔𝑖 𝑗

©«1 −

©«1 −
∏

1¬𝑖1<...<𝑖𝑘¬𝑛

©«1 −
𝑘∏
𝑗=1

(
1 − 𝛾

𝑛𝑞𝛿𝑖 𝑗

𝑖 𝑗

)ª®¬
1

𝐶𝑘
𝑛 ª®®¬

1
𝑘 ª®®®¬
1/𝑞

,


©«1 −

∏
1¬𝑖1<...<𝑖𝑘¬𝑛

©«1 −
𝑘∏
𝑗=1

(
1 −

(
1 − 𝜂

𝑞

𝑖 𝑗

)𝑛𝛿𝑖 𝑗 )ª®¬
1

𝐶𝑘
𝑛 ª®®¬

1
𝑞𝑘


 . (29)

The proof of Theorem 4 is similar to that of Theorem 1. Moreover, it is easy
to prove that the q-RDHFPWDMSM operator has the property of boundedness.

5. A novel MADM method under q-RDHFSs

This section proposes a new decision-makingmethodwherein attribute values
are in the formof q-RDHFEs. Let 𝑋 = {𝑋1, 𝑋2, . . . , 𝑋𝑚} be𝑚 feasible alternatives
and 𝐶 = {𝐶1, 𝐶2, . . . , 𝐶𝑛} be a set of 𝑛 attributes. The weight vector of attributes

is 𝑤 = (𝑤1, 𝑤2, . . . , 𝑤𝑛)𝑇 , such that 0 ¬ 𝑤 𝑗 ¬ 1 and
𝑛∑︁
𝑗=1

𝑤 𝑗 = 1. For attribute

𝐶 𝑗 ( 𝑗 = 1, 2, . . . , 𝑛) of alternative 𝑋𝑖 (𝑖 = 1, 2, . . . , 𝑚), DMs employ a q-RDHFE
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𝑑𝑖 𝑗 =
(
ℎ𝑖 𝑗 , 𝑔𝑖 𝑗

)
to express their evaluation value. Finally, a q-rung dual hesitant

fuzzy decision matrix 𝐷 = (𝑑𝑖 𝑗 )𝑚×𝑛 is obtained. In the following, based on
the proposed AOs we introduce a decision-making to determine the optimal
alternative.

Step 1. Normalize the original decision matrix according to the following
formula

𝑑𝑖 𝑗 =

{(
ℎ𝑖 𝑗 , 𝑔𝑖 𝑗

)
𝐶 𝑗 ∈ 𝐼1 ,(

𝑔𝑖 𝑗 , ℎ𝑖 𝑗
)

𝐶 𝑗 ∈ 𝐼2 ,
(30)

where 𝐼1 and 𝐼2 represent the benefit type and cost type of attributes, respectively.
Step 2. Calculate the support Sup

(
𝑑𝑖 𝑓 , 𝑑𝑖𝑡

)
by

Sup
(
𝑑𝑖 𝑓 , 𝑑𝑖𝑡

)
= 1 − dis

(
𝑑𝑖 𝑓 , 𝑑𝑖𝑡

)
, (31)

where 𝑓 , 𝑡 = 1, 2, . . . , 𝑛; 𝑓 ≠ 𝑡.
Step 3. Calculate the overall support 𝑇 (𝑑𝑖 𝑗 ) by

𝑇
(
𝑑𝑖 𝑗

)
=

𝑛∑︁
𝑡, 𝑓=1,𝑡≠ 𝑓

Sup
(
𝑑𝑖 𝑓 , 𝑑𝑖𝑡

)
. (32)

Step 4. Compute the power weight 𝛿𝑖 𝑗 associated with q-RDHFE𝑑𝑖 𝑗 by

𝛿𝑖 𝑗 =
𝑤 𝑗

(
1 + 𝑇

(
𝑑𝑖 𝑗

) )
𝑛∑︁
𝑗=1

𝑤 𝑗

(
1 + 𝑇

(
𝑑𝑖 𝑗

) ) . (33)

Step 5. For alternative 𝑋𝑖 (𝑖 = 1, 2, . . . , 𝑚), use the q-RDHFPWDMSM
operator to fuse the attribute values, i.e.

𝑑𝑖 = q-RDHFPWDMSM(𝑘) (𝑑𝑖1, 𝑑𝑖2, . . . , 𝑑𝑖𝑛) . (34)

Hence, a set of overall evaluation values of alternatives are derived.
Step 6. Calculate the score values of alternatives.
Step 7. Rank alternatives according to their evaluation values and select the

best one.

6. Numerical examples

Example 2 Let’s look at an online teaching platform selection problem.With the
widespread of the COVID-19 virus, to protect the health of teachers and students,
more and more schools and universities start to launch online teaching. Hence,
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before implementing online teaching, one of the most important objects is to
select a suitable online teaching platform. Suppose that there are four possible
teaching platforms that to be evaluated. The four platforms can be denoted as 𝑋1,
𝑋2, 𝑋3 and 𝑋4 for convenience. A set of decision-making experts are invited to
evaluate the performance of the four alternatives. Suppose the DMs assess the
four possible candidates under four attributes, i.e., stability (𝐶1), word of mouth
(𝐶2), price competitiveness (𝐶3), and usability (𝐶4). The weight vector of the for
attributes is 𝑤 = (0.23, 0.36, 0.15, 0.26)𝑇 . The DMs use q-RDHFEs to express
their evaluation values and the original decision matrix is presented in Table 1.

Table 1: The 𝑞-rung dual hesitant decision matrix provided by DMs

𝐶1 𝐶2 𝐶3 𝐶4

𝑋1 {{0.2, 0.3, 0.4}, {0.6}} {{0.4, 0.7}, {0.1}} {{0.1}, {0.5, 0.6}} {{0.6}, {0.2, 0.1}}
𝑋2 {{0.1, 0.2}, {0.7}} {{0.6, 0.8}, {0.1}} {{0.4, 0.5}, {0.2, 0.3}} {{0.7}, {0.1, 0.2, 0.3}}
𝑋3 {{0.7, 0.8}, {0.1}} {{0.3, 0.4}, {0.6}} {{0.7}, {0.1, 0.3}} {{0.5, 0.7}, {0.1, 0.2, 0.3}}
𝑋4 {{0.6}, {0.2}} {{0.5, 0.6}, {0.2}} {{0.3}, {0.4, 0.5}} {{0.5, 0.7}, {0.1, 0.2, 0.3}}

6.1. The decision-making process

Step 1. As all the attributes are benefit type, the original decision matrix does
not need to be normalized.

Step 2. Calculate the support between 𝑑𝑖 𝑓 and 𝑑𝑖𝑡 , that is, Sup(𝑑𝑖 𝑓 , 𝑑𝑖𝑡) ac-
cording to Eq. (31). For convenience, we use the symbol 𝑆 𝑓 𝑡 to represent the
value Sup(𝑑𝑖 𝑓 , 𝑑𝑖𝑡) ( 𝑓 , 𝑡 = 1, 2, 3, 4; 𝑖 = 1, 2, 3, 4; 𝑓 ≠ 𝑡). Hence, we obtain the
following results.

𝑆12 = 𝑆21 = (0.7835, 0.6463, 0.6737, 0.9697);
𝑆13 = 𝑆31 = (0.9626, 0.7923, 0.9512, 0.8793);
𝑆14 = 𝑆41 = (0.8056, 0.6660, 0.9160, 0.9512);
𝑆23 = 𝑆32 = (0.8140, 0.8570, 0.7503, 0.8850);
𝑆24 = 𝑆42 = (0.9285, 0.9342, 0.8022, 0.9694);
𝑆34 = 𝑆43 = (0.8177, 0.8954, 0.9526, 0.8616).

Step 3. Calculate the support 𝑇 (𝑑𝑖 𝑗 ) according to Eq. (32). For convenience,
we used the symbol𝑇𝑖 𝑗 to denote the value𝑇 (𝑑𝑖 𝑗 ), andwe can obtain the following
matrix:

𝑇 =


2.5517 2.5260 2.5943 2.5518
2.1046 2.4375 2.5447 2.4956
2.5409 2.2261 2.6541 2.6708
2.8002 2.8241 2.6259 2.7822

 .
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Step 4. Calculate the power weight 𝛿𝑖 𝑗 associated with the q-RDHFE 𝑑𝑖 𝑗
according to Eq. (33), and we have:

𝛿𝑖 𝑗 =


0.2302 0.3577 0.1519 0.2602
0.2105 0.3648 0.1567 0.2679
0.2341 0.3339 0.1576 0.2744
0.2314 0.3644 0.1440 0.2603

 .
Step 5. For alternative 𝑋𝑖 (𝑖 = 1, 2, 3, 4), utilize the q-RDHFPWDMSM

operator to calculate the overall evaluation 𝑑𝑖 (𝑖 = 1, 2, 3, 4) (suppose that 𝑘 = 2
and 𝑞 = 3). As the aggregation results are so complicated, we omit them here.

Step 6.Calculate the score values 𝑆(𝑑𝑖) (𝑖 = 1, 2, 3, 4) of the overall evaluation
values, and we can get

𝑆(𝑑1) = 0.2720, 𝑆(𝑑2) = 0.4169, 𝑆(𝑑3) = 0.4817, 𝑆(𝑑4) = 0.7938.

Step 7. According to the score values 𝑆(𝑑𝑖) (𝑖 = 1, 2, 3, 4), the ranking orders
of the alternatives can be determined, that is 𝑋4 � 𝑋3 � 𝑋2 � 𝑋1, and 𝑋4 is the
optimal alternative.

6.2. Validity test

In this subsection, we attempt to discuss the validity and effectiveness of our
proposed MADM method. In order to do this, we use our method based on the
q-RDHFPWDMSMoperator and some exiting decision-makingmethods to solve
some examples and compare their results. Thesemethods involve that proposed by
Wang et al. [44] based on the dual hesitant fuzzy weighted geometric (DHFWG)
operator, that developed by Tang et al. [45] based on the dual hesitant Pythagorean
fuzzy generalized geometricweightedHeronianmean (DHPFGGWHM) operator
and that introduced by Xu et al. [42] based on the q-rung dual hesitant fuzzy
weighted geometric Heronian mean (q-RDHFWGHM). To better illustrate the
validity of our proposed method, we provide the following numerical examples. It
is worth pointing out that different MADMmethods use different score functions.
Hence, to make the decision results comparative, we use the same score function
in this subsection. More specifically, we adopt our proposed novel score function
to calculate the final score values of comprehensive evaluation values.

6.2.1. Comparison with Wang et al.’s method

Example 3 (Adopted from [44]). Let’s consider a potential evaluation of emerg-
ing technology commercialization problem and there are five possible emerg-
ing technology enterprises to be evaluated, which can be denoted as 𝑋𝑖 (𝑖 =

1, 2, 3, 4, 5). A group of experts evaluate the performance of the five alterna-
tives under four attributes, i.e., 𝐶1: the technical advancement; 𝐶2: the technical
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advancement; 𝐶3: the industrialization infrastructure, human resources and fi-
nancial conditions; 𝐶4: the employment creation and the development of science
and technology. The weight vector of attributes is 𝑤 = (0.20, 0.15, 0.35, 0.30)𝑇 .
DMs use hesitant fuzzy sets to express their evaluations and the decision matrix
is listed in Table 2. We use Wang et al.’s [44] method and our proposed MADM
approach to solve Example 3 and present the decision results in Table 3. As seen
in Table 3, Wang et al.’s [44] method and our method produce the same ranking
result, i.e., 𝑋2 � 𝑋3 � 𝑋5 � 𝑋1 � 𝑋4. This indicates the validity of our proposed
method.

Table 2: The decision matrix of Example 3

𝐶1 𝐶2 𝐶3 𝐶4

𝑋1 {{0.3, 0.4}, {0.6}} {{0.4, 0.5}, {0.3, 0.4}} {{0.2, 0.3}, {0.7}} {{0.4, 0.5}, {0.5}}
𝑋2 {{0.6}, {0.4}} {{0.2, 0.4, 0.5}, {0.4}} {{0.2}, {0.6, 0.7, 0.8}} {{0.5}, {0.4, 0.5}}
𝑋3 {{0.5, 0.7}, {0.2}} {{0.2}, {0.7, 0.8}} {{0.2, 0.3, 0.4}, {0.6}} {{0.5, 0.6, 0.7}, {0.3}}
𝑋4 {{0.7}, {0.3}} {{0.6, 0.7, 0.8}, {0.2}} {{0.1, 0.2}, {0.3}} {{0.1}, {0.6, 0.7, 0.8}}
𝑋5 {{0.6, 0.7}, {0.2}} {{0.2, 0.3, 0.4}, {0.5}} {{0.4, 0.5}, {0.2}} {{0.2, 0.3, 0.4}, {0.5}}

Table 3: Decision results of Example 3 using different decision-making methods

Decision-making methods Score values 𝑆(𝑑𝑖) (𝑖 = 1, 2, 3, 4, 5) Ranking results

Wang et al.’s [44] method
based on the DHFWG oper-
ator

𝑆(𝑑1) = 0.3533, 𝑆(𝑑2) = 0.4215,
𝑆(𝑑3) = 0.4052, 𝑆(𝑑4) = 0.3328
𝑆(𝑑5) = 0.4043

𝑋2 � 𝑋3 � 𝑋5 � 𝑋1 � 𝑋4

Our method based on the q-
RDHFPWDMSM operator
(𝑞 = 𝑘 = 1)

𝑆(𝑑1) = 0.3550, 𝑆(𝑑2) = 0.4280,
𝑆(𝑑3) = 0.4073, 𝑆(𝑑4) = 0.3403,
𝑆(𝑑5) = 0.4012

𝑋2 � 𝑋3 � 𝑋5 � 𝑋1 � 𝑋4

6.2.2. Comparison with Tang et al.’s method

We continue to compare our result with that developed by Tang et al. [45].
Here, we adopt Example 2 as an illustrative example. The original decisionmatrix
is presented in Table 1. We use Tang et al.’s [45] decision-making method and
our new MADM method to solve Example 2 and present the decision results in
Table 4. As seen from Table 4, the two decision-making methods produce the
same ranking order 𝑋4 � 𝑋3 � 𝑋2 � 𝑋1. This also indicates the effectiveness of
our proposed MADM method.
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Table 4: Decision results of Example 2 using different methods

Decision-making methods Score values 𝑆(𝑑𝑖) (𝑖 = 1, 2, 3, 4) Ranking results
Tang et al.’s [45] method
based on the DHPFGGWHM
operator (𝜁 = 2, 𝜉 = 2)

𝑆(𝑑1) = 0.3102, 𝑆(𝑑2) = 0.3982,
𝑆(𝑑3) = 0.4277, 𝑆(𝑑4) = 0.8492

𝑋4 � 𝑋3 � 𝑋2 � 𝑋1

Our method based on the
q-RDHFPWDMSM operator
(𝑞 = 2, 𝑘 = 1)

𝑆(𝑑1) = 0.4225, 𝑆(𝑑2) = 0.4937
𝑆(𝑑3) = 0.5311, 𝑆(𝑑4) = 0.6708

𝑋4 � 𝑋3 � 𝑋2 � 𝑋1

6.2.3. Comparison with Xu et al.’s method

Example 4 (Adopted from [42]). A company is now selecting an appropriate
supplier. In order to make a wise choice, the company invites a series of decision
experts to evaluate four candidates, i.e. 𝑋1, 𝑋2, 𝑋3, and 𝑋4. The DMs evaluate the
performance of the alternatives from four aspects, i.e., relationship closeness (𝐶1),
product quality (𝐶2), price competitiveness (𝐶3), and delivery performance (𝐶4).
The weight vector of attributes is 𝑤 = (0.17, 0.32, 0.38, 0.13)𝑇 . The original
decision matrix is listed in Table 5. We use Xu et al.’s [42] method and our
developed MADM approach to solve Example 4 and present the decision results
in Table 6. As seen from Table 6, the two MADM methods produce the same
ranking orders of alternatives, i.e., 𝑋3 � 𝑋2 � 𝑋4 � 𝑋1 and the best alternative
is 𝑋3, which also proves the effectiveness of our proposed method.

Table 5: The decision matrix of Example 4

𝐶1 𝐶2 𝐶3 𝐶4

𝑋1 {{0.3, 0.4}, {0.6}} {{0.7, 0.9}, {0.1}} {{0.4}, {0.2, 0.3}} {{0.5, 0.6}, {0.2}}
𝑋2 {{0.2, 0.3}, {0.5}} {{0.6, 0.7}, {0.2}} {{0.7, 0.8}, {0.2}} {{0.6}, {0.1, 0.2, 0.3}}
𝑋3 {{0.4}, {0.2, 0.3}} {{0.2, 0.3, 0.4}, {0.6}} {{0.7, 0.8}, {0.1}} {{0.7}, {0.2, 0.3}}
𝑋4 {{0.6, 0.7}, {0.3}} {{0.5}, {0.4}} {{0.3, 0.4}, {0.5}} {{0.4, 0.6}, {0.1, 0.2}}

Table 6: Decision results of Example 4 using different methods

Decision-making methods Score values 𝑆(𝑑𝑖) (𝑖 = 1, 2, 3, 4) Ranking results
Xu et al.’s [42] method based on
the q-RDHFWGHM operator

𝑆(𝑑1) = 0.1463, 𝑆(𝑑2) = 0.2548,
𝑆(𝑑3) = 0.2553, 𝑆(𝑑4) = 0.1056

𝑋3 � 𝑋2 � 𝑋4 � 𝑋1

Our method based on the
q-RDHFPWDMSM operator
(𝑞 = 3; 𝑘 = 2)

𝑆(𝑑1) = 0.2325, 𝑆(𝑑2) = 0.2714,
𝑆(𝑑3) = 0.3931, 𝑆(𝑑4) = 0.1890

𝑋3 � 𝑋2 � 𝑋4 � 𝑋1
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6.3. The influence of the parameters on the decision results

The above subsection has revealed the validity and correctness of our proposed
method. In this subsection, we shall investigate influence of parameters in our
MADM method on the final decision results. We first discuss the impact of the
parameter 𝑘 on the results. Afterwards, we continue to study the influence of the
parameter 𝑞 on the decision results.

6.3.1. The influence of the parameter k on the results

To investigate the influence of the parameter 𝑘 on the final decision results,
we assign different parameters in the q-RDHFPWDMSM operator and present
the decision results of Example 2 in Table 7 (in these situations, the we assume
the parameter 𝑞 to be a fixed number). As it is seen from Table 7, no matter what
the parameter 𝑘 is, the final ranking orders of alternatives are always 𝑋4 � 𝑋3 �
𝑋3 � 𝑋1. However, it is worth pointing out that different values of parameter 𝑘
have different meanings. For example, when 𝑘 = 1 or 𝑘 = 4, then our method does
not consider the interrelationship among attributes. In other words, when 𝑘 = 1
or 𝑘 = 4, our method is suitable to handle MADM problems where attributes are
independent. When 𝑘 = 2, then our method takes the interrelationship between
any two attributes into consideration. When 𝑘 = 3, then our method considers
the interrelationship among any three attributes. Hence, DMs can determine the
value of 𝑘 according to actual needs in practical MADM problems.

Table 7: Decision results of Example 2 with different parameter 𝑘 in the
q-RDHFPWDMSM operator (𝑞 = 3)

Score values 𝑆(𝑑𝑖) (𝑖 = 1, 2, 3, 4) Ranking orders
𝑘 = 1 𝑆(𝑑1) = 0.3991, 𝑆(𝑑2) = 0.4492, 𝑆(𝑑3) = 0.4831, 𝑆(𝑑4) = 0.6449 𝑋4� 𝑋3� 𝑋2� 𝑋1

𝑘 = 2 𝑆(𝑑1) = 0.2720, 𝑆(𝑑2) = 0.4169, 𝑆(𝑑3) = 0.4817, 𝑆(𝑑4) = 0.7938 𝑋4� 𝑋3� 𝑋2� 𝑋1

𝑘 = 3 𝑆(𝑑1) = 0.2898, 𝑆(𝑑2) = 0.4305, 𝑆(𝑑3) = 0.5089, 𝑆(𝑑4) = 0.7966 𝑋4� 𝑋3� 𝑋2� 𝑋1

𝑘 = 4 𝑆(𝑑1) = 0.4521, 𝑆(𝑑2) = 0.5421, 𝑆(𝑑3) = 0.6101, 𝑆(𝑑4) = 0.6601 𝑋4� 𝑋3� 𝑋2� 𝑋1

6.3.2. The influence of the parameter q on the decision results

In the followings, we continue to study the influence of the parameter 𝑞 on
the final decision results. In order to do this, we assign different values of 𝑞 in
the q-RDHFPWDMSM operator and present the decision results of Example 2
in Table 8 (in these situations, we assume the parameter 𝑘 to be a fixed value).
As it is seen from Table 8, where different values of 𝑞 are assigned in the q-
RDHFPWDMSM operator, the ranking orders of alternatives are the same, i.e.,
𝑋4 � 𝑋3 � 𝑋2 � 𝑋1. However, we notice that the score values of comprehensive
evaluations are different, when different parameters of 𝑞 are employed. More
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specifically, the increase of the value of 𝑞 leads to the decrease of the score
values. Hence, how to select an appropriate value of 𝑞 is a prominent question.
In [42], Xu et al. proposed a method to determine the parameter 𝑞 in q-rung dual
hesitant fuzzy MADM problems. For more details, we suggest readers referring
the publication [42].

Table 8: Decision results of Example 2 with different parameter 𝑞 in the
q-RDHFPWDMSM operator (𝑘 = 2)

Score values 𝑆(𝑑𝑖) (𝑖 = 1, 2, 3, 4) Ranking orders
𝑞 = 1 𝑆(𝑑1) = 0.4671, 𝑆(𝑑2) = 0.5902, 𝑆(𝑑3) = 0.6489, 𝑆(𝑑4) = 0.7109 𝑋4� 𝑋3� 𝑋2� 𝑋1

𝑞 = 2 𝑆(𝑑1) = 0.3299, 𝑆(𝑑2) = 0.4837, 𝑆(𝑑3) = 0.5517, 𝑆(𝑑4) = 0.7893 𝑋4� 𝑋3� 𝑋2� 𝑋1

𝑞 = 3 𝑆(𝑑1) = 0.2720, 𝑆(𝑑2) = 0.4169, 𝑆(𝑑3) = 0.4817, 𝑆(𝑑4) = 0.7938 𝑋4� 𝑋3� 𝑋2� 𝑋1

𝑞 = 4 𝑆(𝑑1) = 0.2475, 𝑆(𝑑2) = 0.3752, 𝑆(𝑑3) = 0.4330, 𝑆(𝑑4) = 0.7874 𝑋4� 𝑋3� 𝑋2� 𝑋1

𝑞 = 5 𝑆(𝑑1) = 0.2369, 𝑆(𝑑2) = 0.3483, 𝑆(𝑑3) = 0.3980, 𝑆(𝑑4) = 0.7815 𝑋4� 𝑋3� 𝑋2� 𝑋1

𝑞 = 10 𝑆(𝑑1) = 0.2287, 𝑆(𝑑2) = 0.3033, 𝑆(𝑑3) = 0.3207, 𝑆(𝑑4) = 0.7722 𝑋4� 𝑋3� 𝑋2� 𝑋1

𝑞 = 20 𝑆(𝑑1) = 0.2286, 𝑆(𝑑2) = 0.2968, 𝑆(𝑑3) = 0.2982, 𝑆(𝑑4) = 0.7714 𝑋4� 𝑋3� 𝑋2� 𝑋1

6.4. Advantages of our proposed method

In this section, we investigate the advantages and superiorities of our proposed
method through comparative analysis.

6.4.1. The ability of making the decision results more reasonable and reliable

Our decision-making method is based on the PDMSM operator, which is a
combination of the PG and DMSM operators. As discussed in some existing
literature [46–49], the PG operator can reduce the adverse impact of extreme
evaluation values on the final decision results, and it has been successfully ap-
plied in decision-making to fuse attribute values. As our method is based on
the q-RDHFPWDMSM operator, which inherits the advantage of PG. Hence,
our proposed method has the ability of dealing with DMs’ unduly high or low
evaluation values and makes the final decision results more reliable. This char-
acteristic makes our method more practical in modern MADM problems. This
is because in present-day decision-making problems, DMs usually come from
different fields and they have different background, education experience, occu-
pational history, individual preferences, etc. Hence, some of them may provide
some ultra-evaluation values, which obviously negatively affects the final deci-
sion results. As pointed above, our method can reduce or even eliminate the bad
influence of unreasonable evaluation values on the final decision ranking orders.
Therefore, our method is more adequate to deal with practical MADM problems
than those introduced by Wang et al. [44], Tang et al. [45] and Xu et al. [42].
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6.4.2. The ability of capturing the interrelationship among multiple attributes

Asmentioned above, our method is based on the PDMSMoperator, and hence
it has the capability of reflecting the interrelationship among attributes. In most
decision-making situations, attributes are usually correlated and such kind of
interrelationship among attributes should be taken into consideration. MADM
problems with relevant attributes have been widely studied [50–53], which in-
dicates the necessity of considering the interrelationship among attributes in
decision-making problems. Hence, our method is more powerful than those pro-
posed by Wang et al. [44]. In addition, our method can consider the interrelation-
ship among multiple input attributes values. Hence, our method is more powerful
and flexible than those put forward by Tang et al. [45] and Xu et al. [42]. Based on
the above section, we can easily find out that the most prominent advantage of our
method is that it not only reduces the negative impact of DMs’ extreme evaluation
values, but also simultaneously takes the interrelationship among attributes into
account. This characteristic makes our method more reliable and reasonable than
those based on PBM or PHM operators.

6.4.3. The ability of effectively describing decision-making information

In the framework of our decision-making method, q-RDHFSs are used to
express DMs’ preference information over a set of alternatives. As discussed
above, the constraint of q-RDHFSs is that the sum of 𝑞-th power of MD and 𝑞-th
power of non-membership degree is equal to or less than one. Hence, our method
can handle wider decision-making situations than Wang et al.’s [44] and Tang
et al.’s [45] methods, which are based on DHFEs and DPHFSs, respectively. In
other words, our method can full depict DMs’ evaluation values and hence it is
more suitable to deal with realistic MADM problems.

6.5. Summary of the characteristics of our developed method

To better demonstrate the characteristics and features of above-mentioned
MADM methods, we provide Table 9.
Based on the above table, we give a summation of ourmethod’ advantages over

some existing decision-making methods. First, compared with Wang et al.’s [44]
method, our method has the following three advantages: 1) Our method can deal
with decision-making situations in which the sum of MD and NMD is greater
than one; 2) Our method can consider the interrelationship among attributes;
3) Our method can more effectively handle DMs’ unreasonable evaluation values.
Second, compared with Tang et al.’s [45] method, our approach has the following
superiorities: 1) It has larger application range as it allows the sum of 𝑞-th power
of MD and 𝑞-th power of NMD to equal to or smaller than one; 2) It has the
ability of capturing the interrelationship among multiple attributes, making it
more sufficient to cope with actual-life MADM problems; 3) It reduces the bad
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Table 9: Characteristics of different MADM methods

Whether it per-
mits the sum of
MD and NMD
to be greater
than one

Whether it per-
mits the square
sum of MD
and NMD to be
greater than one

Whether it con-
siders the inter-
relationship be-
tween any two
attributes

Whether it con-
siders the in-
terrelationship
among multiple
attributes

Whether it effec-
tively deals with
DMs’ unreason-
able evaluation
values

Wang et al.’s
[44] method No No No No No

Tang et al.’s
[45] method Yes No Yes No No

Xu et al.’s
[42] method Yes Yes Yes No No

Our proposed
method in the
present study

Yes Yes Yes Yes Yes

effect that cased by DMs’ extreme evaluation values, making the final decision
results more reliable and reasonable. Third, compared with the decision-making
presented by Xu et al.’s [42], our new decision-making method has the following
advantages: 1) Itmanages the interrelationship amongmultiple attributes; 2) It has
the capability of effectively dealing with DMs’ unreasonable evaluation values.

7. Conclusions

The q-RDHFS is efficient to deal with DMs’ complicated evaluation infor-
mation in MADM process. This paper proposed novel MADM method under
q-RDHFSs by introducing new AOs for q-RDHFEs. In order to do this, we
first proposed the dual form of PMSM operator, i.e. the PDMSM operator,
which is a combination of PG with DMSM operators. Then, we generalized
PDMSM operator into q-RDHFSs and put forward the q-RDHFPDMSM and
q-RDHFPWDMSM operators. These operators effectively deal with DMs’ ex-
treme or unreasonable evaluation values and reflect the interrelationship among
multiple attributes. We further gave a MADMmethod and showed its calculation
process through numerical example. We also tried to illustrate the advantages of
our method through comparative analysis. In future works, we shall investigate
more applications of ourMADMmethod.Wewill apply the new decision-making
method in more realistic problems, such as mutual fund evaluation [54], invest-
ment selection [55], quality assessment of Smart Watch appearance design [56],
renewable energy source selection [57], etc. In addition, we shall investigate more
MADM methods based on the q-RDHFSs.
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