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Research paper

Conceptual design of reinforced concrete structures
using truss-like topology optimization

Hao Cui1, Longfa Xie2, Min Xiao3, Manfang Deng4

Abstract: The paper proposes a procedure for the conceptual design of reinforced concrete (RC)
structures under a multiple load case (MLC), based on the truss-like topology optimization method. It
is assumed that planar truss-like members are densely embedded in concrete to simulate RC structures.
The densities and orientations of the reinforcing bars at nodes are regarded as optimization variables.
The optimal reinforcement layout is obtained by solving the problem of minimizing the total volume of
reinforcing bars with stress constraints. By solving a least squares problem, the optimized reinforcement
layout under theMLC is obtained. According to the actual needs of the project, the zones to be reinforced
are determined by reserving a certain percentage of elements. Lastly, a recommended reinforcement
design is determined based on the densities and orientations of truss-like members. The reinforcement
design tends to be more perfect by adding necessary structural reinforcements that meet specification
requirements. No concrete cover is considered. Several examples are used to demonstrate the capability
of the proposed method in finding the best reinforcement layout design.

Keywords: conceptual design, reinforced concrete, topology optimization, truss-like material

1PhD., College of Civil Engineering andArchitecture, Jiangxi Science and TechnologyNormalUniversity, No.605
Fenglin Avenue, 330013, Nanchang, China, e-mail: cuihaoch@qq.com, ORCID: 0000-0002-8292-9555
2Undergraduate, College of Civil Engineering and Architecture, Jiangxi Science and Technology Normal Uni-
versity, No.605 Fenglin Avenue, 330013, Nanchang, China, e-mail: 1779486960@qq.com,
ORCID: 0000-0001-6900-6695
3PhD., College of Civil Engineering and Architecture, Jiangxi Science and Technology Normal University,
No.605 Fenglin Avenue, 330013, Nanchang, China, e-mail: xmhdts@qq.com, ORCID: 0000-0001-8078-6119
4Undergraduate, College of Civil Engineering and Architecture, Jiangxi Science and Technology Normal Uni-
versity, No.605 Fenglin Avenue, 330013, Nanchang, China, e-mail: 2609074326@qq.com,
ORCID: 0000-0001-6436-9489

https://doi.org/10.24425/ace.2022.141900
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:cuihaoch@qq.com
https://orcid.org/0000-0002-8292-9555
mailto:1779486960@qq.com
https://orcid.org/0000-0001-6900-6695
mailto:xmhdts@qq.com
https://orcid.org/0000-0001-8078-6119
mailto:2609074326@qq.com
https://orcid.org/0000-0001-6436-9489


524 H. CUI, L. XIE, M. XIAO, M. DENG

1. Introduction

Numerical methods for topology optimization of continuous structures have undergone
a rapid development over the past decade. several approaches have been put forward to solve
topology optimization problems so far. In 1988, Bendsøe and Kikuchi [1], inspired by the
homogenization theory in the field of composite materials, proposed the homogenization
method where the design domain can be divided into finite cell, and each cell consists of
an individual micro-structure. The sizes and angles of the microstructures in every element
are optimized to achieve the optimal structural topology. Later, to improve the efficiency
of topology optimization, so-called simp (simplified isotropic material with penalization)
was proposed by Bendsøe [2] and others [3, 4]. In 1993, inspired by the idea of biological
evolution, the eso (evolutionary structural optimization) method originally proposed by xie
and steven [5] is built on the basic criterion: gradually removing the inefficient elements,
the structure evolves towards an optimum. in 2003, Wang et al. [6] put forward the level set
method for structural topology optimization. In addition, new advances have been made in
the past several years. Guo et al. [7] proposed the moving morphable components method.
Similar to this method, there is the moving morphable bars method [8].
Topology optimization has become an effective design tool that can be utilized in a wide

range of engineering fields, spanning from industrial products to structural engineering. It
has been applied to optimize the design of plane structures, space structures and prager
structures [9,10]. In general, a RC structure can be divided into b-regions and d-regions in
practical design processes. The approach for b-region design is maturely established and
can be easily achieved by the traditional bending theory and a general shear design method.
While in the structural design for d-regions, traditional approaches for slender beams are
inappropriate. How to achieve a proper analysis and design for complex stress components
such as corbels, walls or deep beams with openings, pile caps, and beam-column joints has
been an enormous challenge for decades.
At present, the strut-and-tie method is a basic tool for analysis and design of RC

structures, which has been incorporated in different codes of practice. Structural topol-
ogy optimization has been used to generate strut-and-tie model (STM). Bołbotowski and
Sokół [11] developed a new method to generate STMS on the basis of a modification of
the classic ground structure approach. Some scholars adopted the eso method to gener-
ate STMS [12–16]. Shobeiri et al. [17, 18] proposed a method to generate STMS in RC
structure based on the beso algorithm. However, the reinforced concrete is regarded as
a single material in these methods. Bruggi [19] generated STMS by solving the problem of
minimum flexibility with volume constraints based on the simp method. Xia et al. [20] pro-
posed a program to evaluate the topology optimization results of generating STMS. Qiao et
al. [21] established STMS using the mmc method. However, these methods fail to consider
the differences between the characteristics of reinforcing bars and concrete. Considering the
different mechanical properties for the tensile (steel) and compressive (concrete) regions,
Victoria et al. [22] put forward a method to generate more efficient STMS. Du et al. [23]
studied structural topology optimization involving bi-modulus materials with asymmetric
properties in tension and compression, and it can be used for generating STMS. Amir and
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Sigmund [24] presented a newmethod to obtain the optimal reinforcement layout, in which
the strain softening damagemodel is used to represent the concrete, and the ground structure
is used to simulate the reinforcement. But, the ground structure has limitations. The initial
truss layout is pre-defined, with a certain subjectivity, and has a significant impact on the
final truss topology. Luo and Kang [25] proposed a topology optimization algorithm based
on bi-material model to obtain the optimal reinforcement layout. Marco [26] proposed
a procedure for the automatic preliminary design of reinforced concrete structures based
on the eso method. Yang et al. [27] put forward a method to optimize the reinforcement
design of RC structures under a single load case (SLC) using truss-like material model.
The paper proposes a procedure for the conceptual design of RC structures under an

MLC, based on the truss-like topology optimization. The planar truss-like members are
densely embedded in concrete to simulate RC structure. The densities and orientation of
the truss-like members at nodes are taken as design variables. The optimization problem
is to minimize the total volume of reinforcing bars with stress constraints. Firstly, as per
the fully stressed criterion based on bi-phase material, the optimal reinforcement layout
under each SLC is obtained. Secondly, by solving a least squares problem, the optimized
reinforcement layout under the MLC is obtained. Then, calculate the volume of reinforcing
bars in all elements and arrange them in descending order. According to the actual needs
of the project, the zones to be reinforced are determined by reserving a certain percentage
of elements. Lastly, a recommended reinforcement design is offered based on the densities
and angles of reinforcing bars in the zones. The algorithm in this paper neither penalizes
intermediate densities nor removes inefficient elements. Therefore, no numerical instability
exists in optimization iterations. Several examples are used to demonstrate the capability
of the proposed method in finding the best reinforcement layout design. Obtained solutions
are able to suggest useful resulting reinforcement layouts.

2. Finite element analysis and reinforcing bars volume

The planar truss-like material model with two families of orthotropic members is
adopted to simulate reinforcing bars embedded in concrete. It is assumed that the densities
and orientations of the two families of reinforcing bars are 𝜌1, 𝜌2, and 𝛼, respectively.
Then, the elastic matrix of the planar truss-like material can be denoted as follows [28]

(2.1) D𝑠 (𝜌1 𝑗 , 𝜌2 𝑗 , 𝛼 𝑗 ) = 𝐸𝑠

2∑︁
𝑏=1

𝜌𝑏 𝑗

3∑︁
𝑟=1

𝑠𝑏𝑟𝑔𝑟 (𝛼 𝑗 )A𝑟

where: 𝐸𝑠 is elastic modulus of reinforcing bars; 𝑠𝑏𝑟 , 𝑔𝑟 and A𝑟 are refered to the existing
literature above; 𝐽 is the set of all nodes in the design domain.
The first row and first column element of the elastic matrix D𝑠 (𝜌1 𝑗 , 𝜌2 𝑗 , 𝛼 𝑗 ) can be

written as follows:

(2.2) 𝐷11 =
𝐸 [(𝜌1 + 𝜌2) + (𝜌1 − 𝜌2) cos 2𝛼]

2
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The directional stiffness of the continuum of reinforcing bars along 𝜃 can be denoted as:

(2.3) 𝑆(𝜃) = 𝐷11 (𝜃; 𝜌1, 𝜌2, 𝛼) = 𝐸𝑠 [(𝜌1 + 𝜌2) + (𝜌1 − 𝜌2) cos 2(𝛼 − 𝜃)]/2

The element stiffness matrix of the bi-phase material structures can be denoted as:

(2.4) k𝑒 =
∫
𝑉𝑒

B𝑇 (D𝑠 + D𝑐) Bd𝑉 = k𝑠𝑒 + k𝑐𝑒

where B is geometry matrix; D𝑐 and D𝑠 are the elastic matrix of concrete and continua of
reinforcing bars; k𝑠𝑒 and k𝑐𝑒 are the element stiffness matrix of the concrete and continua of
reinforcing bars, respectively.
The structural stiffness matrix K of the bi-phase material structures can be obtained as

follow:

(2.5) K =
∑︁ (

k𝑠𝑒 + k𝑐𝑒
)

Solving the structural stiffness equation, we get nodal displacement vector U.
Regardless of the relative slip between concrete and reinforcing bars, the strain at any

node 𝑗 of a truss-like structure is defined as the average strain of the elements around
node 𝑗 , namely:

(2.6) 𝜺 𝑗 =
1
𝑛 𝑗

∑︁
𝑒∈𝑆 𝑗

B 𝑗 U𝑒

where 𝑆 𝑗 and 𝑛 𝑗 are the set of elements and the number of elements around node 𝑗 ,
respectively.
The node stress column vector is calculated according to the following formula:

(2.7) 𝝈𝑠 = D𝑠𝜀 =
[
𝜎𝑠
𝑥 𝜎𝑠

𝑦 𝜏𝑠𝑥𝑦
]𝑇

, 𝝈𝑐 = D𝑐𝜀 =
[
𝜎𝑐
𝑥 𝜎𝑐

𝑦 𝜏𝑐𝑥𝑦
]𝑇

The total volume of reinforcing bars is calculated by:

(2.8) 𝑉 =
∑︁
𝑗∈𝐽

∑︁
𝑒∈𝑆 𝑗

∫
𝑉𝑒

𝑁 𝑗 d𝑉
∑︁
𝑏

𝜌𝑏 𝑗

The finite element analysis used in the algorithm regards concrete and reinforcing bars
as linear elastic.

3. Optimal reinforcement layout under single load case
To obtain the optimized continuum of reinforcing bars under an MLC, it is first neces-

sary to optimize the reinforcement layout under each SLC. The densities and orientations
of the reinforcing bars at nodes are taken as design variables. The optimization problem is
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to minimize the total volume of reinforcing bars with stress constraints. To give full play
to the strength of materials, the reinforcing bars and concrete at any point in the structure
should be in a state of full stress as far as possible. In other words, to prevent the failure
of concrete in the tensile (compression) zone, an appropriate amount of reinforcement is
arranged in the tension (compression) zone, so that the principal stress (principal strain)
of concrete and reinforcement is equal to the allowable stress (strain) of the material.
Only in this way can the strength of reinforcing bars and concrete be fully utilized. There-
fore, the formulation of optimization problem for RC structure under each SLC can be
written as

(3.1)



find 𝜌𝑏 𝑗 , 𝛼 𝑗

min 𝑉

s.t.

��𝜎𝑠
𝑏

�� ≤ 𝜎𝑠
𝑝��𝜎𝑐

𝑐

�� ≤ 𝜎𝑐
𝑝𝑐

𝜎𝑐
𝑡 ≤ 𝜎𝑐

𝑝𝑡

𝑏 = 1, 2
𝑗 = 1, 2, . . . , 𝐽

where 𝜌𝑏 𝑗 and 𝛼 𝑗 represent the densities and orientations of reinforcing bars (namely, the
principal stresses) at node 𝑗 under each SLC, respectively; 𝑉 is the volume of reinforcing
bars under each SLC; 𝜎𝑠

𝑝 denotes the permissible stress of reinforcing bars; 𝜎𝑐
𝑝𝑐 is per-

missible compressive stress of concrete; 𝜎𝑐
𝑝𝑡 is permissible tensile stress of concrete; 𝜎𝑠

𝑏

denotes the stress along reinforcing bars under load case 𝑙; 𝜎𝑐
𝑐 and 𝜎𝑐

𝑡 denote principal
stress in concrete under each SLC.
Considering the equilibrium along the directions of principal stress in the composite

material, the optimal densities of reinforcing bars under each SLC can be optimized as per
the fully stressed criterion based on bi-phase material

(3.2) 𝜌𝑘+1𝑏 𝑗 =
𝜎𝑘
𝑏 𝑗

− 𝜎𝑐
𝑝

𝜎𝑠
𝑝 − 𝜎𝑐

𝑝

,
𝜎𝑐
𝑝 = 𝜎𝑐

𝑝𝑡 , if 𝜀𝑘𝑏 ≥ 0 𝑏 = 1, 2

𝜎𝑐
𝑝 = 𝜎𝑐

𝑝𝑐 , if 𝜀𝑘𝑏 < 0 𝑗 = 1, 2, . . . , 𝐽

4. Optimal reinforcement layout under multiple load case

The formulation of reinforcement optimization problem for reinforced concrete struc-
ture under the MLC can be written as

(4.1)



find 𝜌𝑏 𝑗 , 𝛼 𝑗

min 𝑉

s.t.

��𝜎𝑠
𝑏𝑙

�� ≤ 𝜎𝑠
𝑝��𝜎𝑐

𝑐𝑙

�� ≤ 𝜎𝑐
𝑝𝑐

𝜎𝑐
𝑡𝑙
≤ 𝜎𝑐

𝑝𝑡

𝑏 = 1, 2
𝑗 = 1, 2, . . . , 𝐽
𝑙 = 1, 2, . . . , 𝐿𝑐



528 H. CUI, L. XIE, M. XIAO, M. DENG

where 𝜌𝑏 𝑗 and 𝛼 𝑗 represent the densities, orientations of reinforcing bars at node 𝑗 under
the MLC, respectively; 𝑉 is the volume of reinforcing bars under the MLC.
For the optimization problem of minimum volume of a stress-constrained structure

under a SLC, it is easy to determine the principal stress direction of a truss-like structure.
The optimized the continuum of reinforcing bars can be obtained by arranging the members
along the principal stress directions and updating the densities as per fully stressed criterion
based on bi-phase material. However, for the optimization design under an MLC, the fully
stressed criterion does not apply. There is a principal stress direction in each case. It
is impossible to determine the member orientations of the optimized structures under
the MLC based on the principal stress directions. Therefore, we need to consider other
methods.
As we know, in a truss-like structure, the more material is arranged along the direction

of the member, the greater the structural stiffness in that direction. When the external
load remains unchanged, the stress at this point (the stress along the direction of the
truss-like member, namely, the principal stress) is smaller. To satisfy the stress constraint
conditions of the optimization problem, the stiffness along any direction at any point in
the optimized structure under the MLC should be no less than the stiffness envelope value
of the optimized structure under each SLC. In addition, to make the structural volume 𝑉
minimum, the stiffness along any direction at any point in the structure should not exceed
the required amount. Namely, the directional stiffness under the MLC is as similar as
possible to the maximum directional stiffness of the optimal structure under every SLC
along all directions. Therefore, the optimization problem for RC structures under the MLC
can be transformed into

(4.2)

{
find 𝜌𝑏 𝑗 , 𝛼 𝑗

min ‖𝑆(𝜃) − 𝑆max (𝜃)‖

where 𝑆max (𝜃) denotes the maximum stiffness under all SLCs.
According to Eq. (2.1), once the optimal reinforcement layout under each SLC is

obtained, the elastic matrix D
(
𝜌1𝑙 𝜌2𝑙 , 𝛼𝑙

)
(𝑙 = 1, 2, . . . , 𝐿𝑐) of the optimal structure

under the SLC at every node is determined. The elastic matrix D(𝜌1, 𝜌2, 𝛼) of the optimal
structuresunder the MLC can be estimated based on the elastic matrix D(𝜌1𝑙 , 𝜌2𝑙 , 𝛼𝑙)
(𝑙 = 1, 2, . . . , 𝐿𝑐). It is assumed that reinforcing bars with densities 𝑦1 and 𝑦2 are arranged
along two mutually orthogonal directions 𝜑 and 𝜑 + 𝜋/2 in the optimized structure under
the MLC. The directional stiffness of the continuum of reinforcing bars along 𝜃 can be
denoted as:

(4.3) 𝑆(𝜃) = 𝐷11 (𝜃; 𝑦1, 𝑦2, 𝜑) = 𝐸 [(𝑦1 + 𝑦2) + (𝑦1 − 𝑦2) cos 2(𝜑 − 𝜃)]/2

The differences 𝛿2 between the stiffness of the optimal structure under the MLC and
the maximum stiffness under all SLCs over all directions is defined as [28]:
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(4.4) 𝛿2 = ‖𝑆(𝜃) − 𝑆max (𝜃)‖22 = ‖𝐷11 (𝜃; 𝑦1, 𝑦2, 𝜑) − 𝑆max (𝜃)‖22

=

𝜋∫
0

[
𝐷11 (𝜃; 𝑦1, 𝑦2, 𝜑) − 𝑆max (𝜃)

]2 d𝜃
=

𝜋∫
0

[
𝐷11 (𝜃; 𝑦1, 𝑦2, 𝜑)

]2 d𝜃 − 2 𝜋∫
0

[
𝐷11 (𝜃; 𝑦1, 𝑦2, 𝜑) · 𝑆max (𝜃)

]
d𝜃

+
𝜋∫
0

[𝑆max (𝜃)]2 d𝜃

The extremum condition is obtained by the differentiation of Eq. (4.4) with respect to
(𝑦1 + 𝑦2), (𝑦1 − 𝑦2) and 𝜑:

𝜕𝛿21
𝜕 (𝑦1 + 𝑦2)

=
𝜋𝐸2

2
(𝑦1 + 𝑦2) − 𝜋𝐸2𝐽0 = 0

𝜕𝛿21
𝜕 (𝑦1 − 𝑦2)

=
𝜋𝐸2

4
(𝑦1 − 𝑦2) − 𝜋𝐸2 (𝐽1 cos 2𝜑 + 𝐽2 sin 2𝜑) = 0

𝜕𝛿21
𝜕𝜑

= −2𝜋𝐸2 (𝑦1 − 𝑦2) (−𝐽1 sin 2𝜑 + 𝐽2 cos 2𝜑) = 0

(4.5)

This leads to:

(4.6) 𝑦1, 𝑦2 = 𝐽0 ± 2(𝐽1 cos 2𝜑 + 𝐽2 sin 2𝜑)

(4.7) 𝜑 =


1
2
arctan

𝐽2
𝐽1

if 𝐽1 cos 2𝜑1 + 𝐽2 sin 2𝜑1 > 0

1
2
arctan

𝐽2
𝐽1

+ 𝜋

2
if 𝐽1 cos 2𝜑1 + 𝐽2 sin 2𝜑1 < 0

where:

𝐽0 =
1
𝜋𝐸

𝜋∫
0

𝑆max (𝜃) d𝜃

𝐽1 =
1
𝜋𝐸

𝜋∫
0

[
𝑆max (𝜃) cos 2𝜃

]
d𝜃

𝐽2 =
1
𝜋𝐸

𝜋∫
0

[
𝑆max (𝜃) sin 2𝜃

]
d𝜃

(4.8)
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5. Demonstration of optimal reinforcement layout

The optimal reinforcement layout derived by the numerical algorithm developed in this
paper is a type of non-uniform anisotropic continuum. Reinforcing bars in concrete are
distributed continuously. Firstly, to demonstrate the reinforcement layout, crossed lines are
adopted. The densities and orientations of reinforcing bars are presented using two short
lines at every node. The orientations and lengths of the two lines represent the angles and
densities of two families of reinforcing bars at every node. A few lines that are too long are
cut short to make the figure distinguishable. Secondly, calculate the volume of reinforcing
bars in all elements and arrange them in descending order. According to the actual needs
of the project, determine the zone to be reinforced by reserving a certain percentage of
elements. Lastly, a recommended reinforcement design is determined based on the densities
and angles of reinforcing bars as follow: Draw lines from nodes with larger densities to the
finite element boundary. The orientation at the point where the line intersects the element
boundary is calculated by interpolating the orientations of the nodes at both ends of the
element boundary as the orientations of the next line segment in adjacent elements. The
next line segment is drawn in adjacent elements along the orientation calculated above.
This process is repeated from one element to another until the line reaches the design
domain boundary, creating a polyline. Only the polylines within the zone to be reinforced
are retained to represent the reinforcement arrangement.

6. Optimization approach and procedure

The optimization problem is to minimize the total volume of reinforcing bars with
stress constraints. The densities and orientations of reinforcing bars at nodes are regarded
as design variables. The procedure for topology optimization problem of the reinforcement
layout design under MLCs involves the following steps:
1. The design domain is divided into finite elements.
2. Set the iteration index 𝑘 = 0; Initial design values are assigned to design variables;
The element retention ratio is set.

3. Finite element analysis is performed to obtain nodal displacement vector U.
4. The stress vectors of reinforcing bars and concrete is calculated according toEq. (2.7).
5. The Optimal reinforcement layout under each SLC is determined by Eq. (3.2).
6. The optimal densities and orientations of reinforcing bars under theMLC is obtained
as per Eq. (4.6) and Eq. (4.7), respectively.

7. Return to step (3) if the relative change in the maximum densities of reinforcing bars
in two successive iterations is larger than a given small positive value (10−2 in this
study) or the loop iterations are less than 10. Otherwise, the iterations are terminated.

8. Optimal continua of reinforcing bars are illustrated.
9. Calculate the volume of reinforcing bars in all elements and arrange them in de-
scending order. The Zones to be reinforced are determined.

10. The Zones to be reinforced are determined.
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7. Numerical examples

Three examples are presented in this section. The concrete grade is C30. Young’s mod-
ulus of reinforcing bars and concrete are 𝐸𝑠 = 210 GPa and 𝐸𝑐 = 7.15 GPa, respectively.
Poisson’s ratio of concrete is 𝜈 = 0.2; the compressive and tensile strengths of concrete are
𝜎𝑐
𝑝c = 14.3 MPa and 𝜎𝑐

𝑝𝑡 = 1.43 MPa, respectively. The compressive and tensile strengths
of reinforcing bars are 𝜎𝑠

𝑝 = 360 MPa [27]. Four-node rectangular elements are adopted.
Crossed lines at nodes are used to denote the optimal layout of the reinforcing bars. The
orientations and the lengths of the two lines represent the orientations and densities of two
families of reinforcing bars at every node. A few lines that are too long are cut short to
make the figure recognizable. No concrete cover is considered.

Example 1: In this example, the layout design of reinforcing bars in a simply supported
beam is considered. The geometry and dimensions of the design domain are shown in
Fig. 1a. The beam is acted by two point load 𝑃 = 300 kN. Crossed lines are drawn
in Fig. 1b to demonstrate the optimal layout of the reinforcing bars. The zones to be
reinforced are determined in Fig. 2a and Fig. 3a according to different retention ratios (RR).

(a) Mechanics model

(b) Optimal layout of reinforcing bars

Fig. 1. Mechanics model and optimal layout of reinforcing bars of example 1

(a) Zone to be reinforced

(b) Recommended reinforcement design

Fig. 2. Optimal layout of reinforcing bars of example 1 (RR = 15%)
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The recommended reinforcement designs are shown in Fig. 2b and Fig. 3b, respectively. It
is possible to observe the presence of reinforcing bars in the bottom part of the beam to
absorb tensile stresses generated by bending. On the sides, diagonal reinforcing bars are
present to resist shear stresses in the beam. The shear reinforcing bars have angle measured
to be around 45◦.

(a) Zone to be reinforced

(b) Recommended reinforcement design

Fig. 3. Optimal layout of reinforcing bars of example 1 (RR = 40%)

Example 2: In this example, the layout design of reinforcing bars in a 2-D corbel is
considered. The geometry and dimensions of the design domain are shown in Fig. 4a. The
corbel is acted by two independent load sets 𝑃1 and 𝑃2. 708 rectangle four-node plane
stress elements are used. Crossed lines are drawn in Fig. 4c, 5a and 6a to demonstrate
the optimal layout of reinforcing bars under the SLC1 (𝑃1 = 500 kN, 𝑃2 = 0 kN), SLC2
(𝑃1 = 0 kN, 𝑃2 = 350 kN) and the MLC (𝑃1 = 500 kN, 𝑃2 = 300 kN), respectively. The
Optimal distribution of steel and concrete, as shown in Fig. 4b [26], was obtained on the
basis of the ESO method under the SLC1 (𝑃1 = 500 kN, 𝑃2 = 0 kN). The zones to be
reinforced are determined in Fig. 4d, Fig. 5b and Fig. 6b according to different RR. The
recommended reinforcement designs are shown in Fig. 4e, Fig. 5c and Fig. 6c, respectively.

(a) Mechanics model (b) Optimal distribution of steel and concrete
based on the ESO method [26]

Fig. 4. Optimal layout of reinforcing bars under SLC1 of example 2
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(c) Optimal reinforcement
layout under SLC1

(d) Zone to be reinforced
(RR = 45%)

(e) Recommended
reinforcement design
(RR = 45%)

Fig. 4. Optimal layout of reinforcing bars under SLC1 of example 2

(a) Optimal reinforcement
layout under SLC2

(b) Zone to be reinforced
(RR = 50%)

(c) Recommended
reinforcement design
(RR = 50%)

Fig. 5. Optimal layout of reinforcing bars under SLC2 of example 2

(a) Optimal reinforcement
layout under MLC

(b) Zone to be reinforced
(RR = 55%)

(c) Recommended
reinforcement design
(RR = 55%)

Fig. 6. Optimal layout of reinforcing bars under MLC of example 2

Example 3: In this example, the layout design of reinforcing bars in a 2-D corbel
with a ledge support is considered. The geometry and dimensions of the design domain
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are shown in Fig. 7a. The corbel is acted by two independent load sets 𝑃1 = 500 kN
and 𝑃2 = 350 kN. 340 rectangle four-node plane stress elements are used. Crossed lines
are drawn in Fig. 7c, 8a and 9a to demonstrate the optimal layout of the steel bars under

(a) Mechanics model (b) Optimal distribution of steel and concrete
based on the ESO method [26]

(c) Optimal reinforcement
layout under SLC1

(d) Zone to be reinforced
(RR = 245%)

(e) Recommended
reinforcement design
(RR = 25%)

Fig. 7. Optimal layout of reinforcing bars under SLC1 of example 3

(a) Optimal reinforcement
layout under SLC2

(b) Zone to be reinforced
(RR = 30%)

(c) Recommended
reinforcement design
(RR = 30%)

Fig. 8. Optimal layout of reinforcing bars under SLC2 of example 3
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the SLC1 (𝑃1 = 250 kN, 𝑃2 = 0 kN), SLC2 (𝑃1 = 0 kN, 𝑃2 = 400 kN) and the MLC
(𝑃1 = 250 kN, 𝑃2 = 400 kN), respectively. The Optimal distribution of steel and concrete,
as shown in Fig. 7b [26], was obtained on the basis of the ESO method under the SLC1
(𝑃1 = 500 kN, 𝑃2 = 0 kN). The zones to be reinforced are determined in Fig. 7d, Fig. 8b
and Fig. 9b according to different RR. The recommended reinforcement designs are shown
in Fig. 7e, Fig. 8c and Fig. 9c, respectively.

(a) Optimal reinforcement
layout under MLC

(b) Zone to be reinforced
(RR = 30%)

(c) Recommended
reinforcement design
( RR = 30%)

Fig. 9. Optimal layout of reinforcing bars under MLC of example 3

8. Conclusions
A numerical algorithm is presented in this paper that can generate the optimal rein-

forcement layout of RC structures under an MLC. The planar truss-like material model
with two families of orthotropic members are densely embedded in concrete to simulate
reinforced concrete structure. The densities and orientations of the truss-like members at
nodes are taken as design variables. The optimization problem is to minimize the total
volume of reinforcing bars with stress constraints. Compared with the ESO method, the
algorithm in this paper obtained the optimal reinforcement layout with a small number of
elements and fewer iterations. No numerical instability exists in optimization iterations. In
addition, the zones to be reinforced can be determined according to the actual needs of the
project. The orientation of the reinforcement is more accurate. Obtained solutions are able
to suggest useful resulting reinforcement layouts.
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