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Continuous update of business process trees
using Continuous Inductive Miner
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Abstract. Business processes are omnipresent in nowadays economy: companies operate repetitively to achieve their goals, e.g., deliver goods,
complete orders. The business process model is the key to understanding, managing, controlling, and verifying the operations of a company.
Modeling of business processes may be a legal requirement in some market segments, e.g., financial in the European Union, and a prerequisite
for certification, e.g., of the ISO-9001 standard. However, business processes naturally evolve, and continuous model adaptation is essential for
rapid spot and reaction to changes in the process. The main contribution of this work is the Continuous Inductive Miner (CIM) algorithm that
discovers and continuously adapts the process tree, an established representation of the process model, using the batches of event logs of the
business process. CIM joins the exclusive guarantees of its two batch predecessors, the Inductive Miner (IM) and the Inductive Miner – directly-
follows-based (IMd): perfectly fit and sound models, and single-pass event log processing, respectively. CIM offers much shorter computation
times in the update scenario than IM and IMd. CIM employs statistical information to work around the need to remember event logs as IM does
while ensuring the perfect fit, contrary to IMd.
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1. INTRODUCTION
1.1. Background
In modern business, every activity leaves a digital mark: cus-
tomers’ orders, supply deliveries, wire transfers, etc. We call
these marks the events and the process that raised them the
business process [1]. Computers routinely collect event logs.
The eXtensible Event Stream (XES) [2] is an industry standard
for event logs with established software support. A well-formed
XES log consists of traces corresponding to business cases, e.g.,
paper submissions. A trace is a list of events raised by the ac-
tivities, e.g., invite reviewers, collect reviews, decide, and send
decision. Section 2.1 details the event log.

Business processes evolve, e.g., employees reorder or skip
some activities for work efficiency, technology adapts to cus-
tomers’ demands, or the legal environment changes. Such
changes in the process are called concept drift. The event log, as
a record of reality, reflects the concept drift. This opens the way
to building descriptive models that describe the same process
at different stages of evolution. The descriptive model is a kind
of aggregation of the evidence in the event log to the form suit-
able for human inspection. It facilitates understanding of the
process and may reveal several deficiencies, e.g., bottlenecks,
waste of resources, or rare abuses that without the descriptive
model would remain undetected. The descriptive models cap-
ture real human behavior and interactions with machines. This
property enables a variety of simulation, what-if, and predictive
analyses of process operations.
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In contrast, the normative model represents the designed flow
of the process. Maintaining the normative model up to date as
the process evolves incurs extra costs. The non-maintained nor-
mative model for a long-living process may not align with re-
ality or be not optimal. By juxtaposing the normative and de-
scriptive models of the same process, one can spot differences,
accept changes in the process, or apply improvements that pre-
vent unwanted behavior.

In this study, we employ the representation of a process tree
[3] of the process model. The process tree is a hierarchy of con-
trol flow operators finished with activities in the leaves. The
control flow operators specify the choice and order of subtrees
to execute. Section 2.2 introduces the process tree in detail.

We employ three gain-type criteria for process models: fit-
ness, precision, and generalization. Fitness measures the part
of the event log represented by the model. Precision measures
the part of the business cases allowed by the model observed
in the event log. Generalization assesses how well the model
represents the ‘idea’ of the process rather than remembers parts
of the event log. When looking for (rare) deficiencies in the
process, obtaining the perfect fit model is crucial even at the
expense of the other criteria. Section 2.3 discusses the quality
criteria.

We distinguish two variants of the process tree discovery
problem: batch and update. The batch problem may be a part
of a computer-assisted operating audit, where the auditor anal-
yses the past process operations. Solving this problem helps to
identify the deficiencies and abuses in the process, possibly dis-
tant in the past, but does not allow us to proactively signal them.
In contrast, the update problem is to update the existing process
tree using the differences in the event log as soon as they oc-
cur, revealing now and here the concept drift in the process. In
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this study, we accept the differences of two forms: new traces
entering the event log and old traces leaving the event log. Up-
dating the process tree with new traces enables the detection of
new process behavior. Forgetting old traces is crucial to elim-
inate from the process tree the behavior that no longer holds.
The update problem aims to update the process tree as fast as
possible using the differential event log only. This requirement
makes the batch discovery techniques inapplicable. Section 2.3
details both variants of the problem.

Process Mining (PM) [4] focuses on, but is not limited to, al-
gorithms for the discovery of process models from event logs.
The Inductive Miner (IM) algorithm family [5–8] is designed
specifically for process trees. These algorithms have several de-
sirable properties, e.g., the base IM algorithm [5] produces the
perfect fit process tree to the event log at the expense of re-
membering the parts of the event log. Another variant [8] reads
every event in the event log exactly once without guaranteeing
a perfect fit. Section 3 reviews the existing algorithms. Section 4
details the IM algorithm.

1.2. Goals and contributions of this study
This leads to the main hypothesis of this study: An update al-
gorithm for a process tree using differential event log produces
new process tree with fitness, precision, generalization, and dis-
covery time no worse than for a process tree produced from
scratch using IM fed with the equivalent batch event log.

The main contribution of this study is the Continuous In-
ductive Miner (CIM) algorithm described in Section 5. It hy-
bridizes and extends algorithms [5, 8] in several directions:
• Given an existing process tree and a differential event log,

CIM identifies the parts of this tree affected by the differen-
tial event log and updates only these parts.

• CIM reduces memory consumption by using basic statistics
rather than remembering the (parts of) event log with the
tree nodes, as in [5].

• CIM reads every event once like [8], but unlike [8], it guar-
antees a perfect fit.

In Section 6, we decompose the primary research hypothesis
into parts and verify them experimentally. Section 7 discusses
the achievements of this study. Section 8 concludes this work.

2. PRELIMINARIES
Sections 2.1 and 2.2 define the formal objects used in this study:
the event log and the process tree, respectively. Section 2.3
poses the process tree discovery problem using these objects.

2.1. Event log
We borrow the definition of event log from the XES standard [2]
and limit it to the features relevant to this study:

Definition 1. The event e is a set of uniquely labeled attributes.
#name(e) is the name of the activity that raised e, and #time(e) is
the timestamp of e. Two events e1 and e2 equal if and only if
#name(e1) = #name(e2).

The trace t = [e1,e2, . . . ,en] is a sequence of events, and |t| is
the total number of events in t. Two traces t1 and t2 equal if and

only if |t1|= |t2| and the events at the same indices in t1 and t2
equal.

The event log L =
{

tk1
1 , tk2

2 , . . . , tkm
m

}
is a multiset of traces,

where superscripts k1,k2, . . . ,km refer to the numbers of oc-
currences of the traces t1, t2, . . . , tm, respectively; ki = 1 can be
omitted.

We assume that an event log L refers to exactly one process,
a trace t ∈ L refers to exactly one business case of this process,
and events e ∈ t are ordered ascending by #time(e).

For brevity, we abuse the notation and write down the
events using their activity names. For example, the event
log L =

{
[a,b,c,d, f ]2, [c,b,a,e,d,g]3

}
consists of trace t1 =

[a,b,c,d, f ] that occurred twice and trace t2 = [c,b,a,e,d,g]
that occurred three times, where a,b, . . . ,g are the activities.

2.2. Process tree
We use the recursive definition of process tree from [3, 5, 8]:

Definition 2. Let A be a set of activities, and let � be at least
2-ary control flow operator. Then, the process tree T is either
T = a, where a ∈ A, or T =�(T1,T2, . . . ,Tn).

The process tree is either a degenerated tree of a single node
with a single activity or a composition of process trees with con-
trol flow operators in the intermediate nodes. The control flow
operators impose the partial order relation between the direct
subtrees and hence between the activities in the leaves. Activi-
ties may be labeled or silent. A silent activity τ is not recorded
in the event log. Silent activities are useful in technical struc-
tures, e.g., the exclusive choice between a silent activity and
a labeled activity causes the latter to be optional. See Table 1 for
other uses of silent activities. Process trees are block-structured:
every subtree is a valid process tree independent of the others.
This opens the way for the composition of high-level business
processes using low-level ones.

Let us define the control flow operators:

Definition 3. Let the set of activities A be an alphabet, and let
L (T ) denote the language of T over A.1 Then, L (τ) = {[]},
L (a) = {[a]} for all a ∈ A\{τ}, and L (�(T1,T2, . . . ,Tn)) de-
pends on the control flow operator � ∈ {×,→,∧,	}:
• For the exclusive choice operator ×, it is the union

of the languages of the subtrees: L
(
×(T1,T2,...,Tn)

)
=⋃n

i=1L (Ti).
• For the sequence operator →, it is the Cartesian product

of the languages of the subtrees: L
(
→(T1,T2,...,Tn)

)
=

L (T1)×L (T2)×...×L (Tn).
• For the parallel operator ∧, it is the merge2 of

the languages of the subtrees: L
(
∧(T1,T2,...,Tn)

)
={

σ :|σ |=
n

∑
i=1
|σi|,σi∈L (Ti),a j≺ak∈σi=⇒a j≺ak∈σ

}
.

1A formal language L over alphabet A is the set of words over A. A word
over A is a finite sequence of the symbols from A.

2The merge of words a and b is the word c with the interleaved symbols
from both a and b such that the relative order of the symbols from each of a and
b separately is preserved in c [9]. The merge of two languages is the set of all
merges of all words from these languages.
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• For the loop operator 	, it is the Cartesian product of the
union over m∈[0;∞) of the m-ary Cartesian powers3 of the
language of the first subtree L (T1) and the language of
any remaining subtree and L (T1): L

(
	(T1,T2,...,Tn)

)
=

∞⋃
m=0

( n⋃
i=2

L (T1)×L (Ti)
)m×L (T1).

× is a decision point to choose the subtree to execute activ-
ities from; → imposes the left-to-right order relation between
the activities from different subtrees; ∧ imposes the series-
parallel partial order relation [10] between the activities from
different subtrees; and 	 imposes the cyclic order relation [11]
between the activities from different subtrees, where the activi-
ties from the leftmost subtree execute first, then zero or more
times the activities from any other subtree immediately fol-
lowed by the activities from the leftmost subtree execute. Note
that

∣∣L (	 (T1,T2, . . . ,Tn))
∣∣= ∞ except if ∀n

i=1L (Ti) = {[]}.
Figure 1 shows an exemplary process tree for a paper review

process. It consists of nine activities A = {a,b,c,d,e, f ,g,h,τ}.
The→ operator on the root node splits the process into three or-
dered phases. The ∧ operator in the leftmost subtree indicates
that the first phase consists of inviting reviewers in parallel, i.e.,
the activities a, b, and c run in any order but before any other
activity. The 	 operator in the middle subtree indicates that its
leftmost subtree runs once, then the choice is made in the loop
to run the rightmost subtree and the leftmost again or go back to
the root node. The leftmost subtree of the 	 node consists of the
× operator that allows to either collect reviews (activity d) or
exceed a timeout (τ). Note that the process tree is unable to tie
the decision to invite an extra reviewer (e) with the timeout, and
this decision must be made based on the other decision model.
The × operator in the rightmost subtree of the root node con-
sists of the decision on the paper, i.e., only one of the activities
f , g, and h runs. Running either f , g, and h ends the process.

Fig. 1. An exemplary process tree for a paper review process

The process tree from Fig. 1 can be written in the prefix nota-
tion as→ (∧(a,b,c),	 (×(d,τ),e),×( f ,g,h)). We will use this
notation later on.

In this study, we assume that all activities except the silent
activities τ in a process tree are uniquely named. This imposes
a certain bias of representation, as processes with duplicate ac-
tivities cannot be represented except when the duplicate hap-

3The 0-ary Cartesian power yields the empty word language L ={[]}.

pens in a loop. To workaround, assign unique names to in-
stances of the same activity.

The process tree is sound by definition. It must not contain
deadlocks and livelocks – there always exists a path from the
current execution state to the end of the process [3]. Every such
path guarantees that the process completes properly, without
leaving unfinished or pending activities behind. These proper-
ties make the process tree well-suited for modeling of business
processes.

2.3. Process tree discovery problem
We first define the problem of batch process tree discovery and
then use it to define the problem of process tree update.

Definition 4. Given an event log L the batch process tree dis-
covery problem is to find a process tree T such that two func-
tions are maximized: fitness f (T,L) and precision p(T,L).

We adopt the definition of f (T,L) from the work [12] (there
called fL) and the definition of p(T,L) from the work [13] (there
called etcP(EL,PN)). Both functions attain values from 0 (the
worst) to 1 (the best). f (T,L) measures the fraction of L repro-
ducible using T , and f (T,L) = 1 iff L⊆L (T ). In turn, p(T,L)
estimates the probability that a business case allowed by T oc-
curs in L, and p(T,L)= 1 iff L (T )⊆ L. Calculating these func-
tions relies on the conversion of T to the Petri net [14] and re-
plying traces from L on this net, simultaneously calculating the
statistics. These are well-known techniques with lengthy defi-
nitions and we omit the details for brevity.

Definition 4 poses the multi-objective optimization problem.
Each objective can be trivially maximized at the expense of
the other. For example, the process tree T1 =	 (τ,a,b, . . . ,z)
can produce any business case consisting of activities a,b, . . . ,z
and thus f (T1,L) = 1 for every event log L of activities A ⊆
{a,b, . . . ,z}, however, p(T1,L)≈ 0 because most event logs are
finite. In contrast, a process tree T2 =→ (a,b,c,d, f ) that effec-
tively represents a single business case results in p(T2,L) = 1
and f (T2,L)≈ 1

|L| if [a,b,c,d, f ] occurs exactly once in L.
f (T,L) = p(T,L) = 1 is theoretically possible when, e.g., T

remembers all traces of L and nothing else. However, process
trees like that likely generalize poorly the behavior recorded in
the event log. In this study, we assume that the goal is to find
the descriptive process tree of the past reality, e.g., for auditing.
By requiring f (T,L) = 1, the process tree guarantees to repro-
duce all business cases, including rare abuses and frauds. Note
that by clustering the event log beforehand model discovery as
in [15,16], one can divide the event log into the mainstream be-
havior and the exceptional behavior and produce separate per-
fect fit process trees for them to spot the differences. The max-
imization of p(T,L) under f (T,L) = 1 and maintaining gen-
eralization rather than memorizing L remain the challenge. In
the experimental part, we assess generalization by calculating
fitness using the separate test event log.

The solution to the problem of batch process tree discovery is
useful when auditing a process on demand. However, processes
live long and generate events in real-time, and the discovered
process tree may become outdated over time. We handle this
use case using the problem of process tree update, where an
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existing process tree T is to be updated to a process tree T ′ that
reflects the changes in the event log.

Definition 5. The process tree update problem is a tuple
(T,L,L+,L−), where T is a process tree, L is an event log such
that f (T,L) = 1, L+ and L− ⊆ L are differential logs of the
traces to be inserted into and to be deleted from L, respec-
tively. The goal is to find a process tree T ′ that maximizes
f (T ′,L∪L+ \L−) and p(T ′,L∪L+ \L−).

We also require the perfect fit, i.e., f (T ′,L∪L+ \L−) = 1.
L in Definition 5 stands for the time window, and the differ-

ential logs L+ and L− represent the changes in this window due
to the shift. The update algorithm is required to fit the given tree
T to new traces in L+ and drop the parts of T corresponding to
L−, which otherwise become redundant and hinder precision.

We require the update algorithm to build T ′ based solely on
T , L+, and L− to prevent excessive memory usage due to stor-
ing time window L.

3. RELATED WORK
Section 3.1 reviews the algorithms for the discovery of process
trees proposed to date. To our knowledge, very little has been
done for the efficient updating of process trees as formalized
in Definition 5. Therefore, Section 3.2 reviews process model
updating techniques in general, including other representations.
Section 3.3 lists the works that do not fit the first two categories
but are related to this study in an another way.

3.1. Process tree discovery
The representation of the process tree originates in [3], which
introduces five control flow operators but does not define their
semantics formally. They are the four from Definition 3 and an
OR operator. In this study, we do not use OR, as the Inductive
Miner family of algorithms [5–8] does not use it, either. The
work [3] shows that thanks to the guarantee of soundness, the
search space of the process trees is smaller by hundreds of or-
ders of magnitude than the search space of Petri nets [14] for
the same number of activities. This property makes the process
tree a well-suited representation for (meta-)heuristic search al-
gorithms.

An Evolutionary Algorithm (EA) for process trees [17] uses
a different definition of the 	 operator than in Definition 3. It
is guided by the user’s preferences and adapts the process trees
for different criteria.

The Inductive Miner (IM) algorithm [5] builds in
a polynomial-time process tree perfectly fitting the event log.
IM uses the control flow operators from Definition 3. Given
a process tree T and a large-enough event log produced by this
tree L ⊆L (T ), IM builds another process tree T ′ based on L
such that L (T ′) = L (T ). The disadvantage of IM is the re-
quirement to store the sublogs corresponding to the subtrees,
resulting in large memory usage.

The Inductive Miner for incomplete logs (IMin) [6] extends
IM with the probabilistic fitting of the control flow operators
to the event log. It employs an arbitrary handcrafted probabil-
ity distribution. An experiment shows that IMin requires 87.5%

of the actual directly-follows relations in the event log to redis-
cover the original tree. IMin trades the precision of the tree for
generalization. It uses a Satisfiability Modulo Theories (SMT)
solver to pick the right operators and so its run-time is no longer
polynomial. IMin is also biased by the log size, as it may return
different trees given the same log with every trace duplicated.

The Inductive Miner for infrequent behavior (IMi) [7] ex-
tends IM with several levels of heuristic filtering of noise. It
drops rare traces, directly-follows relations, and base cases, etc.,
resulting in larger precision but imperfect fitness. IMi still re-
members the parts of the log with the tree nodes.

The Inductive Miner directly-follows-based (IMd) [8] is an
extension to IM, IMin, and IMi that removes the requirement
of remembering the log with tree nodes. It detects the control
flow operators using the directly-follows graph built from the
log. IMd processes the log in a single-pass and runs in O(|L|+
|A|3) time, effectively handling the logs of millions of traces
and thousands of activities. IMd pays for that by poor handling
of base cases — it is unable to detect whether the activity to be
put in a leaf is, e.g., optional, certain, repeatable at least zero
times, or repeatable at last once. Hence, IMd produces worse fit
models than IM, IMin, and IMi, respectively.

Indulpet Miner (InM) [18] is an ensemble of IM, EA, and lo-
cal process miner [19] that produces process trees. It maintains
a trade-off between different quality characteristics offered by
its components: high fitness of IM, better precision of EA, and
smaller computational cost of the local process miner. How-
ever, it no longer provides the guarantees of IM except for the
soundness of the resulting process trees. These characteristics
make InM a good choice for mining the common behavior in
the process but make it unable to reliably detect rare abuses and
frauds.

Constructs Competition Miner (CCM) [20] produces models
in a representation very similar to process trees. Contrary to
IM, CCM finds the best-fit process construct for each tree node
using trial-and-error. CCM produces well-fit trees but lacks the
guarantee of the perfect fit.

None of the above algorithms offers all of these desirable
properties together: the guaranteed soundness and the perfect fit
of the resulting process model (only IM and IMd), the single-
pass log processing (IMd), no need to remember log parts
(IMd), well-handling of the base cases (IM, IMin, IMi, CCM).
In contrast, the algorithm proposed in Section 5 has all these
properties and allows for the efficient update of a process tree
using the differential event logs.

3.2. Process model update
Dynamic CCM (DCCM) [21] is an extension of CCM [20] that
handles the rediscovery of process tree-like models. It collects
new events and traces as soon as available and periodically
recalculates the model. Similar to CIM, DCCM identifies the
parts of the model to recalculate. In contrast to CIM, the model
update in DCCM is scheduled and not triggered by the change
in the event log.

The work [22] detects the concept drift in Petri nets using
adaptive windowing [23]. It does not localize the part affected
by the concept drift and rediscovers the entire model if required.
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Event-stream process discovery using abstract representa-
tions [24] is a framework for adopting the batch process dis-
covery algorithms to the update scenario. It is based on the ob-
servation that most discovery algorithms build an intermediate
representation of the event log and transform this representa-
tion into the process model. The general idea is to maintain this
representation using an event stream and apply the transforma-
tion routines of the batch algorithm at hand. The authors verify
their framework using the directly-follows graph as an inter-
mediate representation and IM as the discovery algorithm. This
framework does not maintain some guarantees of IM, e.g., the
perfect fit, as it uses fast approximates of the directly-follows
graph and the start and end activities. In contrast, CIM from
Section 5 holds this guarantee.

The work [25] characterizes sudden, gradual, recurring, and
incremental concept drifts in business processes and proposes
the algorithm to detect the point in time and location in the Petri
net of the occurrence of the concept drift.

Process Histories [26] is a technique of detecting the above-
mentioned types of concept drift in the business processes.
A process history consists of a series of process models in
a stream-based abstract representation [24]. The authors em-
ploy IM to produce process trees and then transform them into
that representation. The classification of the concept drift type
is made based on several (heuristic) metrics calculated for the
models in history.

The work [27] employs a declarative model of relations be-
tween activities and adapts it based on incoming events.

Several variants of Heuristics Miner (HM) for the update of
Causal nets employ lossy counting and time windows to main-
tain several heuristic measures of support of the elements of
the Causal net [28]. HM does not provide any guarantees for
fitness, precision, or other criteria.

Another approach to updating Causal nets is Online Miner
(OM) [29]. It uses a similar problem statement as in Defini-
tion 5, expect that it involves the Causal net representation. OM
provides several guarantees that are not available in [28], e.g.,
the resulting Causal nets are guaranteed to be sound, perfect fit,
and use the maximal bindings (be the most precise). The ex-
perimental comparison to [28] reveals the superiority of OM in
several aspects.

3.3. Other related work
The Refined Process Structure Tree (RPST) [30, 31] is an algo-
rithm for transforming unstructured process graphs into block-
structured, tree-like process models. RPST relates to CIM in
that both detect the structure in the process graph. However,
in this study, we operate on the directly-follows graph with an
arbitrary structure, and RPST is limited to certain classes of
graphs, e.g., acyclic.

The work [32] extends Heuristics Miner [33] with the detec-
tion of the block structure in the process models, where each
block corresponds to a subprocess. Contrary to CIM, it pro-
duces models in the BPMN representation [34] and lacks the
guarantee of producing the perfect fit models.

Abstraction Workflow Schema (AWS) [35] is a technique for
clustering large business processes into a tree-like hierarchy of

simpler processes. AWS is similar to CIM in that both pro-
duce trees that reflect the hierarchy in business processes. AWS
builds a non-executable decomposition of the process models
mined using other algorithms, e.g., Heuristics Miner [33] and
α algorithm [36]. On the contrary, CIM produces fully exe-
cutable trees whose every subtree corresponds to an executable
subprocess.

The survey [37] empirically compares some state-of-the-
art algorithms for batch discovery of process models in the
real-world application to modeling customer service in a Eu-
ropean telecom. The comparison includes the α-family algo-
rithms [36], Heuristics Miner [33], Genetic Miner [38], and
AGNE [39], and reveals several deficiencies in these algorithms
related to poor handling of bad-structured processes and noise.

The α-algorithm [36] is a very simple, yet fast algorithm to
discover the Petri net. It features many deficiencies [4], hence
many extensions exist. The extension [40] handles concurrency
and short loops that occur at the same time. Another exten-
sion [41] detects several types of silent activities that occur in
the process but are not logged. These extensions beat the base
α-algorithm [36] on processes with these constructs.

Another survey [42] systematically reviews the batch dis-
covery algorithms published in 2011-2017. It also empirically
compares seven algorithms for the discovery of Petri nets and
BPMN models having public available open-source implemen-
tations. The comparison includes, e.g., IM [5], the base variant
of Inductive Miner, and Split Miner [43]. Virtually all evaluated
algorithms fare poorly on event logs with infrequent behavior
and require preprocessing of the event log. They favor differ-
ent quality measures, e.g., IM wins the comparison on fitness,
generalization, complexity but falls short on precision and ex-
ecution time. In turn, Split Miner [43] wins on precision and
execution time.

ProDiGen [44] is a multi-objective EA for Petri net discov-
ery. It offers highly fit, precise, and small models at the same
time, albeit with no guarantees for these criteria. In the exper-
iment, it outperforms several other algorithms on one or more
criteria. Although not demonstrated in [44], ProDiGen, like all
EAs, naturally fits the update scenario.

CSC4.5 [45] is the algorithm for modeling business pro-
cesses from event logs based on decision tree learning. This is
a quite different technique, where the decision tree is an inter-
mediate representation between the log and the resulting Linear
Programming model [46].

4. BATCH DISCOVERY OF PROCESS TREES
This section details Inductive Miner directly-follows-based
(IMd) [8] – the state-of-the-art algorithm for batch discovery
of process trees that forms a base for CIM introduced in the
next section.

Algorithm 1 shows IMd that transforms the given event log L
into process tree. IMd works in two steps. In line 2, IMd calcu-
lates the directly-follows graph G from L, in which nodes cor-
respond to the activities in L and arcs correspond to the pairs
of activities directly following each other in at least one t ∈ L.
In line 3, IMd recursively cuts G into disjoint subgraphs such
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Algorithm 1. Inductive Miner directly-follows-based (IMd)
1: function INDUCTIVEMINER(L)
2: G← (AL, 7→L) . Construct DFG
3: return SPLIT(G) . Build tree
4: function SPLIT(G)
5: if |{a ∈ A}|= 1 : A ∈ G then
6: return a
7: if �-cut applies to G, where � ∈ [×,→,∧,	] then
8: return �(SPLIT(G1), SPLIT(G2), . . . , SPLIT(Gn))
9: return 	 (τ,a1,a2, . . . ,an), where ai ∈ G

that they run in an order corresponding to a control flow opera-
tor from Definition 3. The hierarchy of cuts transforms into the
process tree. The following sections detail these steps.

4.1. Directly-follows graph
Definition 6. Let AL be a set of activities in event log L, let As

L
and Ak

L be the sets of activities that start and end at least one
trace t ∈ L, respectively. Let 7→L be a directly-follows relation
over L, i.e., 7→L=

{
(a,b) ∈ AL×AL : ∃[e1,e2,...,en]∈L∃n−1

i=1 ei = a∧
ei+1 = b

}
. Let 7→+

L be the transitive closure of 7→L, i.e., 7→+
L ={

(a,b) : (a,b) ∈7→L ∨((a,c) ∈7→+
L ∧(c,b) ∈7→

+
L )
}

.
Then, G = (AL, 7→L) is the directly-follows graph (DFG)

for L.

We employ the shorthand notation a ∈ G to denote that ac-
tivity a is a node in G. An arc (a,b) ∈7→L from activity a to
activity b indicates that in at least one t ∈ L b directly follows a.
A path in G between some a and b corresponds to (a,b) ∈7→+

L .
Later on, we remove the subscript L from AL and 7→L because
we consider subgraphs Gi = (Ai, 7→i) of G such that Ai ⊆ AL
and 7→i⊆7→L, for which Ai and 7→i no longer correspond to L.

4.2. Splitting the directly-follows graph
The function SPLIT in line 4 of Algorithm 1 builds a process
tree T by recursively splitting G using the cuts corresponding
to the control flow operators from Definition 3. For G consisting
of a single activity, it returns the base case of the degenerated
process tree of that activity in lines 5–6. Otherwise, it attempts
to apply the cuts (see below) in lines 7–8. The first-found cut
splits G and the corresponding control flow operator becomes
the root of the subtree. Then, SPLIT calls recursively itself for
subgraphs. If no cut applies, it returns in line 9 the fallback
model that allows any sequence of the activities in G.

Definition 7. An �-cut of G = (A, 7→), where � ∈
{×,→,∧,	}, divides G into subgraphs G1 = (A1, 7→1),G2 =
(A2, 7→2), . . . ,Gn = (An, 7→n) such that n ≥ 2, ∀n

i=1Ai 6= /0, A =⋃n
i=1 Ai, and 7→=

⋃n
i=1 7→i. In the below definitions, the domain

of the iterator variables i and j is {1,2, . . . ,n}.
• The exclusive choice ×-cut divides G into connected com-

ponents, i.e., ∀i6= j∀(a,b)∈Ai×A j(a,b) 6∈7→.
• The sequential →-cut divides G into unions of strongly

connected components such that the activities from dif-
ferent components Gi and G j are in the transitive clo-
sure of the directly-follows relation iff i < j, i.e.,
∀i< j∀(a,b)∈Ai×A j(a,b) ∈7→

+ ∧(b,a) 6∈7→+.

• The parallel ∧-cut divides G such that each subgraph
contains a start and an end activity of G, and the
directly-follows relation exists for all pairs of activities
from different subgraphs, i.e., ∀iAs

i 6= /0 ∧ Ae
i 6= /0 and

∀i 6= j∀(a,b)∈Ai×A j(a,b) ∈7→.
• The loop 	-cut divides G such that G1 consists of all start

and all end activities of G, only the end activity a ∈ Ae

may be the predecessor in the directly-follows relation with
activities from G≥2, only the start activity a ∈ As may be
the successor in the directly-follows relation with activi-
ties from G≥2, activities from different G≥2 must not be in
the directly-follows relation, if the end activity a ∈ Ae is in
the directly-follows relation with activity b ∈ G≥2 then all
end activities must be in the directly-follows relation with
b, and accordingly for the start activities, i.e., As∪Ae ⊆ A1
and {a ∈ A1 : ∃i≥2∃b∈Ai(a,b) ∈7→} ⊆ Ae and
{a ∈ A1 : ∃i≥2∃b∈Ai(b,a) ∈7→} ⊆ As and
∀i, j≥2;i 6= j∀(a,b)∈Ai×A j(a,b) 6∈7→ and
∀i≥2∀b∈Gi∃a∈Ae(a,b) ∈7→=⇒ ∀a′∈Ae(a′,b) ∈7→ and
∀i≥2∀b∈Gi∃a∈As(b,a) ∈7→=⇒ ∀a′∈As(b,a′) ∈7→.

The cuts correspond one-to-one to the control flow operators
from Definition 3. The �-cut divides G into subgraphs Gi such
that the language L (T ) of the process tree T = �(T1, . . . ,Tn)
is the respective function from Definition 3 of the languages
L (Ti) of the process trees Ti produced by recursively split-
ting Gi.

To efficiently find cuts, we use dedicated graph algorithms.
We identify the connected components for ×-cut using the
Flood fill algorithm in O(|A|+ |7→|) time. We find the strongly-
connected components for→-cut using Tarjan’s algorithm [47]
with Nuutila’s extension [48] in O(|A|+ |7→|) time. The ∧-cut
can be found by dropping all bidirectional arcs, inserting new
bidirectional arcs between every pair of unconnected activities,
and finding strongly connected components, like above. The 	-
cut is constructed by first assigning all start and end activities
to G1, and then finding connected components with extra con-
straints from the definition of 	-cut in O(|A|+ |7→|) time.

IMd conducts the cuts in the order of ×,→,∧,	 allowing
the reuse of the partial computation results when attempting to
apply successive cuts.

5. UPDATE OF PROCESS TREES
This section introduces Continuous Inductive Miner (CIM), an
algorithm that extends IMd [8] in three directions:
• Update of process trees as posed in Definition 5,
• Handling of base cases using statistics,
• The perfect fitting to the event log.

CIM holds the guarantees of IMd: soundness and single-pass
processing of the event log, and hybridizes them with the guar-
antee of IM [5] of producing perfect fit process trees. Although
primarily designed for update scenario, CIM applies to the
batch discovery problem from Definition 4 too, given the input
of the empty process tree.

Algorithm 2 shows CIM. The red lines come from Algo-
rithm 1, and the black lines are the novel contribution of this
study.
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Algorithm 2. Continuous Inductive Miner (CIM);
REPLACE(T,T1,T2) replaces the (indirect) subtree T1 in T
with T2; lines 5, 19, 25, 28-31 come from IMd

1: function CONTINUOUSINDUCTIVEMINER(T ,L+,L−)
2: ∆A+,∆A−,∆As,∆Ae,∆ 7→L+ ,∆ 7→L−←DIFF(T,L+,L−)
3: G← (AL∪L+\L− , 7→L∪L+\L−) . Update DFG
4: if ∆A+ 6= /0∨∆A− 6= /0∨∆As 6= /0∨∆Ae 6= /0 then
5: return SPLIT(G) . Rebuild the entire tree
6: if ∆ 7→L+ 6= /0∨∆ 7→L− 6= /0 then
7: ∆A7→←{a,b ∈ ∆ 7→L+ ∪∆ 7→L−}
8: ∆T,∆G← GETMINCOMMONSUBTREE(T,∆A7→)
9: return REPLACE(T,∆T,SPLIT(∆G)) .Rebuild subtree

10: return T . No changes
11: function DIFF(T,L+,L−)
12: ∆A+← AL+ \AL
13: ∆A−← AL− \AL∪L+\L−
14: ∆As← (As

L+ \As
L)∪ (As

L− \As
L∪L+\L−)

15: ∆Ae← (Ae
L+ \Ae

L)∪ (Ae
L− \Ae

L∪L+\L−)

16: ∆ 7→L+← 7→L+ \ 7→L
17: ∆ 7→L−← 7→L− \ 7→L∪L+\L−

18: return ∆A+,∆A−,∆As,∆Ae,∆ 7→L+ ,∆ 7→L−

19: function SPLIT(G)
20: if |{a ∈ A}|= 1 : A ∈ G then
21: if ds(a)≥ 1∧gs(G)≥ gs(G4) then return 	 (a,τ)
22: if ds(a)≥ 1∧gs(G)< gs(G4) then return 	 (τ,a)
23: if T4 ∈ {→,∧}∧gs(G)< gs(G4) then return ×(a,τ)
24: return a
25: if ×-cut applies to G then
26: if ∑

n
i=1 gs(Gi)< gs(G) then

27: return ×(τ, SPLIT(G1), SPLIT(G2), . . . , SPLIT(Gn))
28: return ×(SPLIT(G1), SPLIT(G2), . . . , SPLIT(Gn))
29: if �-cut applies to G, where � ∈ [→,∧,	] then
30: return �(SPLIT(G1), SPLIT(G2), . . . , SPLIT(Gn))
31: return 	 (τ,a1,a2, . . . ,an), where ai ∈ G
32: function GETMINCOMMONSUBTREE(T,∆A 7→)
33: if ∃Ti∈T ∆A7→ ⊆ Ti then
34: return GETMINCOMMONSUBTREE(Ti)
35: return T

Given a possibly empty process tree T and differential logs L+

and L− it operates in three steps. First, in line 2 it calculates
the differential sets: ∆A+ and ∆A− of activities to add to and
remove from T , respectively, ∆As and ∆Ae of activities that
become or cease to be the start and end, respectively, ∆ 7→L+

and ∆ 7→L− of directly-follows relations introduced by L+ and
removed by L−, respectively. Function DIFF in line 11 shows
equations for the above-mentioned symbols. Second, in line 3
it updates DFG corresponding to T . Technically, it updates the
statistics from Definition 8 and then applies changes to DFG as
described in Section 5.1. Finally, in lines 4-10 it picks one out
of three options:
• If new activities are added, or old activities are removed, or

start or end activities change, then rebuild the entire tree in
line 5.

• If directly-follows relation changes for at least one pair of
activities, identify the set of affected activities in line 7, find
the minimal common subtree for them in line 8, and update
that subtree in line 9.

• Otherwise, return T intact in line 10.

5.1. Statistics
DFG from Definition 6 is a form of lossy compression because
duplicate evidence of the directly-follows relation in L does not
influence DFG. Hence, DFG is typically much smaller than L
but loses information on decision points and repetitions, hence
the paths in DFG may represent traces not included in L.

The lack of this information prevents an efficient update of
DFG, since from the differential event log L− of the traces
leaving the time window, it is unknown whether a particular
directly-follows relation in L− remains in the time window or
is to be removed. This also prevents proper calculation of the
base cases for the process tree, e.g., optionality and repetitions
(see below).

To prevent information loss, we introduce statistics that com-
pactly store data needed to update T and properly handle base
cases.

Definition 8. The activity support as(a) = |{t ∈ L : a ∈ t}| is
the number of traces in L involving activity a at least once.
The directly-follows support d f s(a,b) = |{[e1,e2, . . .en] ∈ L :
∃n−1

i=1 ei = a∧ ei+1 = b}| is the number of traces in L, where
activity b directly follows a. The duplicate support ds(a) =
d f s(a,a) is the number of traces in L, where activity a directly
follows itself. The graph support gs(G) = |

⋃
a∈G{t ∈ L : a ∈ t}|

is the total number of traces involving the activities from G.

Both G and statistics can be calculated in linear time by read-
ing every event e ∈ L exactly once. Statistics for L can be up-
dated in the linear time given differential event logs L+ and L−

as defined in Definition 5 by incrementing them using L+ and
decrementing them using L−. An activity a belongs to G after
update if as(a) > 0, and an arc (a,b) exists if d f s(a,b) > 0.
Note that we store both G and the statistics together with T for
an efficient update.

5.2. Augmented splitting of the directly-follows graph
The SPLIT function in line 19 of Algorithm 2 extends the SPLIT
function of Algorithm 1 with the use of statistics to properly
handle base cases and the optionality of branches. In lines 20–
24 it handles DFG consisting of a single activity and corre-
sponding to one of the four base cases by ending recursion with
the base case-specific subtree. Otherwise, it attempts in lines
25–30 to apply the same cuts as in Algorithm 1. However, for
the ×-cut it detects in lines 25–27 the special case, where the
choice of a subtree is optional. Similarly to IMd, if no cut ap-
plies, it returns in line 31 the fallback model of all activities in
DFG.

We consider four base cases of a business process of a sin-
gle activity each shown in Table 1. The first column provides
the interpretation of the process tree in the second column. The
middle column shows the graphical representation of the cor-
responding DFG. The last two columns show the conditions
to detect each case. ds(a) determines whether a runs in loop
(ds(a) ≥ 1) or not (ds(a) = 0). gs(G) determines whether a is
optional (gs(G)< gs(G4)) or not (gs(G)= gs(G4)), where G4

is the parent graph of G, i.e., the graph before split; if G has no
parent, then gs(G4) = |L|.
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Table 1
Base cases of process trees

Base case T G ds(a) gs(G)

Certain activity a // a // 0 = gs(G4)

Optional activity ×(a,τ) ((// a // 0 < gs(G4)

Loop at least once 	 (a,τ) // aDD // ≥ 1 = gs(G4)

Loop at least zero 	 (τ,a)
((// aDD // ≥ 1 < gs(G4)

SPLIT produces process tree a that executes activity a exactly
once when a never repeats and runs in all traces involving G4.
If the latter condition does not hold, a is optional and SPLIT
produces ×(a,τ) running either a or the silent activity τ . SPLIT
produces 	 (a,τ) if a repeats in at least one trace and is certain,
or 	 (τ,a) if optional.

5.3. Minimal common subtree
CIM updates only the minimal common subtree of T in which
all changes occur and leaves the remaining parts of T intact.

Definition 9. The minimal common subtree T ′ of T given the
set of activities A is the smallest subtree of T containing all
activities from A. The shorthand notation A⊆ T denotes that T
contains all activities from A.

CIM finds the minimal common subtree using the function
in line 32 of Algorithm 2. Given the process tree T and the
set of the activities affected by the change ∆A7→, it conducts the
breadth-first search starting from the root node. First, it looks in
line 33 for a direct subtree containing all activities from ∆A7→,
and recursively calls itself for this subtree in line 34 if found.
Otherwise, it returns T in line 35.

The containment test in line 33 runs in O(|∆A7→|) time for
each Ti, thanks to storing the activities in Ti using a hash set.
Thus, SPLIT executes in O(|∆A7→| · |T |) time, where |T | is the
total number of nodes in T .

5.4. Guarantee for the perfect fitting
The original IMd does not guarantee the perfect fit for the event
log. Consider an event log L = {[a,b,c], [a,b,b,c]} for which
IMd produces the DFG

G : a // b //
��

c.

IMd applies the→-cut to G resulting in subgraphs

G1 : a // G2 : // b //
��

G3 : // c.

For all G1, G2, G3 the base case of producing the degenerated
process tree in line 6 of Algorithm 1 applies, resulting in the
process tree T1 =→ (a,b,c). T1 reproduces the trace [a,b,c] but
must not reproduce the trace [a,b,b,c]. This is because IMd
ignores the self-loop over activity b.

In contrast, CIM guarantees the perfect fit. It is aware of the
self-loops and picks from Table 1 the base case that matches
the graph structure and the statistics of activity repetitions. For
L, CIM calculates ds(b) = 1, gs(G) = 2, gs(G2) = 2. These
values match the condition for the loop at least once base case,
and thus CIM transforms G2 into 	 (b,τ) and produces T2 =→
(a,	 (b,τ),c).

The base cases in Table 1 cover all possibilities of executing
a single activity. Hence, we provide the proofs of the perfect fit
for each base case separately.

Proof. Let G denote the subgraph containing a single activity
(the base case) and let G4 denote the parent graph of G. Let
LG =

⋃
a∈G{t ∈ L : a ∈ t} be the subset of an event log L con-

taining the traces involving the activities from G.
1. (Certain activity) Assume that LG4 = {t : t = [. . . ,a, . . .]}

and ds(a) 6= 0 or gs(Gb) 6= gs(G4). By Definition 8 ds(a)=
0 and gs(G) = |{t ∈ LG4 : a ∈ t}| = |LG4 | = gs(G4) that
contradicts with the assumption.

2. (Optional activity) Assume that LG4 = {t : a 6∈ t}∪{t : t =
[. . . ,a, . . .]} and ds(a) 6= 0 or gs(G) ≥ gs(G4). By Defini-
tion 8 ds(a) = 0 and gs(G) = |{t ∈ LG4 : a ∈ t}|< |LG4 |=
gs(G4) that contradicts with the assumption.

3. (Loop at least once) Assume that LG4 = {t : t =
[. . . ,a, . . .]} ∪ {t : t = [. . . ,a,a, . . .]} and ds(a) < 1 or
gs(G) 6= gs(G4). By Definition 8 ds(a) ≥ 1 and gs(G) =
|{t ∈ LG4 : a ∈ t}| = LG4 = gs(G4) that contradicts with
the assumption.

4. (Loop at least zero) Assume that LG4 = {t : a 6∈ t} ∪ {t :
t = [. . . ,a,a, . . .]} and ds(a) < 1 or gs(G) ≥ gs(G4). By
Definition 8 ds(a) ≥ 1 and gs(G) = |{t ∈ LG4 : a ∈ t}| <
gs(G4) that contradicts with the assumption.

The proof of the perfect fit of the cuts comes directly from
Definitions 3 and 7.

6. EXPERIMENT
6.1. Preliminaries
We verify the main hypothesis from Section 1.2 by answering
in Sections 6.2–6.6 several detailed research questions:
• Do CIM, IM, and IMd produce the same process trees?
• How good trees does CIM create compared to IM and IMd?
• Does it pay off to update the process tree?
• How often does CIM rebuild the entire process tree?
• How do the produced process trees look like?

We choose 21 real-world event logs from the repository [56]
using the steps:
1. Omit the logs with the words synthetic, artificial, bench-

mark.
2. Omit the logs not compliant with the XES standard.
3. Select the logs with at least 200 and at most 10000 traces.

We focus on real-world event logs to keep the experiment non-
trivial and realistic. The chosen event logs consist of typical
process structures, e.g., sequences, decisions, parallelism, op-
tionality, and loops. They also consist of noise and thus make
the achieved results better reflecting the algorithm performance
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in real-world use cases. We apply the upper bound from step 3
to keep the computational cost at bay. Table 2 summarizes the
event logs. These refer to the processes of handling incidents
in an IT department [49], building permit applications [50], en-
vironmental permit applications [51, 53], medical procedures
[52, 54], and software execution [55].

Table 2
Event logs; numbers of traces and unique activities

Event log # traces # activities

BPIC13_cp [49] 1487 4

BPIC13_i [49] 7554 4

BPIC15_1 [50] 1199 398

BPIC15_1f [50] 902 70

BPIC15_2 [50] 832 410

BPIC15_2f [50] 681 82

BPIC15_3 [50] 1409 383

BPIC15_3f [50] 1369 62

BPIC15_4 [50] 1053 356

BPIC15_4f [50] 860 65

BPIC15_5 [50] 1156 389

BPIC15_5f [50] 975 74

CoSeLoG_WABO_1 [51] 937 381

CoSeLoG_WABO_2 [51] 645 376

CoSeLoG_WABO_3 [51] 1087 369

CoSeLoG_WABO_4 [51] 787 331

CoSeLoG_WABO_5 [51] 892 350

Hospital_log [52] 1143 624

Receipt_phase_of_an_enviro... [53] 1434 27

Sepsis_Cases [54] 1050 16

nasa-cev-complete-splitted [55] 2566 47

To pose the instances of the update problem, we use a time
window consisting of n ∈ {10,20,30,40,50,75,100,150,200}
traces. Initially, we set the window at the beginning of an event
log and repeatedly shift by one trace, producing thus differential
event logs L+ and L− as in Definition 5. In this way, we simulate
the real-world use case, where one runs CIM as soon as a new
trace is available.

For the comparison with the batch predecessors, each time
CIM runs using the differential event logs when the time win-
dow shifts, the predecessors run using the contents of the entire
time window. We collect the same statistics for all algorithms.

6.2. Do CIM, IM, and IMd produce the same process trees?
No. The process trees produced by CIM and IMd differ due to
the different handling of base cases and optionality in ×-cut.
The process trees by CIM and IM sometimes differ too because
CIM updates only the part of the process tree that is inconsis-

tent with L+ and L−. The resulting process tree depends on the
history of updates. In contrast, IM builds the process tree by
applying the cuts in a predefined order, which may be different
than in the existing process tree. For instance, for DFG:

// !!
a //   

�� ##

boo //

��{{c //

OO ;;

doo

OOcc

both∧-cut and 	-cut apply. IM does the former, producing∧(	
(a,b),	 (c,d)). However, if the existing tree is already rooted
with the 	 operator, CIM builds 	 (∧(a,b),∧(c,d)).

6.3. How good trees does CIM create compared
to IM and IMd?

CIM and IM produce process trees perfectly fitting the training
time window. IMd fits slightly worse due to the simplified han-
dling of base cases. The differences in the trees produced by
these algorithms influence generalization and precision. We as-
sess generalization using f (T,L) and precision using p(T,L)
from Definition 4 calculated on the test time window of the
same size and shifted forward w.r.t. the training time window
by the window size. Table 3 shows the means and standard de-
viations of test fitness and precision over training window po-
sitions for different window sizes. The last row shows the p-
values of the Wilcoxon signed-rank test [57] for pairwise com-
parisons of the best algorithm and the others at the family-wise
significance level α = 0.05. The Holm-Bonferroni method [58]
shows that CIM achieves test fitness better than IMd and equal
IM for all window sizes. The existing differences between CIM
and IM are very rare and small. IMd scores significantly bet-
ter precision than CIM and IM for window sizes ≤ 100. For
large windows of 150 and 200 traces, the differences between
the algorithms are insignificant.

6.4. Does it pay off to update the process tree?
Yes. Updating a process tree based on differential event logs
using CIM is noticeably faster than building the process tree
based on the entire time window using IM and IMd when the
time window is large enough. Figure 2 shows the mean over
15 runs and window positions of the runtime [ms] for different
window sizes, obtained using Core i7-8700 CPU, macOS 11.6,
and OpenJDK 17. Even if smaller than the entire time window,
the differential event logs require extra processing to detect in-
compatibilities with the existing process tree. This extra pro-
cessing turns out beneficial w.r.t. discovering the entire process
tree from scratch for time windows larger than 10–75 traces,
depending on the problem instance.

The runtimes in Fig. 2 vary from milliseconds to seconds
and refer to a single-window shift by a single trace. The total
runtimes are the product of these values and the total numbers
of shifts (which roughly equal the total numbers of traces in
Table 2). The total runtimes amount to seconds to minutes for
CIM, and minutes to an hour for IM and IMd.
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Fig. 2. Mean over runs and window positions of runtimes [ms] of CIM (red square), IM (blue circle), and IMd (green triangle)
depending on window size
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Table 3
Mean (A) fitness and (B) precision on test time window w.r.t. window size; the vertical bars reflect standard deviation, where the bar of cell height
reflects 0.5; green marks a larger value than the others, red smaller, white no difference with at least one other value; the p-values of the Wilcoxon
signed-rank test for the best algorithm vs others; the underlining marks significant differences using the Holm-Bonferroni method for α = 0.05

(A) Window size 10 20 30 40 50 75 100 150 200

Event log CIM IM IMd CIM IM IMd CIM IM IMd CIM IM IMd CIM IM IMd CIM IM IMd CIM IM IMd CIM IM IMd CIM IM IMd

BPIC13_cp 0.993 0.993 0.893 0.997 0.997 0.941 0.998 0.998 0.961 0.999 0.999 0.966 0.999 0.999 0.971 0.999 0.999 0.987 1.000 1.000 0.997 1.000 1.000 1.000 1.000 1.000 1.000

BPIC13_i 0.996 0.996 0.884 0.997 0.997 0.926 0.998 0.998 0.947 0.999 0.999 0.960 0.999 0.999 0.967 0.999 0.999 0.974 0.999 0.999 0.973 0.999 0.999 0.970 0.999 0.999 0.971

BPIC15_1 0.993 0.993 0.983 0.996 0.996 0.988 0.997 0.997 0.990 0.997 0.997 0.990 0.997 0.997 0.990 0.997 0.997 0.990 0.998 0.998 0.990 0.998 0.998 0.990 0.998 0.998 0.990

BPIC15_1f 0.971 0.971 0.905 0.974 0.974 0.890 0.976 0.977 0.889 0.979 0.979 0.890 0.979 0.979 0.892 0.983 0.983 0.890 0.984 0.984 0.881 0.983 0.983 0.865 0.980 0.980 0.857

BPIC15_2 0.996 0.996 0.988 0.998 0.998 0.993 0.998 0.998 0.994 0.998 0.998 0.994 0.999 0.998 0.994 0.999 0.999 0.993 0.998 0.998 0.992 0.998 0.998 0.991 0.997 0.997 0.991

BPIC15_2f 0.984 0.984 0.943 0.993 0.993 0.957 0.995 0.995 0.965 0.996 0.996 0.967 0.996 0.996 0.969 0.996 0.996 0.968 0.996 0.996 0.970 0.996 0.997 0.981 0.997 0.997 0.983

BPIC15_3 0.995 0.995 0.986 0.997 0.997 0.989 0.996 0.996 0.989 0.996 0.996 0.989 0.996 0.996 0.989 0.998 0.998 0.990 0.998 0.998 0.990 0.999 0.999 0.992 0.999 0.999 0.993

BPIC15_3f 0.981 0.981 0.953 0.989 0.989 0.969 0.991 0.991 0.974 0.993 0.993 0.978 0.995 0.995 0.981 0.998 0.998 0.987 0.998 0.998 0.990 0.999 0.999 0.991 0.999 0.999 0.995

BPIC15_4 0.993 0.993 0.982 0.996 0.996 0.989 0.997 0.997 0.990 0.996 0.996 0.990 0.996 0.996 0.991 0.997 0.997 0.991 0.997 0.997 0.992 0.999 0.999 0.993 0.998 0.998 0.994

BPIC15_4f 0.966 0.966 0.919 0.986 0.986 0.944 0.990 0.990 0.953 0.992 0.993 0.961 0.993 0.993 0.965 0.995 0.995 0.968 0.997 0.997 0.973 0.999 0.999 0.981 0.999 0.999 0.983

BPIC15_5 0.997 0.997 0.990 0.998 0.998 0.993 0.999 0.999 0.994 0.999 0.999 0.994 0.999 0.999 0.994 0.999 0.999 0.995 1.000 1.000 0.995 1.000 1.000 0.995 1.000 1.000 0.995

BPIC15_5f 0.985 0.985 0.951 0.988 0.988 0.956 0.991 0.991 0.960 0.993 0.993 0.960 0.994 0.994 0.959 0.995 0.995 0.959 0.995 0.995 0.958 0.995 0.995 0.953 0.992 0.992 0.950

CoSeLoG_WABO_1 0.993 0.993 0.982 0.996 0.996 0.988 0.997 0.997 0.990 0.997 0.997 0.990 0.998 0.998 0.990 0.998 0.998 0.990 0.999 0.999 0.990 0.999 0.999 0.989 0.998 0.998 0.988

CoSeLoG_WABO_2 0.996 0.996 0.989 0.999 0.999 0.994 0.999 0.999 0.995 0.999 0.999 0.995 0.999 0.999 0.994 0.999 0.999 0.994 0.998 0.998 0.993 0.999 0.999 0.992 0.998 0.998 0.992

CoSeLoG_WABO_3 0.995 0.995 0.985 0.997 0.997 0.989 0.997 0.997 0.989 0.996 0.996 0.990 0.997 0.997 0.990 0.998 0.998 0.990 0.998 0.998 0.990 0.998 0.998 0.991 0.999 0.999 0.992

CoSeLoG_WABO_4 0.993 0.993 0.980 0.996 0.996 0.988 0.997 0.997 0.990 0.997 0.997 0.990 0.997 0.997 0.991 0.997 0.997 0.992 0.997 0.997 0.992 0.998 0.998 0.993 0.998 0.998 0.992

CoSeLoG_WABO_5 0.996 0.996 0.989 0.998 0.998 0.992 0.998 0.998 0.993 0.998 0.998 0.994 0.999 0.999 0.995 0.999 0.999 0.995 1.000 1.000 0.995 1.000 1.000 0.996 1.000 1.000 0.997

Hospital_log 1.000 1.000 0.998 1.000 1.000 0.997 1.000 1.000 0.997 1.000 1.000 0.998 1.000 1.000 0.998 1.000 1.000 0.998 1.000 1.000 0.998 1.000 1.000 0.998 1.000 1.000 0.998

Receipt_phase_ 0.994 0.994 0.968 0.997 0.996 0.966 0.996 0.996 0.960 0.996 0.996 0.956 0.996 0.996 0.955 0.995 0.995 0.951 0.994 0.994 0.946 0.992 0.992 0.940 0.995 0.995 0.939

Sepsis_Cases-E 0.998 0.998 0.980 0.999 0.999 0.982 0.999 0.999 0.983 0.999 0.999 0.982 0.999 0.999 0.982 1.000 1.000 0.974 1.000 1.000 0.964 1.000 1.000 0.948 1.000 1.000 0.931

nasa-cev-compl 0.992 0.992 0.911 0.994 0.994 0.926 0.995 0.995 0.938 0.995 0.995 0.949 0.995 0.995 0.956 0.996 0.996 0.965 0.997 0.997 0.969 0.998 0.998 0.977 0.999 0.999 0.982

Mean 0.992 0.992 0.938 0.995 0.995 0.956 0.996 0.996 0.964 0.996 0.996 0.969 0.997 0.997 0.972 0.997 0.997 0.976 0.998 0.998 0.976 0.998 0.998 0.975 0.998 0.998 0.975

p-value 0.053 0.000 0.286 0.000 0.093 0.000 0.267 0.000 0.687 0.000 0.071 0.000 0.041 0.000 0.173 0.000 0.152 0.000

(B) Window size 10 20 30 40 50 75 100 150 200

Event log CIM IM IMd CIM IM IMd CIM IM IMd CIM IM IMd CIM IM IMd CIM IM IMd CIM IM IMd CIM IM IMd CIM IM IMd

BPIC13_cp 0.632 0.633 0.690 0.650 0.650 0.685 0.669 0.669 0.688 0.689 0.689 0.701 0.704 0.704 0.707 0.724 0.724 0.719 0.735 0.735 0.733 0.749 0.749 0.749 0.757 0.757 0.757

BPIC13_i 0.532 0.532 0.431 0.547 0.547 0.479 0.557 0.557 0.512 0.566 0.566 0.534 0.574 0.574 0.549 0.591 0.591 0.575 0.606 0.606 0.590 0.627 0.627 0.617 0.640 0.640 0.630

BPIC15_1 0.023 0.023 0.083 0.012 0.012 0.046 0.010 0.010 0.030 0.009 0.009 0.028 0.009 0.009 0.032 0.008 0.008 0.033 0.008 0.008 0.028 0.007 0.007 0.012 0.007 0.007 0.040

BPIC15_1f 0.582 0.582 0.801 0.452 0.452 0.756 0.382 0.381 0.728 0.322 0.322 0.713 0.284 0.284 0.700 0.236 0.235 0.700 0.213 0.212 0.715 0.144 0.144 0.739 0.103 0.099 0.768

BPIC15_2 0.017 0.017 0.057 0.011 0.011 0.024 0.009 0.009 0.010 0.008 0.008 0.009 0.008 0.008 0.007 0.007 0.007 0.006 0.007 0.007 0.005 0.006 0.006 0.005 0.005 0.005 0.005

BPIC15_2f 0.220 0.220 0.441 0.134 0.133 0.282 0.098 0.098 0.211 0.078 0.078 0.185 0.068 0.068 0.177 0.047 0.046 0.165 0.061 0.060 0.179 0.055 0.053 0.197 0.086 0.078 0.234

BPIC15_3 0.021 0.021 0.093 0.012 0.012 0.054 0.011 0.011 0.058 0.010 0.010 0.045 0.010 0.010 0.036 0.009 0.009 0.060 0.008 0.008 0.039 0.007 0.007 0.007 0.007 0.007 0.006

BPIC15_3f 0.219 0.219 0.385 0.140 0.139 0.257 0.108 0.107 0.209 0.086 0.086 0.167 0.065 0.065 0.135 0.046 0.046 0.082 0.038 0.038 0.068 0.029 0.029 0.054 0.027 0.027 0.034

BPIC15_4 0.025 0.026 0.087 0.013 0.013 0.041 0.011 0.011 0.026 0.010 0.010 0.017 0.009 0.009 0.012 0.009 0.009 0.009 0.008 0.008 0.008 0.007 0.007 0.007 0.007 0.007 0.007

BPIC15_4f 0.206 0.207 0.384 0.085 0.085 0.230 0.068 0.068 0.215 0.059 0.059 0.210 0.061 0.061 0.212 0.057 0.057 0.215 0.042 0.042 0.172 0.030 0.030 0.080 0.030 0.030 0.038

BPIC15_5 0.019 0.019 0.069 0.012 0.012 0.050 0.011 0.011 0.035 0.010 0.010 0.022 0.010 0.010 0.011 0.008 0.008 0.008 0.008 0.008 0.008 0.007 0.007 0.007 0.007 0.007 0.007

BPIC15_5f 0.369 0.369 0.547 0.276 0.277 0.461 0.237 0.237 0.387 0.221 0.221 0.349 0.198 0.198 0.326 0.140 0.140 0.286 0.109 0.109 0.267 0.071 0.071 0.241 0.102 0.102 0.298

CoSeLoG_WABO_1 0.026 0.026 0.097 0.012 0.012 0.065 0.010 0.010 0.040 0.009 0.009 0.035 0.009 0.009 0.040 0.008 0.008 0.047 0.008 0.008 0.040 0.007 0.007 0.018 0.007 0.007 0.056

CoSeLoG_WABO_2 0.014 0.014 0.042 0.010 0.010 0.018 0.009 0.009 0.009 0.008 0.008 0.009 0.008 0.008 0.007 0.007 0.007 0.006 0.006 0.006 0.005 0.006 0.006 0.004 0.005 0.005 0.004

CoSeLoG_WABO_3 0.023 0.023 0.114 0.013 0.013 0.057 0.011 0.011 0.063 0.010 0.010 0.051 0.010 0.010 0.046 0.009 0.009 0.042 0.008 0.008 0.034 0.008 0.008 0.007 0.007 0.007 0.007

CoSeLoG_WABO_4 0.029 0.029 0.098 0.014 0.014 0.056 0.011 0.011 0.035 0.010 0.010 0.019 0.009 0.009 0.010 0.009 0.009 0.009 0.008 0.008 0.008 0.007 0.007 0.007 0.007 0.007 0.007

CoSeLoG_WABO_5 0.022 0.022 0.086 0.013 0.013 0.063 0.011 0.011 0.046 0.011 0.011 0.028 0.010 0.010 0.012 0.009 0.009 0.009 0.008 0.008 0.008 0.008 0.008 0.008 0.007 0.007 0.007

Hospital_log 0.009 0.009 0.075 0.007 0.007 0.057 0.006 0.006 0.031 0.006 0.006 0.045 0.005 0.005 0.006 0.005 0.005 0.006 0.004 0.004 0.006 0.004 0.004 0.003 0.003 0.003 0.003

Receipt_phase_ 0.266 0.266 0.322 0.217 0.217 0.248 0.201 0.201 0.227 0.187 0.187 0.212 0.172 0.173 0.197 0.152 0.152 0.173 0.142 0.142 0.160 0.126 0.127 0.141 0.117 0.117 0.128

Sepsis_Cases-E 0.135 0.135 0.140 0.132 0.132 0.134 0.131 0.131 0.132 0.133 0.134 0.135 0.137 0.137 0.137 0.142 0.142 0.150 0.146 0.146 0.165 0.152 0.152 0.186 0.156 0.156 0.204

nasa-cev-compl 0.302 0.311 0.391 0.242 0.249 0.360 0.205 0.208 0.337 0.180 0.182 0.316 0.165 0.165 0.288 0.147 0.144 0.238 0.143 0.139 0.184 0.140 0.134 0.125 0.133 0.131 0.080

Mean 0.281 0.282 0.320 0.259 0.260 0.296 0.254 0.254 0.292 0.252 0.252 0.290 0.251 0.251 0.289 0.254 0.254 0.292 0.262 0.261 0.293 0.277 0.276 0.300 0.297 0.296 0.317

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.002 0.002 0.002 0.093 0.079 0.091 0.091

6.5. How often does CIM rebuild the entire process tree?
Less than half of the time and this percentile decreases with the
size of the time window. Figure 3 shows the mean number of
times CIM rebuilds the entire process tree, its part, or leaves
the given process tree intact depending on window size. Large
time windows are less likely to change significantly on shift
than small ones. This property is efficiently used by CIM that
rarely rebuilds the entire process tree given a large-enough win-
dow. The number of partial updates decreases with window size
too, except for Hospital_log. It is problem-dependent whether
partial updates or no updates at all is more common.

6.6. What do the produced process trees look like?
The size and the complexity of the process trees vary and de-
pend on how well the language of the control flow operators re-
flects the event log. CIM typically produces the fallback model
for some branches of the process tree.

For reference, Fig. 4 shows the process trees produced by
CIM for the Sepsis_Cases event log at different window posi-
tions for the window size of 200 traces. The position value in
the figure refers to the number of traces preceding the window.
Initially, for positions 0 and 100, CIM produces well-structured
process trees, with only one deep subtree containing the fall-
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Fig. 3. Mean number of times CIM rebuilds the entire tree (blue circle), rebuilds a part of it (green triangle), and does not change the tree
(red square) depending on window size
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Fig. 4. The evolution of the process tree for the Sepsis_Cases event log; window position refers to the number of traces preceding the window;
window size of 200
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back model 	 (τ , IV Antibiotics, IV Liquid, ER Registration,
Admission IC, Admission NC, LacticAcid, ER Triage, ER Sep-
sis Triage) indicating that CIM cannot find better order relation
for these activities. As the window shifts to positions 200, 300,
and 400, the fallback model embraces larger parts of the process
trees. For position 500, CIM finds a better-structured process
tree. For positions 600, 700, and 800 again the fallback model
embraces larger parts of the process trees. Note that the results
are stable in the sense that the process trees obtained for the
windows sharing some content equal, e.g., for positions 0 and
100; 300 and 400; 600 and 700 and 800, respectively.

7. DISCUSSION
The problem of the update of process tree from Definition 5 is
very general. The differential event logs L+ and L− can be con-
structed in many ways. The construction of L+ and L− depends
on the specific use case and domain and lies beyond the scope
of this work. For instance, L+ may consist of newly observed
traces in some period or in real-time. L+ may be empty too, e.g.,
when one attempts to remove the outdated behavior specified
using L− from the process tree. In turn, L− can consist of only
old traces or traces believed to be infrequent, incorrect, or out-
dated. Gradual removal of the outdated behavior may involve
a classifier that periodically yields the outdated traces based on
its assessment. L− can be also empty, when one aims at incre-
mental learning of the process tree for all observed behavior.

Definition 5 relates to the problem of online discovery of
a process model, as posed, e.g., in [21, 24]. That problem aims
at the adaptation of an existing process model given a continu-
ous stream of events rather than traces, thus requiring the dis-
covery algorithm to detect end events. Definition 5 transfers
the task of grouping events into traces from the discovery al-
gorithm to event log preprocessing. The end-to-end behavior
is given. The discovery algorithm may use this information to
augment a process model with certain guarantees. In contrast,
providing guarantees like perfect fit is meaningless for event
streams that do not hold guaranteed end-to-end behavior. For
instance, consider the Sepsis_cases event log [54] containing
the traces of sepsis diagnosis and treatment. Among the events
of normal medical operations, there are events that indicate the
return of patients months or years after release. By flattening
this event log into an event stream the discovery algorithm can-
not judge whether the release event is the last one for sure, even
months after its occurrence. However, the correct judgment is
crucial to build a perfect fit model and generalize to the return-
ing cases.

CIM imposes no additional restrictions on the differential
event logs L+ and L− and applies to all these use cases of Def-
inition 5. The unquestionable advantages of CIM are the guar-
antee of producing perfectly fit and sound process trees, single-
pass event log processing, and the well-handling of base cases.
The first property makes CIM the perfect tool for auditing real-
world processes, where one looks for abuses and frauds, which
are rare and otherwise might remain hidden. The single-pass
event log processing opens the way to efficiently handle large
event logs, as every piece of information must be read once.

CIM also offers better handling of the base cases than its batch
predecessor IMd [8], resulting in better fit process trees.

The experiment shows that despite the extra cost of comput-
ing differences, CIM updates the existing process tree faster
than IM [5] and IMd [8] build a new process tree from
scratch given a large-enough time window. The pay-off point
is problem-dependent. We observe it for time windows as small
as 10–50 traces. This is very little, as typically, we audit pro-
cesses having hundreds, thousands, or even millions of traces.
CIM offers this performance gain without loss of generalization
and precision compared with IM. The differences in the process
trees produced by CIM w.r.t. IM result from the entire history
of updates. Hence, the produced process trees hold extra infor-
mation on the process that is not available to IM.

CIM embraces a mechanism of the detection and identifica-
tion of the concept drift in the given process tree T . When the
set of distinct traces included in the time window changes, CIM
finds the minimal common subtree of all changes in T (cf. Sec-
tion 5.3). The minimal common subtree identifies the location
of the concept drift. The position of the time window indicates
the time of the drift occurrence. Figure 3 shows that in our
experiments, only an event-log-dependent fraction of window
shifts causes updates. This mechanism of the concept drift de-
tection may yield false positives. The actual part of T to change
may be smaller, and the updated process tree may equal T . The
assessment of the properties of this mechanism requires future
experimentation using synthetic event logs with known ground
truth process trees and moments and locations of the concept
drift occurrence.

CIM is not free of the disadvantages inherited from its prede-
cessors [5,8]. A process tree is unable to model long dependen-
cies among decision operators (× and 	) in different branches.
This can be alleviated using decision models associated with
the decision operators. However, exploring this opportunity is
beyond the scope of this study.

CIM falls short on precision. However, this is a common
downside of all compared algorithms. The root cause is the fall-
back model, e.g., 	 (τ,a,b, . . . ,z), produced wherever it can-
not find a cut. Although the fallback model is perfectly fit by
definition, it is of little use in practical scenarios, where one
looks for more precise models. The elimination of the fallback
model is a direction of future research. This can be achieved
using e.g., new control flow operators and cuts, probabilistic
cuts like in IMin [6], filtering of infrequent arcs in DFG like in
IMi [7], and preprocessing of the event log [59]. The techniques
adopted in IMin and IMi drop the guarantee of achieving a per-
fect fit. In turn, preprocessing of the event log is useful when
auditing the most frequent behavior of the process. Adopting
an event log filtering technique depends on the area of applica-
tion and specifics of the process and thus lies beyond the scope
of this work. Precision can be increased too in favor of a lit-
tle decrease of generalization by substituting four base cases
of CIM with the most common base case of a certain activity
(cf. Sections 4.2 and 6.3).

CIM requires uniquely labeled activities: for two events in
a trace referring to the same activity name, CIM assumes that
this is the same activity corresponding to the same leaf in the
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resulting tree. In this way, CIM avoids the need to solve the
problem of activity correlation, at the expense of losing on some
criteria, e.g., precision, generalization, size.

The experiment in Section 6 involves fixed-size time win-
dows only. This simple approach is sufficient in many use cases,
where new traces come at a similar rate over time. For more
complex scenarios, an adaptive windowing strategy that resizes
the window based on the event rate in the data stream may be-
have better. In general, there is no simple answer to which strat-
egy fares best, and picking the best strategy requires problem
domain-specific research. However, designing the windowing
strategy is beyond the scope of this work. When solving a spe-
cific process discovery problem one may design a suitable win-
dowing strategy and easily incorporate it with CIM. CIM pro-
cesses every pair of differential logs independently, and they
may vary in size.

The process tree representation, albeit well-suited to the
problem of discovery of process models, is not industry-
standard and thus may not be widely supported in software.
However, process trees transform without loss of information
to other representations, e.g., Business Process Modeling and
Notation (BPMN) standard [34], and Petri nets [14]. This paves
the way to the integration scenario, where CIM maintains inter-
nally a process tree, and another system uses this process tree
transformed into its representation.

8. CONCLUSION AND FUTURE WORK
We propose the Continuous Inductive Miner (CIM) algorithm,
as the proof of the validity of the main research hypothesis from
Section 1.2. Given an existing process tree and the differential
event logs, CIM adapts this process tree to reflect the changes in
the differential event logs. The resulting process tree perfectly
fits the current contents of the time window, and is no worse
at generalizing than the process tree built from scratch based on
the same data. For time windows larger than a few tens of traces,
CIM is faster than its batch predecessors [5,8]. CIM hybridizes
other advantageous properties of [5, 8] too: the soundness of
the resulting process trees, single-pass log processing, and well-
handling of base cases.

CIM does not solve all issues of [5,8]. It sometimes produces
the fallback model and is unable to handle duplicate activities.
It also does not address noise and incompleteness in the event
logs. Future research should follow these directions, e.g., in-
cluding new control flow operators and cuts, noise filtering, and
probabilistic detection of cuts in the update scenario.
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enizkiy, “Dealing with concept drifts in process mining,” IEEE
Trans. Neural Networks, vol. 25, no. 1, pp. 154–171, 2014.

[26] F. Stertz and S. Rinderle-Ma, “Process histories - detecting and
representing concept drifts based on event streams,” in On the
Move to Meaningful Internet Systems. OTM 2018 Conferences.
Springer, 2018, pp. 318–335.

[27] A. Burattin, M. Cimitile, F.M. Maggi, and A. Sperduti, “Online
discovery of declarative process models from event streams,”
IEEE Trans. Serv. Comput., vol. 8, no. 6, pp. 833–846, 2015.

[28] A. Burattin, A. Sperduti, and W.M.P. van der Aalst, “Control-
flow discovery from event streams,” in 2014 IEEE Congress on
Evolutionary Computation (CEC), 2014, pp. 2420–2427.

[29] J. Potoniec, D. Sroka, and T.P. Pawlak, “Continuous discovery of
causal nets for non-stationary business processes using the on-
line miner,” Eur. J. Oper. Res., vol. 303, pp. 1304–1320, 2022.

[30] A. Polyvyanyy, J. Vanhatalo, and H. Völzer, “Simplified compu-
tation and generalization of the refined process structure tree,” in
Web Services and Formal Methods. Berlin, Heidelberg: Springer,
2011, pp. 25–41.

[31] A. Polyvyanyy, L. García-Bañuelos, D. Fahland, and M. Weske,
“Maximal Structuring of Acyclic Process Models,” Comput. J.,
vol. 57, no. 1, pp. 12–35, 09 2012.

[32] A. Augusto, R. Conforti, M. Dumas, M. La Rosa, and G. Bruno,
“Automated discovery of structured process models from event
logs: The discover-and-structure approach,” Data Knowl. Eng.,
vol. 117, pp. 373–392, 2018.

[33] A.J.M.M. Weijters and J.T.S. Ribeiro, “Flexible heuristics
miner (FHM),” in Computational Intelligence and Data Mining
(CIDM), 2011 IEEE Symposium on. IEEE, 2011, pp. 310–317.

[34] OMG, “Business Process Model and Notation (BPMN), Version
2.0,” Object Management Group, 2011.

[35] G. Greco, A. Guzzo, and L. Pontieri, “Mining taxonomies of
process models,” Data Knowl. Eng., vol. 67, no. 1, pp. 74–102,
2008.

[36] W. van der Aalst, T. Weijters, and L. Maruster, “Workflow min-
ing: discovering process models from event logs,” IEEE Trans.
Knowl. Data Eng., vol. 16, no. 9, pp. 1128–1142, 2004.

[37] S. Goedertier, J. De Weerdt, D. Martens, J. Vanthienen, and
B. Baesens, “Process discovery in event logs: An application in
the telecom industry,” Appl. Soft Comput., vol. 11, no. 2, pp.
1697–1710, 2011.

[38] A. Alves De Medeiros, A. Weijters, and W. Aalst, van der, “Ge-
netic process mining: an experimental evaluation,” Data Min.
Knowl. Discovery, vol. 14, no. 2, pp. 245–304, 2007.

[39] S. Goedertier, D. Martens, J. Vanthienen, and B. Baesens, “Ro-
bust process discovery with artificial negative events,” J. Mach.
Learn. Res., vol. 10, pp. 1305–1340, 2009.

[40] H. Sun, W. Liu, L. Qi, Y. Du, X. Ren, and X. Liu, “A pro-
cess mining algorithm to mixed multiple-concurrency short-loop
structures,” Inf. Sci., vol. 542, pp. 453–475, 2021.

[41] L. Wen, J. Wang, W.M. van der Aalst, B. Huang, and J. Sun,
“Mining process models with prime invisible tasks,” Data
Knowl. Eng., vol. 69, no. 10, pp. 999–1021, 2010.

[42] A. Augusto, R. Conforti, M. Dumas, M.L. Rosa, F.M. Maggi,
A. Marrella, M. Mecella, and A. Soo, “Automated discovery of
process models from event logs: Review and benchmark,” IEEE
Trans. Knowl. Data Eng., vol. 31, no. 4, pp. 686–705, 2019.

[43] A. Augusto, R. Conforti, M. Dumas, and M. La Rosa, “Split
miner: automated discovery of accurate and simple business pro-
cess models from event logs,” Knowl. Inf. Syst., no. 59, p. 251–
284, 2019.

[44] B. Vázquez-Barreiros, M. Mucientes, and M. Lama, “Prodigen:
Mining complete, precise and minimal structure process models
with a genetic algorithm,” Inf. Sci., vol. 294, pp. 315–333, 2015.

[45] P. Kudła and T.P. Pawlak, “One-class synthesis of constraints
for mixed-integer linear programming with C4.5 decision trees,”
Appl. Soft Comput., vol. 68, pp. 1–12, 2018.

[46] H. Williams, Model Building in Mathematical Programming.
Wiley, 2013.

[47] R. Tarjan, “Depth-first search and linear graph algorithms,”
SIAM J. Comput., vol. 1, no. 2, pp. 146–160, 1972.

[48] E. Nuutila and E. Soisalon-Soininen, “On finding the strongly
connected components in a directed graph,” Inf. Process. Lett.,
vol. 49, no. 1, pp. 9–14, 1994.

[49] W. Steeman, “BPI challenge 2013,” Apr 2014.
[50] B.B. van Dongen, “BPI challenge 2015,” May 2015, doi:

10.4121/uuid:31a308ef-c844-48da-948c-305d167a0ec1.
[51] J. Buijs, “Environmental permit application process (‘WABO’),

CoSeLoG project,” May 2014, doi: 10.4121/uuid:26aba40d-
8b2d-435b-b5af-6d4bfbd7a270.

[52] B. van Dongen, “Real-life event logs – Hospital log,” 3 2011,
doi: 10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54.

[53] J. Buijs, “Receipt phase of an environmental permit appli-
cation process (‘WABO’), CoSeLoG project,” 8 2014, doi:
10.4121/uuid:a07386a5-7be3-4367-9535-70bc9e77dbe6.

[54] F. Mannhardt, “Sepsis cases – event log,” Dec 2016, doi:
10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460.

[55] M. Leemans, W.M.P. van der Aalst, and M.G.J. van den Brand,
“Recursion aware modeling and discovery for hierarchical soft-
ware event log analysis,” in 2018 IEEE 25th International
Conference on Software Analysis, Evolution and Reengineering
(SANER), 2018, pp. 185–196.

[56] 4TU, “4TU.ResearchData,” 2022. [Online]. Available: https://
data.4tu.nl

[57] G. Kanji, 100 Statistical Tests. SAGE Publications, 1999.
[58] S. Holm, “A simple sequentially rejective multiple test proce-

dure,” Scand. J. Stat., vol. 6, no. 2, pp. 65–70, 1979.
[59] R. Conforti, M.L. Rosa, and A.H.M. t. Hofstede, “Filtering out

infrequent behavior from business process event logs,” IEEE
Trans. Knowl. Data Eng., vol. 29, no. 2, pp. 300–314, 2017.

16 Bull. Pol. Acad. Sci. Tech. Sci., vol. 71, no. 1, p. e143551, 2023

https://doi.org/10.4121/uuid:31a308ef-c844-48da-948c-305d167a0ec1
https://doi.org/10.4121/uuid:26aba40d-8b2d-435b-b5af-6d4bfbd7a270
https://doi.org/10.4121/uuid:26aba40d-8b2d-435b-b5af-6d4bfbd7a270
https://doi.org/10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54
https://doi.org/10.4121/uuid:a07386a5-7be3-4367-9535-70bc9e77dbe6
https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
https://data.4tu.nl
https://data.4tu.nl

	 Introduction
	Background
	Goals and contributions of this study

	Preliminaries
	Event log
	Process tree
	Process tree discovery problem

	Related work
	Process tree discovery
	Process model update
	Other related work

	Batch discovery of process trees
	Directly-follows graph
	Splitting the directly-follows graph

	Update of process trees
	Statistics
	Augmented splitting of the directly-follows graph
	Minimal common subtree
	Guarantee for the perfect fitting

	 Experiment
	Preliminaries
	Do CIM, IM, and IMd produce the same process trees?
	How good trees does CIM create compared to IM and IMd?
	Does it pay off to update the process tree?
	How often does CIM rebuild the entire process tree?
	What do the produced process trees look like?

	Discussion
	Conclusion and future work

