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Although gear teeth give lots of advantages, there is a high possibility of failure
in gear teeth in each gear stage in the drive train system. In this research, the authors
developed proper gear teeth using the basic theorem of gear failure and reliability-based
design optimization. A design variable characterized by a probability distribution
was applied to the static stress analysis model and the dynamics analysis model to
determine an objective function and constraint equations and to solve the reliability-
based design optimization. For the optimization, the authors simulated the torsional
drive train system which includes rotational coordinates. First, the authors established
a static stress analysis model which gives information about endurance limit and
bending strength. By expressing gear mesh stiffness in terms of the Fourier series,
the equations of motion including the gear mesh models and kinematical relations
in the drive train system were acquired in the form of the Lagrange equations and
constraint equations. For the numerical analysis, the Newmark Beta method was used
to get dynamic responses including gear mesh contact forces. From the results such as
the gear mesh contact force, the authors calculated the probability of failure, arranged
each probability and gear teeth, and proposed a reasonable and economic design of
gear teeth.
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1. Introduction

In the energy crisis, many countries have carried out research on alternative
energy sources. A wind turbine is the most popular alternative in the energy industry
and intensive research is being done in this field [1–3]. Recently, the development of
lighter and more stable structures concentrates especially on the blades. However,
the most important characteristic of the wind turbine is rotation. From the rotor,
the drive train delivers torque to the generator. It would be important to find a new,
lighter drive structure. But, the dynamic characteristics of the drive train should be
considered first.

In this research, the authors considered a torsional drive train that has rotational
coordinates. In the previous research, the torsional model which had a gear mesh [4],
and a more detailed 2-dimensional model [5] were investigated with parametric
analysis. The common concept of the two researches is analyzing the vibrational
results from the gear mesh. If there is an external torque, the gear contact will occur
repeatedly. So, the main characteristic of rotation can be determined by the contact
force. The mentioned researches [4, 5] showed the contact force in the time and
frequency domain. The gear mesh makes rotational motion and simultaneously its
angular velocity changes. Gears have been applied in lots of industries including
automobile and aircraft, etc. Although it gives more advantages than disadvantages,
there is a risk caused by the gears, especially the gear teeth. If there are cracks or
wear in the gear teeth, one cannot identify the defects clearly, and finally cannot
prevent the face fatigue failure. In this view, many researchers have tried to find
out the best design suitable for the gears.

This research shows a proper gear teeth design by calculating the gear mesh
contact force. Especially, the authors assumed that there are uncertainties in manu-
facturing. These uncertainties make the material non-isotropic which causes defects
and damages and creates problems with strengths. To deal with these problems,
some authors use mechanical components which have non-perfect properties. Un-
fortunately, these problems cannot be handled and solved by the authors of the
present study. Our task is to find proper reliability which satisfies system safety and
economic efficiency standards. After setting the number of gears, the design vari-
able and calculating the gear teeth bending stress and endurance limit, constraint
and the gear mesh model uncertainty, the authors analyzed the gear mesh model
using the torsional drive train model and reliability-based design optimization. The
authors compared the reliability of the gear contact force and ratio taking into
account several candidates for the gear teeth, in order to find out the optimized
gear teeth. Gear teeth bending stress and endurance limit were designed based on
the Lewis theorem [6]. Also, the gear mesh stiffness models were defined by the
Fourier series. All the analyses were computed by the Newmark method, which is
a kind of numerical integration method. It shows gear teeth information including
reliability and the number of teeth.
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2. Mathematical model

2.1. Gear mesh model

Generally, the spring connected between two components has a constant stiff-
ness and exerts a reaction force relative to the displacement of the two contact
points. In the gear mesh, the reaction of the contact surface between a pinion and a
gear can be represented by the spring. However, in the case of gears, the periodic
change in a component must be represented. Gear mesh stiffness is determined
by the angle of attack and contact ratios [4, 7]. Considering this fact, the authors
defined the gear mesh stiffness using angular velocity and contact ratio of the gear.
In this research, the authors used the rotor’s angular velocity of 10 rad/s as the
standard. So, the average angular velocities in the planetary stage and the parallel
stages were defined by Equations (1), (2), and (3), respectively. Then, the authors
established gear mesh stiffness by using the Fourier series including these angular
velocities. 𝜔𝐶 , 𝜔𝑔1, and 𝜔𝑔3 are the angular velocities of the carrier, gear 1 and
gear 3, respectively. 𝑁𝑟 , 𝑁𝑔1 and 𝑁𝑔3 are the number of teeth of the ring gear, gear
1 and gear 3, respectively. 𝜔 (𝑝)

𝑀
, 𝜔 (𝑔12)

𝑀
and 𝜔 (𝑔34)

𝑀
are the gear mesh frequency in

the planetary stage and in the parallel stages, respectively.

𝜔
(𝑃)
𝑀

= 𝜔𝐶𝑁𝑟 , (1)

𝜔
(𝑔12)
𝑀

= 𝜔𝑔1𝑁𝑔1 , (2)

𝜔
(𝑔34)
𝑀

= 𝜔𝑔3𝑁𝑔3 , (3)

For instance, Equations (4) and (5) represent the gear mesh stiffness of the
planetary gear stage, and Fig. 1 is the plot of the gear mesh stiffness of the planetary
gear stage. 𝛾sp, 𝛾rs, and 𝛾rp are phase difference factors which represent the variable
gear mesh between the sun gear, the planet gear and the ring gear, 𝐶rp and 𝐶sp are
contact ratios for the ring-planet and the sun-planet gear pairs.

Fig. 1. Gear mesh stiffness
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𝑘sp(𝑡) = 𝑘sp +
𝑘sp

𝐶sp

∞∑︁
𝑙=0

(
𝑎
(𝑙)
sp sin(𝜔 (𝑝)

𝑀
𝑡) + 𝑏 (𝑙)sp cos(𝜔 (𝑝)

𝑀
𝑡)
)
, (4)
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𝑙𝜋(𝐶sp − 2𝛾sp)

]
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[
𝑙𝜋(𝐶sp − 2𝛾sp)

]
sin(𝑙𝜋𝐶sp),
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(𝑙)
rp = − 2

𝑙𝜋
sin

[
𝑙𝜋(𝐶sp − 2𝛾sp − 2𝛾rs)

]
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(𝑙)
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𝑙𝜋
cos

[
𝑙𝜋(𝐶rp − 2𝛾rp − 2𝛾rs)

]
sin(𝑙𝜋𝐶rp).

2.2. Equations of motion using torsional dynamics

As presented in Fig. 2, the applied wind turbine drive train model includes
the rotor, the carrier, the planetary stage, the parallel stages and the generator
[8–15]. Each component was considered a rigid body. There are three main shafts
between the rotor and the carrier, the sun and the gear 1, and the gear 3 and

Fig. 2. Diagram of the drive train system
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the generator. We defined these connectors as torsional springs that drive powers
among relative components. Design variables including the moment of inertia
and mass of each component and stiffness of the connector were taken from the
previous research [4]. By deriving equations of motion from Lagrange’s equation,
we can express the equations of motion with mass, damping, and stiffness matrix
with respect to the generalized coordinates. When the mass, damping, and stiffness
matrices are defined, it is necessary to determine each moment of inertia, mass,
and relative displacement of two points that are connected by a spring.

In a gear, rotation is changing to translation. It is illogical if the authors think
that two revolving bodies meet and give torque to each other. But, the authors
can find translational relationships through the point concepts. In other words, two
points will meet and fall apart by exerting a contact force. Through this contact
force, the gear will rotate by a torque. Based on general information about the drive
train, the authors need to derive the equation of motion with the gear mesh model
for calculating the state variables such as angular displacement and angular velocity
for determining the gear mesh contact force and for making the comparison with
standards, and for optimization of the gear. They need to find out whether the gear
mesh, including its uncertainty, is acceptable or not.

To derive the equation of motion, the Lagrange equation method was used to
calculate the state variables [16, 17]. Among the system properties, the gear mesh
stiffness will change every time. So, the authors represent these changes in the
stiffness matrix. Regarding relative displacement, the authors showed an example
of rotational motions about the 𝑧-axis and translation motions about the 𝑥-𝑦 plane
in equation (6)–(12). Equation (6) is the relative torsional displacement of the
low-speed shaft, equations (7)–(8) are the relative gear mesh displacements of the
sun-planet and the ring-planet gear mesh, and equation (9) is the relative torsional
displacement of the internal shaft, equations (10)–(11) are the relative gear mesh
displacements of the gear 1-gear 2 and the gear 2-gear 3 gear mesh, and equation
(12) is the relative torsional displacement of the high-speed shaft. These were used
to define the total potential energy which is the elastic energy stored in the springs
which represent the shaft and the gear in Fig. 2.

𝜙LSS = 𝜙rotor − 𝜙carrier , (6)

𝛿planet-sun = −𝑟carrier𝜙carrier + 𝑟planet𝜙planet + 𝑟sun𝜙sun , (7)

𝛿planet-ring = 𝑟carrier𝜙carrier + 𝑟planet𝜙planet , (8)

𝜙IS = 𝜙sun − 𝜙𝐺1 , (9)

𝛿𝐺1−𝐺2 = 𝑟𝐺1𝜙𝐺1 + 𝑟𝐺2𝜙𝐺2 , (10)

𝛿𝐺2−𝐺3 = 𝑟𝐺2𝜙𝐺2 + 𝑟𝐺3𝜙𝐺3 , (11)

𝜙HSS = 𝜙𝐺3 − 𝜙GN . (12)
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Equations (13) and (14) are the total kinetic energy of the total rotors and the
potential energy among the shafts and gear meshes in the drive train system.

𝑇 =
1
2
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( ¤𝜙𝑟 )2 + 1
2
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2
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2
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2
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2
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2
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, (13)

𝑉 =
1
2
𝑘LSSz

( ¤𝜙LSS
)2 + 1

2
𝑘 𝐼𝑆𝑧

( ¤𝜙IS
)2 + 1

2
𝑘HSSz

( ¤𝜙HSS
)2 + 3

2
𝑘rp

(
𝛿planet-ring

)2
+ 3

2
𝑘sp

(
𝛿planet-sun

)2 + 1
2
𝑘𝑔12 (𝛿𝐺1−𝐺2)2 + 1

2
𝑘𝑔34 (𝛿𝐺2−𝐺3)2 . (14)

Using the kinetic and potential energy terms, the authors derived the Lagrange
equation and the equations of motion according to the vector of the generalized
coordinates. Equations (15)–(17) illustrate the process of determining the equation
of motion. Equation (16) in conjunction with Equations (14)–(15) yields coupled
ordinary differential equations in the conventional form, and the equations of
motion in a matrix form are given as equation (17).𝑄 is the vector of the generalized
forces which include gravity and the non-linear forces that cannot be defined as
a matrix, in such a way as the mass matrix [𝐽], the damping matrix [𝐶], and the
stiffness matrix [𝐾]. This vector will be applied to the right side of Equations (16)
and (17). Finally, we can get dynamic results from the equations of motion (Eq. (17))
by using numerical integrations such as the Newmark’s method.

𝐿 = 𝑇 −𝑉. (15)

where 𝑇 is the kinetic energy, and 𝑉 is potential energy

d
d𝑡

(
𝛿𝐿

𝛿 ¤𝑞 𝑗

)
− 𝛿𝐿

𝛿𝑞 𝑗

=
−→
𝑄 𝑗 , 𝑗 = 1, 2, 3, . . . , 8. (16)

Here
−→
𝑄 𝑗 =

−−−−→
𝑄𝑔 (𝑡) +

−−−−−→
𝑄ext(𝑡)

[𝐽] ¥®𝜙 + [𝐶] ¤®𝜙 + [𝐾] −→𝜙 =
−→
𝑄 𝑗 . (17)

2.3. Simulation condition

For the numerical method, the authors used the Newmark’s beta method [18,
19]. Table 1 [5] shows basic information about the drive train. Some information
is not provided, such as the number of the gear teeth, but the authors could use
fundamental theorems of the mechanical components, such as those of gear design,
to specify the design details based on the available information, such as the gear
contact ratios. With respect to simulation conditions, the authors assumed that the
aerodynamic torque was 𝑇aero = 15 000 Nm, and the electromagnetic torque was
–30% of the aerodynamic torque, which corresponded to 30% of wind turbine
efficiency. The rotor was exited with an angular velocity of 10 rad/s.



Optimization of gear teeth in the wind turbine drive train with gear contact’s. . . 719

Table 1. Data for the drivetrain configuration presented in this work

𝐽𝑟 𝑧 inertia of the rotor (kg·m2) 4.18·106

𝐽𝑐𝑧 inertia of the carrier (kg·m2) 57.72
𝐽𝑝𝑧 inertia of the planet (kg·m2) 1.12
𝐽𝑠𝑧 inertia of the sun (kg·m2) 0.86
𝐽𝑔1𝑧 inertia of the gear 1 (kg·m2) 14.32
𝐽𝑔2𝑧 inertia of the gear 2 (kg·m2) 1.62
𝐽𝑔3𝑧 inertia of the gear 3 (kg·m2) 0.20
𝐽GN𝑧 inertia of the generator (kg·m2) 93.22
𝑘LSS𝑧 torsional stiffness about 𝑧-axis of the LSS (Nm/rad) 7.19·107

𝑘IS𝑧 torsional stiffness about 𝑧-axis stiffness of the IS (Nm/rad) 1.40·107

𝑘HSS𝑧 torsional stiffness about 𝑧-axis of the HSS (Nm/rad) 0.15·107

𝑘rp, 𝑘sp stiffness of the engaging tooth pairs in the low speed planetary gear stage
(N/m)

0.73·108

𝑘𝑔12 stiffness of the engaging tooth pairs in the 1st high-speed parallel gear
stage (N/m)

2.02·109

𝑘𝑔34 stiffness of the engaging tooth pairs in the 2nd high-speed parallel gear
stage (N/m)

0.11·108

𝐶rp contact ratio of ring-planet 1.9342
𝐶sp contact ratio of sun-planet 1.6242
𝐶𝑔12 contact ratio of gear 1 and 2-1 1.6616
𝐶𝑔34 contact ratio of gear 2-1 and 3 1.5984
𝑟𝑐 radius of carrier (m) 0.270
𝑟𝑝 radius of planet (m) 0.160
𝑟𝑠 radius of sun (m) 0.110
𝑟𝑔1 radius of gear 1 (m) 0.290
𝑟𝑔2_1 radius of gear 2_1 (m) 0.095
𝑟𝑔2_2 radius of gear 2_2 (m) 0.185
𝑟𝑔3 radius of gear 3 (m) 0.080
𝛼 pressure angle (◦) 0.020
Gear ratio 34.654

3. Optimization

3.1. Reliability-based design optimization

Reliability is the figure of merit to judge product function [20–25]. In reliability-
based design optimization, reliability means that products satisfy functionality by
probability. If there is a failure from a non-isotropic material or manufacturing
error, we should represent product reliability as a quantitative value. A good way
is to represent reliability as a random variable. Equation (18) shows the constraint
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equation where the limit state function is represented by a random variable [26].
𝑅 and 𝑆 are structural resistance and structural load effect, respectively. The authors
specified the sun-planet, the ring-planet, the gear 1-gear 2, and the gear 2-gear 3
contact ratios as the random variables 𝑋1–𝑋4, respectively, according to the number
of gear teeth and their uncertainty.

𝐺 (𝑋𝑖) = 𝐺 (𝑋1, 𝑋2, 𝑋3, . . . , 𝑋𝑖) = 𝑅(𝑋1, 𝑋2, 𝑋3, . . . , 𝑋𝑖)
−𝑆(𝑋1, 𝑋2, 𝑋3, . . . , 𝑋𝑖). (18)

From equation (18), failure and safe region can be defined as 𝐺 (𝑋𝑖) ⩽ 0 and
𝐺 (𝑋𝑖) > 0, respectively. Equation (19) is the joint-probability density function that
defines the probability of failure.

𝑃 𝑓 = 𝑃[𝐺 (𝑋𝑖) ⩽ 0] =
∫

𝐺 (𝑋𝑖 )⩽0

𝑓𝑥 (𝑋𝑖)d𝑋. (19)

The probability of safety is the opposite to the probability of failure. In this
research, the authors computed reliability to make an optimized gear teeth model
with gradient algorithms used in the determination of the random variables.

According to design optimization, the authors defined general terms for ac-
quiring optimized solutions. All of the system properties of the drive train except
the gear mesh were taken from the research by Todorov et al. [5]. Although the gear
teeth are different, the performances including the gear ratio should be equal when
these properties are used. In other words, the obtained gear relationships should
be the same. According to this fact, the authors can classify the terms as design
variables, objective functions, and constraints. First, the design variables are the
number of gear teeth. Basic information about the gear including the pitch diameter,
the gear ratio, and the contact ratio should be identical to perform the same angular
motion. But, the number of gear teeth maintaining the same gear ratio can be dif-
ferent. As referred before, our task is to determine the proper number of gear teeth
that satisfy safety standards. To evaluate safety standards, we assumed uncertainty
of manufacturing error by adding the contact ratio’s probability. If there are errors
in the process, every contact ratio will show the same errors caused by the machine
tool. So, the authors inputted different gear mesh models that included uncertainty
in the contact ratio with errors having the same pattern of normal distribution.

Secondly, the objective function is a certain function of gear mesh contact
forces’ probability. The gear mesh contact force can be calculated by multiplying
the gear mesh stiffness from equations (1)–(5) in Section 2.1 and the relative
displacement from equations (7), (8), (10) and (11) in Section 2.2. The authors
obtained probability results arranged according to the number of gear teeth. In
another problems, most of researchers tried to find out a proper value which
coincides with the minimum objective function. However, the authors developed
an algorithm that provides high reliability according to the standards and chose the
minimum number of gear teeth.
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Finally, the constraints are the other properties except for the design variables
that include the gear teeth bending strength criterion in Section 3.2 [6]. As have
been mentioned before, basic design variables including the inertia of the rotor
were listed in Table 1 except for the applied variables such as the contact ratio.
In other words, if design variables are defined, other properties are defined by
kinematical relation equations. For instance, Equations (20) and (21) are the gear
ratio and gear relationship of planetary gear stages.

Ratio =
𝑅 + 𝑆
𝑆

, (20)

𝑅 = 2 × 𝑃 + 𝑆. (21)

From these relationships, the authors can define the sun and planet gear teeth
from the ring gear. This is one example of constraints. In the work by Todorov et
al. [5] regarding Table 1, the authors just showed gear contact ratios instead of the
number of gear teeth. The authors could determine the number of gear teeth by
substituting the determined number of gear teeth in Equations (20) and (21). By the
same procedure, the authors could define all the design variables including gears
1, 2, and 3.

Consequently, the authors obtained the probability and the number of gear
teeth in every simulation. Some of them satisfied safety standards, the others didn’t.
Above the specific number of gear teeth, all greater numbers of the gear teeth give
high reliability. Because of safety, all of them satisfy standards. However, the goal
of engineering design is to generate economic profits. Using small amounts of
materials in the system design, the authors can make the system more efficient. In
this view, reliability-based design optimization is a good way to come up with a
proper design and development by combining other engineering techniques.

3.2. Gear teeth bending strength criterion

The first gear analysis was carried out by Wilfred Lewis et al. in 1892. The
authors have created the so-called Lewis’ equation. It has been acknowledged as
the bending stress analysis of gear teeth[6]. Generally, the two primary causes for
failures of the gears are tooth breakage and surface wear. Regarding the tooth break-
age, excessive bending stress should be calculated to check strength of the tooth
before manufacturing. The Lewis bending stress can be calculated by multiplying
the maximum bending stress and a dimensionless Lewis form factor. In calculat-
ing the maximum bending stress, the torque due to power transmission, tangential
load, and pitch line velocity should be calculated first. An advanced methodology,
such as the AGMA bending stress, has been suggested to calculate the strength of
gear teeth. This methodology was used to determine design variables in the gear
teeth but can also be used as a constraint equation in optimization problems by
introducing uncertainty to the design variables.
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The authors used the AGMA bending stress methodology and equation to
compare failure strength. Equations (22) and (23) are the gear teeth bending stress
and the endurance limit. 𝜎 is the bending stress of a gear tooth, 𝐹𝑡 is the gear mesh
contact force, 𝑃 is the tooth size, 𝑏 is the tooth width, 𝐽 is the gear geometry factor,
𝐾𝑣 is the velocity or dynamic factor, 𝐾𝑜 is the overload factor, 𝐾𝑚 is a mounting
factor, 𝑆𝑛 is the bending fatigue strength, 𝑆′𝑛 is the standard R.R. Moore endurance
limit, 𝐶𝐿 is the load factor, 𝐶𝐺 is the gradient factor, 𝐶𝑆 is a surface factor, 𝑘𝑟 is
the reliability factor, 𝑘𝑡 is the temperature factor, and 𝑘ms is the mean stress factor.

𝜎 =
𝐹𝑡𝑃

𝑏𝐽
𝐾𝑣𝐾𝑜𝐾𝑚 , (22)

𝑆𝑛 = 𝑆′𝑛𝐶𝐿𝐶𝐺𝐶𝑆𝑘𝑟 𝑘𝑡 𝑘ms . (23)

To satisfy the safety standards, bending stress should be lower than the en-
durance limit. In these equations, the variables except for the contact force 𝐹𝑡 are
known according to design of the gear. Our task is to find the contact force when
the gear teeth bending stress is equal to the endurance limit (Equations (24),(25)).
This contact force can be defined as the maximum gear mesh contact force 𝐹𝑡 ,max.
Every gear mesh contact force should be lower than the maximum standards to
avoid failure. The authors wrote a MATLAB code which calculates maximum gear
contact force from gear information, performs numerical analysis including gear
mesh contact force, and shows probability by comparing the gear mesh contact
force with maximum standards.

𝜎max − 𝑆𝑛 ⩽ 0 , (24)

𝐹𝑡 ,max ⩽
𝑏𝐽

𝑃𝐾𝑣𝐾𝑜𝐾𝑚

𝑆′𝑛𝐶𝐿𝐶𝐺𝐶𝑆𝑘𝑟 𝑘𝑡 𝑘ms. (25)

4. Results and discussion

4.1. Normal distribution curve of gear contact ratio

In reliability-based design optimization, uncertainty should be finally included
to compare probability of each gear stage. In this research, the authors assumed that
the contact ratio is treated as an uncertainty caused by manufacturing error. Fig. 3
shows a distribution of ring and planet gear contact ratio. Most of the values are
concentrated around the mean value of the original contact ratio. One can express
the probability of uncertainty by the probability of variables. Equation (26) shows
the probability of variables.

𝑥𝑖 = 𝜇𝑖 + 𝛿𝑖 . (26)

𝜇𝑖 is the mean value of the variables, and the 𝛿𝑖 is the uncertainty of the variables.
In mechanical manufacturing, errors follow a normal distribution. The normal
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Fig. 3. Ring-planet gear contact ratio distribution in case of low uncertainty

distribution can be defined by the mean value and the standard deviation. Generally,
the mean value is a basic dimension, and the standard deviation can be defined by
equation (27).

𝜎2
𝑥𝑖
= 𝑇2

𝑥𝑖
/9. (27)

𝜎𝑥𝑖 is the standard deviation of the gear mesh contact ratio and the 𝑇𝑥𝑖 is the
manufacturing error. Distributions are different when standard deviations differ.
One can match standard deviation to manufacturing error. To guarantee objectivity,
the authors simulated 3 cases which represent high, medium, and low uncertainties.
It was shown that a large scale of allowance creates high uncertainty and high
standard deviation. Fig. 4 shows the distribution of ring-planet gear contact ratio
in high allowance cases. There can be seen a large range of variables and a wider
distribution of probability compared to Fig. 3.

Fig. 4. Ring-planet gear contact ratio distribution in case of high uncertainty
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4.2. Optimized number of gear teeth

In this section, the authors obtained an optimized gear teeth by applying MAT-
LAB. Fig. 5 shows the MATLAB algorithm. To get reliable results, the authors
simulated 1,000 calculations per design variable case. Additional considered cases
represent high, medium, and low uncertainty, because gear mesh contact forces
are significantly different for different contact ratios. By comparing the whole sets
of data representing probability and reliability according the uncertainty, the algo-
rithm have finally provided the best set of the optimized gear teeth. Table 2 shows
the number of gear teeth optimized according to uncertainty. As it can be seen, all
reliabilities are good when manufacturing error is low, and there are many cases
in which gear teeth satisfy safety standards perfectly. But MATLAB code always
follows a small number of gear teeth automatically. As referred, compliance should
be minimized when constraint conditions are satisfied in reliability-based design
optimization. This is the basic rule of optimization. The other fact is that reliability
decreases and the number of gear teeth is generally greater when uncertainty is
high. From this fact it follows that a greater number of gear teeth can improve reli-
ability. With a bigger number of gear teeth, dynamic characteristics of rotation are

Fig. 5. Reliability based design optimization MATLAB algorithm
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smoother and the gear mesh contact force is lower. It is the reason why the design
of gear assures a proper backlash. In a gear system with a small number of teeth,
there appears irregular vibration caused by the misalignment of gear. We called it
the improper backlash. Reversely, the gear teeth will be regular if the number of
gear teeth is bigger. However, the cost of manufacturing will be greater.

Table 2. Reliability in case of gear teeth uncertainty

High uncertainity Medium uncertainity Low uncertainity
(𝜎𝑥,𝑖 = 0.5) (𝜎𝑥,𝑖 = 0.1) (𝜎𝑥,𝑖 = 0.01)

Ring gear teeth 64 55 45

Sun gear teeth 16 14 12

Planet gear teeth 24 21 17

Gear 1 teeth 51 51 64

Gear 2-1 teeth 17 17 21

Gear 2-2 teeth 39 40 36

Gear 3 teeth 17 17 16

Reliability of sun-planet gear 83.2% 100% 100%

Reliability of ring-planet gear 84.0% 100% 100%

Reliability of gear 1-gear 2 81.9% 97.2% 100%

Reliability of gear 2-gear 3 82.1% 99.6% 100%

The graphs in Fig. 6 show an example of gear 2-gear 3 contact ratio and force
distribution for a sample of 100 gears, whose characteristic is that the allowance
is small. So, the authors inputted a well-designed gear contact ratio. As expected,
the obtained contact force distribution corresponded to the gear contact ratio dis-
tribution. Due to the definition of gear contact force, its value was not negative.
If an improper contact ratio is used, the gear contact force will increase. It is the
reason why there are no negative values of gear force. Taking into account this
fact, the authors found it necessary to consider the uncertainty of a system which
makes an irregular output. Especially, the optimized solution never satisfies safety
standards. Conversely, a solution that isn‘t optimized better satisfies safety and
needs less maintenance expenditure compared to an optimized solution. To en-
sure a better accuracy, the authors ought to accumulate lots of data. If there were
more samples in this example, a smoother normal distribution pattern would be
obtained. The obtained reliability would satisfy a specific safe region related to this
distribution.

According to these facts, the optimized gear teeth were designed so as to
acquire high reliability in all cases. The number of teeth in the ring, sun, planet,
gear 1, gear 2_1, gear 2_2, and gear 3 are 55, 14, 21, 51, 17, 40, and 17 when the
standard deviation is 0.1, and the distribution satisfies reliability greater than 95%.
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Fig. 6. Gear 2–gear 3 contact ratio, force distribution

5. Conclusions

In this research, the optimized gear teeth in the drive train system were de-
veloped by using the basic theorem of gear failure and reliability-based design
optimization. Especially, the gear teeth contact ratios were the design variables
with the uncertainty caused by the failure risk. Taking the uncertainty into account,
the authors conducted the reliability-based design optimization determining the
maximum gear contact force, carrying out drive train simulation, and comparing
the obtained values to standards to find out the optimized number of gear teeth.
For the optimization, the authors simulated the torsional drive train system with
application of rotational coordinates. The authors established a static stress analysis
model which gave information about endurance limit and bending strength. The
equations of motion including the gear mesh models and kinematical relations in
the drive train system were acquired based on a gear mesh stiffness model em-
ploying the Fourier series, the Lagrange equations and constraint equations. The
numerical analysis was then carried out. Based on the results, such as the gear mesh
contact force, the authors calculated the probabilities of failure, associated each
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probability with the gear teeth, and determined reasonable and economic design of
gear teeth.

Before applying the optimized gear teeth in the real system, the new design
should be comprehensively checked, simulated, and thoroughly experimented to
secure safety. To secure the reliability of the design, the drive train model including
gear, shaft, and other components will be subjected to optimization based on flexible
multi-body dynamics. Experimental works on dynamic characteristic of the drive
train that utilizes the optimized gear teeth will be considered in the future.
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