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Online continuous-time adaptive predictive control
of the technological glass conditioning process

Michał DRAPAŁA and Witold BYRSKI

Glass production has a great industrial importance and is associatedwithmany technological
challenges. Control related problems concern especially the last part of the process, so called
glass conditioning. Molten glass is gradually cooled down in a long ceramic channels called
forehearths during glass conditioning. The glass temperature in each zone of the forehearth
should be precisely adjusted according to the assumed profile. Due to cross-couplings and
unmeasured disturbances, traditional control systems based on PID controllers, often do not
ensure sufficient control quality. This problem is the main motivation for the research presented
in the paper. A Model Predictive Control algorithm is proposed for the analysed process. It
is assumed the dynamic model for each zone of the forehearth is identified on-line with the
Modulating Functions Method. These continuous-time linear models are subsequently used for
two purposes: for the predictive controller tuning, measurable disturbances compensation and for
a static set point optimisation. Proposed approach was tested using Partial Differential Equation
model to simulate two adjacent zones of the forehearth. The experimental results proved that it
can be successfully applied for the aforementioned model.

Key words: system identification, modulating functions method, model predictive control,
continuous-time systems, glass forehearth

1. Introduction

Continuous technological processes with uninterrupted operation and signif-
icant energy consumption pay particular attention among other processes. Such
processes are typical for chemical and petroleum rectification, metallurgical and
glass industries. Distillation columns run continuously for a period of a year,
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consuming energy from superheated steam, and only then there is a service
break. Usually glass furnaces consume large amount of natural gas as its energy
source. Typical campaign time for a glass furnace lasts about 10 years. Saving
even 1% of the energy consumed throughout this time would bring significant
profits for the factory and would reduce CO2 emission substantially. Apart from
production technologists, the contribution to this energy optimization problem is
made by modern computer control systems, that utilize process models. Control
algorithms can optimize several conflicting goals, like maximizing production,
reducing energy consumption, minimizing wastes, while meeting technological
constraints at the same time. In this paper, that is devoted to the process of
glass containers production, a special new Adaptive Predictive Control approach
will be presented, for the problems of molten glass temperature stabilization and
static operating point optimization. For this purpose, new non-standard methods
of continuous-time linear models identification and exact state observation will
be applied.
Conditioning is a vital part of a glass manufacturing process. After leaving

a glass furnace, molten glass is gradually cooled down in working end and
forehearth zones, before forming containers. The purpose of this procedure is
to obtain the utmost glass homogeneity in the last part of the forehearth. This
parameter depends on the temperature difference between adjacent glass streams.
From a technological point of view, the temperature stabilization problem at
the forehearth exit is crucial for the quality of manufactured products. Equally
important issue concerns the set point tracking during production changes. Fast
adaptation to new working conditions allows minimizing production downtimes
and saving energy.
Described problem is significant for the glass industry, however, there are little

subject literature. Research works often concern the area of predictive control,
e.g. in [1] the synthesis of an adaptiveGeneralized Predictive Control (GPC) algo-
rithm with feedforward for the container manufacturing process is discussed. The
authors claimed that the production quality was significantly improved. Similar
idea for continuous models is presented in [2]. Authors of [3] and [4] developed
two degree of freedom control structure composed of feedforward and feed-
back parts for forehearth zone described with Partial Differential Equation (PDE)
model. Another approach utilizes the concept of Computational Fluid Dynamics
(CFD) simulation. It is described in [5] and [6]. The solution implements pre-
dictive control algorithms. Additional features enable to consider dependencies
between technological parameters and to optimize working conditions for the
whole glass melting plant. Detailed description of the identification and control
algorithms is omitted due to the fact that the expert system is a commercial
solution.
The research presented in this paper proposes different approach. Dynamical

models of the forehearth zones are obtained by on-line identification algorithm
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based on the Modulating Functions Method (MFM). Standard methods of active
identification based on step response apply only to low-order linear continuous
systems with zero initial conditions. Passive identification of continuous (not
discrete) linear systems of any order is not trivial and searching for an efficient
method of such identification is important for control theory. The linear models
are identified for successive time intervals.With a change of operating conditions,
parameters of these models can be updated. The models are utilized to tune the
Model Predictive Controller (MPC) and to optimize the current operating point.
The paper summarizes and expands previously described adaptive identification
approach described in [7] and [8], as well as the continues-time model predictive
algorithm presented in [9]. The algorithm of temperature set-point optimization
is the novelty introduced in the work.
The paper is organized as follows. Section 2 gives a short description of the

analyzed glass forehearth installation and its control system. Section 3 presents
in details the implemented on-line identification algorithm based on the MFM.
Developed control methods are explained in Section 4. Section 5 reports the
experimental results. The last Section 6 concludes the paper.

2. Forehearth control system

The glass production process can be divided into several steps:

• melting batch materials,

• clarification,

• homogenization,

• rafination,

• conditioning.

The first three stages take place in a glass furnace,while the last two of themare
performed after molten glass leaves the furnace, in other parts of the installation
(working end and forehearths). During the conditioning process, the temperature
difference between glass fractions is compensated. The glass acquires appropriate
viscosity and temperature before forming.
As is mentioned above, the molten glass flows from the furnace into the work-

ing end. It connects the furnace with the forehearths. Each forehearth constitutes
a separate production line. It is a long ceramic channel, usually divided into sev-
eral zones. For the analyzed glass forehearth, each zone has its own temperature
controller. The type of installed actuators depends on its role and location. The
molten glass temperature should be maximally reduced in the first zone. That is
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why cooling dampers are mounted here. In the second zone, there are separate
gas burners for left and right sides to equalize the temperatures of the molten
glass streams. The precise temperature control is especially important for the last
two zones which makes reasonably to replace PID controllers by predictive ones.
The control loops creating the analyzed forehearth control system are depicted in
Figure 1.

Figure 1: Control system of a glass forehearth

The amount of glass flowing through the forehearth is called a glass pull
rate. This parameter is typically given in tons and defined for 24 hours. It can
be reliably determined only for steady states of the installation. When operating
points are changed, this parameter can vary significantly and its value is provided
by operators with some delay. Its knowledge is important, because it determines
the delay with which the preceding zone temperature affects the measured one.

3. Model identification algorithm

It is assumed that the Linear Time Invariant (LTI) Multi Input Single Output
(MISO) system is given by Equation (1):

𝑛∑︁
𝑖=0

𝑎𝑖𝑦
(𝑖) (𝑡) =

𝐾∑︁
𝑘=1

𝑚𝑘∑︁
𝑗=0

𝑏𝑘 𝑗𝑢
( 𝑗)
𝑘

(𝑡) =
𝑚1∑︁
𝑗=0

𝑏1 𝑗𝑢
( 𝑗)
1 (𝑡) + . . . +

𝑚𝐾∑︁
𝑗=0

𝑏𝐾 𝑗𝑢
( 𝑗)
𝐾

(𝑡). (1)
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The model has single output 𝑦 and 𝐾 inputs 𝑢𝑘 , where 𝑘 = 1, . . . , 𝐾 . There
are 𝑛 output derivatives and 𝑚𝑘 derivatives for the 𝑘-th input, where 𝑚𝑘 ¬ 𝑛.
The functions 𝑦 (𝑖) , 𝑢( 𝑗)1 , . . . , 𝑢

( 𝑗)
𝐾
are given on the interval [𝑡0, 𝑇ID]. It is assumed

that only the inputs 𝑢 and the output 𝑦 are measured. Their derivatives can be
calculated numerically, however it often results in large errors. The values of
parameters a and b are not known and should be identified.

3.1. Modulating Functions Method

The identification procedure can be performed using the Modulating Func-
tions Method (MFM) approach developed by Shinbrot [10]. It is based on the
rule of integrating by parts. A comprehensive description of the method can be
found in [11], as well as in [12]. It will be shortly presented below. Left and right
hand sides of Equation (1) are convoluted with the filtering function 𝜙 and its
known derivatives 𝜙(𝑖) . The function 𝜙 is non-zero in the interval (0, ℎ) and zero
for 𝑡 = 0, 𝑡 = ℎ and outside this interval.
Utilizing the convolution properties, new functions 𝑦𝑖 (𝑡) and 𝑢𝑖 (𝑡) can be

obtained in the interval [𝑡0 + ℎ, 𝑇ID] for 𝑖 = 0, 1, . . . , 𝑛:

𝑎𝑖𝑦𝑖 (𝑡) = 𝑎𝑖
∞∫

−∞

𝑦 (𝑖) (𝜏)𝜙(𝑡 − 𝜏)d𝜏 = 𝑎𝑖
ℎ∫
0

𝑦(𝑡 − 𝜏)𝜙(𝑖) (𝜏)d𝜏 = 𝑎𝑖𝑦𝑖 (𝑡), (2)

𝑏 𝑗𝑢𝑘 𝑗 (𝑡) = 𝑏 𝑗
∞∫

−∞

𝑢
( 𝑗)
𝑘

(𝜏)𝜙(𝑡 − 𝜏)d𝜏 = 𝑏 𝑗
ℎ∫
0

𝑢𝑘 (𝑡 − 𝜏)𝜙( 𝑗) (𝜏)d𝜏 = 𝑏 𝑗𝑢𝑘 𝑗 (𝑡). (3)

Hence, the differential Equation (1) can be transformed into the algebraic Equation
(4) with the same parameters:

𝑛∑︁
𝑖=0

𝑎𝑖𝑦𝑖 (𝑡) =
𝑚1∑︁
𝑗=0

𝑏1 𝑗𝑢1 𝑗 (𝑡) + . . . +
𝑚𝐾∑︁
𝑗=0

𝑏𝐾 𝑗𝑢𝐾 𝑗 (𝑡) + 𝜖 (𝑡). (4)

The term 𝜖 represents difference between left and right-hand side terms resulting
from e.g. inaccuracies arising during computations or signal noises.
For identification purposes, the following assumptions about the 𝜙 function

were made:
• 𝜙 ∈ 𝐶𝑛 (0, ℎ) and satisfies boundary conditions 𝜙(𝑖) (0) = 𝜙(𝑖) (ℎ) = 0 for
𝑖 = 0, 1, . . . , 𝑛 − 1,

• 𝑦 ∗ 𝜙 = 0⇒ 𝑦 = 0 on the interval [𝑡0 + ℎ, 𝑇ID],
• the function support ℎ has to be less than 𝑇ID− 𝑡0, then Equation (4) is valid
for 𝑡 ∈ (𝑡0 + ℎ, 𝑇ID).
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In the paper, the Loeb and Cahen functions were used:

𝜙(𝑡) = 𝑡𝑁 (ℎ − 𝑡)𝑀 , 𝑁 < 𝑀. (5)

The aforementioned error 𝜖 can be treated as a performance index of the
Equation Error Method (EEM). It can be written as:

𝜖 (𝑡) = c𝑇 (𝑡)𝜽 =
[
𝑦0(𝑡), . . . , 𝑦𝑛 (𝑡),−𝑢10(𝑡), . . . ,

− 𝑢1𝑚1 (𝑡), . . . ,−𝑢𝐾0(𝑡), . . . ,−𝑢𝐾𝑚𝐾 (𝑡)
] 

a
b1
...

b𝐾

 , (6)

where a, b1, . . . , b𝐾 are the column vectors of input and output parameters. The
number of elements of the vector 𝜽 depends on the assumed rank of the identified
system: 𝜽 ∈ 𝑅𝑛+𝑚1+...+𝑚𝐾+𝐾+1.
In [11], as well as in [12], an original approach of finding the optimal vector

of parameters is described. The minimization problem is stated in the function
space 𝐿2 [𝑡0 + ℎ, 𝑇ID] as:

min
𝜽
𝐽2 = min ‖𝜖 (𝑡)‖2

𝐿2 [𝑡0+ℎ,𝑇] = min ‖c(𝑡)
𝑇𝜽 ‖2

𝐿2
. (7)

The trivial solution can be avoided by introducing the linear constraint 𝜼𝑇𝜽 = 1.
The norm in Equation (7) can be interpreted as an inner product in the space 𝐿2:

𝐽2 = 〈c𝑇 (𝑡)𝜽 , c𝑇 (𝑡)𝜽〉𝐿2 = 𝜽𝑇 〈c(𝑡), c𝑇 (𝑡)〉𝜽 = 𝜽𝑇G𝜽 . (8)

The square real and symmetric Gram matrix G is given as:

G =


YY YU1 . . . YU𝐾

U1Y U1U1 . . . U1U𝐾

...
...

. . .
...

U𝐾Y U𝐾U1 . . . U𝐾U𝐾


, (9)

where:
YY(𝑖, 𝑗) = 〈𝑦𝑖, 𝑦 𝑗 〉 and 𝑖 = 0 . . . 𝑛, 𝑗 = 0 . . . 𝑛,
YU𝑘 (𝑖, 𝑗) = −〈𝑦𝑖, 𝑢𝑘 𝑗 〉 and 𝑘 = 1 . . . 𝐾 , 𝑖 = 0 . . . 𝑛, 𝑗 = 0 . . . 𝑚𝑘 ,
U𝑘Y(𝑖, 𝑗) = −〈𝑢𝑘𝑖, 𝑦 𝑗 〉 and 𝑘 = 1 . . . 𝐾 , 𝑖 = 0 . . . 𝑚𝑘 , 𝑗 = 0 . . . 𝑛,
U𝑘U𝑙 (𝑖, 𝑗) = 〈𝑢𝑘𝑖, 𝑢𝑙 𝑗 〉 and 𝑘 = 1 . . . 𝐾 , 𝑙 = 1 . . . 𝐾 , 𝑖 = 0 . . . 𝑚𝑘 , 𝑗 = 0 . . . 𝑚𝑙 .
The matrix G is created by the inner products in 𝐿2 of the 𝑐(𝑡) elements, e.g.:

〈𝑦𝑖, 𝑢 𝑗 〉 =
𝑇ID∫

𝑡0+ℎ

𝑦𝑖 (𝜏)𝑢 𝑗 (𝜏)𝑑𝜏.
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The optimal vector 𝜽 , that minimizes the performance index, can be calculated
using the Lagrange multiplier technique:

min
𝜽
𝐽2 = min

𝜽
𝐿 = min

𝜽

(
𝜽𝑇G𝜽 + 𝜆

[
𝜼𝑇𝜽 − 1

] )
, (10)

as:

𝜽0 =
G−1𝜼

𝜼𝑇G−1𝜼
. (11)

The matrix G is symmetric and its eigenvalues are real and positive. In
practice, it cannot be non-singular due to uncorrelated noises in signals. Having
the matrixG, it is possible to select the optimal constraint vector 𝜼 that minimizes
the performance index 𝐽2. In [12] it is explained that it should be selected as the
eigenvector of the matrixG corresponding to its minimal eigenvalue. However, in
practical applications, when the structure of themodel to be identified is unknown,
it may occur that despite minimizing the value of 𝐽2, obtained models do not give
expected results. In the performed experiments the constraint vector with 1 for
the 𝑛-th element and zeros for the other elements was adopted. It means that most
important is obtaining the proper value of the selected parameter corresponding
to the highest derivative of the output signal.
The presented MFM has many advantages among other well known iden-

tification methods. It enables to obtain continuous-time LTI models directly,
without discretization. Its most important feature is the possibility to identify the
models without the knowledge of their initial condition. It is possible thanks to
the properly selected modulating function that zeros at the modulating interval
boundaries.

3.2. State-space representation of the model

Non-linearity of the analyzed system causes changes of parameters and model
structure. State-space representation is convenient for simulating of the system
output with non-zero initial conditions during the adaptive identification proce-
dure and is also used by the predictive control algorithm. The differential state
equations are given as:

¤𝑥(𝑡) = Am𝑥m(𝑡) + [Bmd Bmu]︸         ︷︷         ︸
Bm

[
𝜔(𝑡)
𝑢(𝑡)

]
︸   ︷︷   ︸

𝑢m

, 𝑥m(𝑡0) = 𝑥m0 ,

𝑦(𝑡) = Cm𝑥m(𝑡),

(12)

where:
∀𝑡  𝑡0 : 𝑥m(𝑡) ∈ 𝑅𝑛, 𝜔(𝑡) ∈ 𝑅, 𝑢(𝑡) ∈ 𝑅𝐾−1, 𝑦(𝑡) ∈ 𝑅,
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and the corresponding real matrices Am, Bmd, Bmu, Cm consist of parameters 𝑎𝑖,
𝑏𝑖 from Equation (1) or Equation (4):

Am =



0 . . . 0 −𝑎0
𝑎𝑛

1 . . .
...

...
...
. . . 0 −𝑎𝑛−2

𝑎𝑛

0 . . . 1 −𝑎𝑛−1
𝑎𝑛


(𝑛×𝑛)

, B𝑚𝑑 =


𝑏10

𝑎𝑛
...

𝑏1𝑛−1
𝑎𝑛


(𝑛×1)

,

Bmu =


𝑏20

𝑎𝑛
. . .

𝑏𝐾0

𝑎𝑛
...

...
...

𝑏2𝑛−1
𝑎𝑛

. . .
𝑏𝐾𝑛−1
𝑎𝑛


(𝑛× 𝐾−1)

, Cm =
[
0 . . . 1

]
(1×𝑛)

.

(13)

In Equation (12), the input signals are divided into two categories. The first
input refers to the known disturbance signal𝜔(𝑡) = 𝑢m1(𝑡). The remaining signals
𝑢(𝑡) = [𝑢m2(𝑡) . . . 𝑢m𝐾 (𝑡)]𝑇 can be both measured and changed. This assumption
results from the specific of the the analyzed system. Molten glass temperature
in the controlled zone of the forehearth is influenced control signals, like e.g.
gas-air mixture pressure, and by uncontrolled impacts, like glass temperature in
the preceding part of the installation.

3.3. Exact integral state observers

In the above section, it is mentioned that the simulation ability of the system
dynamics with non-zero initial conditions is crucial for the developed identifi-
cation algorithm. The state vector 𝑥m(𝑡) cannot be obtained directly. It can be,
however, calculated based on the measured system output 𝑦(𝑡) and the known
system input 𝑢m(𝑡).
In the paper, the exact state observers are applied. They have the structure of

two integrals and can exactly reconstruct the state of the linear system. The integral
observers, described in [13], guarantee obtaining the real value of the observed
state for the observation interval 𝑇OB. The observers are used for obtaining both
initial and final state of the system. The formula for the initial system state,
assuming 𝑡0 = 0, is given as:

𝑥m(0) =
𝑇OB∫
0

G1(𝑡)𝑦(𝑡)d𝑡 +
𝑇OB∫
0

G2(𝑡)𝑢m(𝑡)d𝑡, (14)
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where:

M0 =

𝑇𝑂𝐵∫
0

𝑒A𝑇m𝜏C𝑇mCm𝑒Am𝜏d𝜏,

G1(𝑡) = M−1
0 𝑒

A𝑇m𝑡C𝑇m,

G2(𝑡) = M−1
0


𝑇OB∫
𝑡

𝑒A𝑇m𝜏C𝑇mCm𝑒Am𝜏d𝜏
 𝑒−Am𝑡Bm.

On the other hand, the final state observer is given as:

𝑥m(𝑇OB) =
𝑇OB∫
0

G1(𝑡)𝑦(𝑡)d𝑡 +
𝑇OB∫
0

G2(𝑡)𝑢m(𝑡)d𝑡, (15)

where:

G1(𝑡) = 𝑒Am𝑇OBM−1
0 𝑒

A𝑇m𝑡C𝑇m,

G2(𝑡) = 𝑒Am𝑇OBM−1
0


𝑡∫
0

𝑒A𝑇m𝜏C𝑇mCm𝑒Am𝜏d𝜏
 𝑒−Am𝑡Bm.

3.4. Adaptive identification method

The identification method concept bases on the non-linear system dynamics
described by the linear model close to the selected operating point with the use of
the previously registered system inputs and outputs. The procedure is therefore
analogous to the Prediction Error Method (PEM). The whole identification win-
dow is divided into smaller intervals of the width 𝑇 . The subsequent zero points
𝑡0 𝑗 can be defined in the intervals, where input and output signals are almost
constant.
The initial model of the process, valid for the zero point 𝑡01, can be identified

for 𝑛start intervals, assuming a zero initial condition. The MFM identification
procedure is performed for several predefined model sets, differing in structure
and parameters values. The model with the minimal value of the performance
index:

𝐸 (𝑡0, 𝑡end) =
𝑡end∫
𝑡0

(𝑦(𝑡) − 𝑦sim(𝑡))2 d𝑡, (16)

where 𝑦(𝑡) is the real system output and 𝑦sim(𝑡) the simulated one, is selected as a
current model. Performed experiments proved that the squared difference works
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better than the performance index given as Equation (8) for this task, however
needs greater computational effort. To ensure reliability of the newly identified
model, the historical data used for identification, should reflect significant changes
of the process variables. For this reason, it is assumed that two conditions have to
be met for at least two of the system inputs. First of all, the correlation between
the system input and its output should be greater than 𝑡𝑟corr. Additionally, the
input signals variance should be greater than 𝑡𝑟var.
Based on the identified model and the assumed input signals, the system

output in the next time interval can be predicted. For this purpose, the system
state for the end of the current interval 𝑡 𝑗 is needed. It can be calculated with the
final state observer as:

𝑥m(𝑡 𝑗 ) =
𝑡 𝑗∫

𝑡 𝑗−𝑇OB

G1(𝑇OB − 𝑡 𝑗 + 𝑡)𝑦(𝑡)d𝑡 +
𝑡 𝑗∫

𝑡 𝑗−𝑇OB

G2(𝑇OB − 𝑡 𝑗 + 𝑡)𝑢m(𝑡)d𝑡, (17)

where the successive time moments are:

𝑡 𝑗 = 𝑡0 𝑗 + 𝑗 · 𝑇 − (𝑡0 𝑗 modulo 𝑇), 𝑗 = 1, 2, 3, . . .

and 𝑡0 𝑗 is the current operating point.
Parameters of the current model can be updated (without changing the current

operating point or the model structure) assuming that the performance index 𝐸
for the current model is greater than 𝑡𝑟reident. As more process data become
available, it is possible to get more reliable parameters values. The maximum
re-identification interval width is equal to 𝑛reident · 𝑇 .
If the new operating point can be found inside the last 𝑛𝑛𝑖𝑑𝑒𝑛𝑡 intervals, then

the whole identification procedure can be performed as in the case of the first
model. The condition for the model update (𝐸 > 𝑡𝑟reident), as well as additional
conditions as for the initial model have to be met. Shorter identification window
(𝑛nident base intervals instead of 𝑛start) is the only difference compared with the
previous procedure. If the performance index 𝐸 value is less for the new model,
its structure, current operating point and parameters are updated. Performing the
model output simulation for this case demands applying the initial state observer
(14). The above described parameters of the adaptive identification method, that
were used during the performed experiments, are compiled in Table 1. Their
values were selected arbitrarily on the basis of performed experiments.
It should be mentioned here that the MFM does not require zero initial

conditions, which is a significant advantage of this approach. The state observers
are used in the developed method only for simulating the system output in order
to determine the performance index (16) value. The described approach, based
on linear models identified on-line, was succesfully used for the problem of glass
conditioning process modeling. The results can be found in [7] and [8].
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Table 1: Parameters of the identification procedure

Parameter Value
𝑇 250 s
𝑇OB 500 s
𝑡𝑟var 1 · 10−2

𝑡𝑟corr 5 · 10−1

𝑡𝑟reident 500
𝑛start 8
𝑛reident 16
𝑛nident 4

4. Control algorithm design

Model Predictive Control (MPC) is one of the most important concepts of
Advanced Control Methods [14]. It is widely used in process industries, but
mainly in so-called big industries like chemical or petrochemical [15]. In case of
smaller industrial plants, traditional PID control loops are widely used. The main
aim of the paper is to propose their replacement by predictive controllers for the
glass conditioning process. The predictive control could solve many difficulties
specific for the analyzed process. First of all, glass temperature overshoots can be
significantly reduced. Moreover, the impact of glass temperature in the preceding
forehearth zone can be easily compensated . However, this approach is rarely
implemented in industrial plants mainly due to the difficulties with obtaining the
process model.
Unlike most common approaches, utilizing discrete-time process models,

as it is pointed out in [16], the described algorithm is based on the described
above continuous-time linear state-space representation of the process dynamics.
The predictive control algorithm is based on the idea described in [17]. In this
paper, the original approach is extended by taking into account a measured
disturbance signal during the controller synthesis. Similar to the case of adaptive
identification algorithm, the described methodology was used to control the
analyzed process [9].

4.1. Continuous-time MPC algorithm with compensation of measurable disturbances

It is assumed that the system dynamics is described by Equation (12). The
augmented state vector takes the following form:

𝑥(𝑡) =
[
𝑧(𝑡)𝑇 𝑦(𝑡)

]𝑇
, (18)
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where: 𝑧(𝑡) = ¤𝑥m(𝑡). The state-space representation of the augmented model is
given as: [

¤𝑧(𝑡)
¤𝑦(𝑡)

]
︸  ︷︷  ︸

¤𝑥(𝑡)

=

[
Am 0
Cm 0

]
︸     ︷︷     ︸

A

[
𝑧(𝑡)
𝑦(𝑡)

]
︸  ︷︷  ︸
𝑥(𝑡)

+
[

Bmu
01×𝐾−1

]
︸      ︷︷      ︸

B

¤𝑢(𝑡) +
[

Bmd
0

]
︸  ︷︷  ︸

Bd

¤𝜔(𝑡), (19)

𝑦(𝑡) = [01×𝑛 1]︸      ︷︷      ︸
C

[
𝑧(𝑡)
𝑦(𝑡)

]
.

Note that the original state-space Equations (12) are differentiated. In the
described approach, the predicted control trajectory is modelled with the set of
orthonormal Laguerre functions and its integral squared value should be bounded
to ensure the estimate convergence. For this reason, the control signal derivative
is approximated instead of its original trajectory. The Laguerre functions can be
easily written as a matrix equation:

L(𝜏) =

𝑙1(𝜏)
...

𝑙𝑁 (𝜏)

 = 𝑒A𝑝𝜏L(0), (20)

where:

A𝑝 =


−𝑝 0 . . . 0
−2𝑝 −𝑝 . . . 0
...

. . .
. . .

...

−2𝑝 . . . −2𝑝 −𝑝


,

L(0) =
√︁
2𝑝 [1 . . . 1]𝑇

(𝑁×1)
.

The parameter 𝑝 is selected arbitrarily. It is assumed that each control signal
derivative is approximatedwith the use of 𝑁 Laguerre functions. Similarly to [17],
it is adopted that the future control signal derivative is calculated for the time
interval [0, 𝜏], not for [𝑡𝑖, 𝑡𝑖 + 𝜏], where 𝑡𝑖 is the current time moment. This
assumption can be less intuitive, but thanks to this, it is clear that the matrices
𝜼 and 𝜼d in further equations, can be obtained once for the current model of the
system.
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The predicted system state at the future time 𝑡𝑖 + 𝜏, assuming the current time
𝑡𝑖, is given as:

𝑥(𝑡𝑖 + 𝜏 |𝑡𝑖) = 𝑒A𝜏𝑥(𝑡𝑖) +
𝜏∫
0

𝑒A(𝜏−𝛾)B ¤u(𝛾)d𝛾 +
𝜏∫
0

𝑒A(𝜏−𝛾)Bd ¤𝜔(𝛾)d𝛾. (21)

The vector ¤u(𝜏) has 𝐾 − 1 elements, where the 𝑘-th element for 𝑘 = 2, . . . , 𝐾
takes the form:

¤𝑢𝑘 (𝜏) ≈
𝑁∑︁
𝑖=1

𝑐𝑘𝑖 𝑙𝑖 (𝜏) ≈ L(𝜏)𝑇𝜼𝑘 ,

where:
𝜼𝑘 = [𝑐𝑘1 . . . 𝑐𝑘𝑁 ]𝑇 .

The term ¤𝜔(𝜏) can be written analogously. Equation (21) can also be written as:

𝑥(𝑡𝑖 + 𝜏 |𝑡𝑖) = 𝑒A𝜏𝑥(𝑡𝑖) + 𝝓(𝜏)𝑇𝜼 + 𝝓d(𝜏)𝑇𝜼d, (22)

where: B𝑘 are column vectors of B corresponding to the suitable elements of 𝑢𝑚
and

𝝓(𝜏)𝑇 =

𝜏∫
0

𝑒A(𝜏−𝛾) [B2L(𝛾)𝑇 . . . B𝐾L(𝛾)𝑇
]
d𝛾, (23)

𝝓d(𝜏)𝑇 =

𝜏∫
0

𝑒A(𝜏−𝛾)BdL(𝛾)𝑇 d𝛾. (24)

The terms 𝝓 and 𝝓d depend on the calculated control signal and measured distur-
bances accordingly.
The performance index 𝑃, given as (25), depends on the state value and the

control signal within the optimization window
[
0, 𝑇p

]
:

𝑃 =

𝑇p∫
0

(𝑥(𝑡𝑖 + 𝜏)𝑇Q𝑥(𝑡𝑖 + 𝜏) + ¤𝑢(𝜏)𝑇R ¤𝑢(𝜏))d𝜏 =
𝑇p∫
0

(𝑒A𝜏𝑥(𝑡𝑖) + 𝝓(𝜏)𝑇𝜼

+ 𝝓d(𝜏)𝑇𝜼d)𝑇Q(𝑒A𝜏𝑥(𝑡𝑖) + 𝝓(𝜏)𝑇𝜼 + 𝝓d(𝜏)𝑇𝜼d)d𝜏 + 𝜼𝑇RL𝜼, (25)

where: weighting matrices Q  0, R  0, the diagonal block matrix RL is
composed of 𝐾 blocks, each of size 𝑁×𝑁 , with values corresponding to penalties
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for the control signals increments. It was assumed that the weighting matrices
have the following forms:

Q = C𝑇C, R = I𝐾 .

After substituting Equations (23) and (24) into Equation (25), the performance
index 𝑃 can be written as:

𝑃 = 𝜼𝑇𝛀𝜼 + 2𝜼𝑇𝚿𝑥(𝑡𝑖) + 𝑥(𝑡𝑖)𝑇

𝑇p∫
0

𝑒A𝑇 𝜏Q𝑒A𝜏d𝜏

 𝑥(𝑡𝑖)
+ 𝜼𝑇d


𝑇p∫
0

𝝓d(𝜏)Q𝝓d(𝜏)𝑇 d𝜏
 𝜼d + 2𝜼

𝑇
d


𝑇p∫
0

𝝓d(𝜏)Q𝑒A𝜏d𝜏

 𝑥(𝑡𝑖) + 2𝜼
𝑇𝚪𝜼d ,

(26)
where:

𝛀 =

𝑇p∫
0

𝝓(𝜏)Q𝝓(𝜏)𝑇 d𝜏 + RL,

𝚿 =

𝑇p∫
0

𝝓(𝜏)Q𝑒A𝜏d𝜏,

𝚪 =

𝑇p∫
0

𝝓(𝜏)Q𝝓d(𝜏)𝑇 d𝜏.

For the non-zero set point signal, the last element of the state vector 𝑥(𝑡𝑖) is given
as: 𝑦(𝑡𝑖) − 𝑟 (𝑡𝑖).
From the necessary condition of the minimum 𝑃 we have:

𝑑𝑃

𝑑𝜼
= 2𝛀𝜼 + 2𝚿𝑥(𝑡𝑖) + 2𝚪𝜼d = 0, (27)

and the optimal vector of parameters 𝜼 has the form:

𝜼 = −𝛀−1𝚿𝑥(𝑡𝑖) −𝛀−1𝚪𝜼d. (28)

Note that the optimal vector of parameters 𝜼 for the general case is shifted by
the term dependent on the measured disturbance signal. The vector of parameters
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𝜼d should be selected appropriately to minimize the performance index 𝑃 in
the whole optimization interval [0, 𝑇p]. The assumption that the disturbance is
constant inside the given interval is valid in case of slowly changing signals. The
compensator can be successfully used for the described case because themeasured
disturbance (temperature in the preceding zone) does not change quickly and may
be known in advance due to a transport delay.
The applied parameters for predictive controller are presented in Table 2.

Their values were selected arbitrarily on the basis of performed experiments.

Table 2: Parameters of the predictive controller

Parameter Value
𝑁 5
𝑝 0.6
𝑇p 75

4.2. Constraints on control signals

Consideration of constraints is an essential element of each practical predictive
control application. In the above subsection, the optimal control signal value is
calculated regardless of constraints. However, their consideration is necessary
for real control systems. In this paper only constraints for input variables are
considered.
The first of them refers to the control signal amplitude. It should be limited

by 𝑢min and 𝑢max values:
𝑢min ¬ 𝑢(𝑡) ¬ 𝑢max . (29)

At the time 𝑡𝑖 the formula:

𝑢(𝑡𝑖) = 𝑢(𝑡𝑖 − Δ𝑡) + ¤𝑢(𝑡𝑖)Δ𝑡 = 𝑢(𝑡𝑖 − Δ𝑡) + L(0)𝑇𝜼Δ𝑡, (30)

where Δ𝑡 is the sampling interval, is valid. Equation (30) can be derived from
the definition of derivative. For the next time moments, the control signal can be
written as:

𝑢(𝜏𝑖) = 𝑢(𝑡𝑖) +
𝜏𝑖∫
0

¤𝑢(𝛾)d𝛾 = 𝑢(𝑡𝑖) +
𝜏𝑖∫
0

L(𝛾)𝑇𝜼d𝛾

= 𝑢(𝑡𝑖) +
(
L(𝜏𝑖)𝑇 − L(0)𝑇

)
A−𝑇
𝑝 𝜼. (31)

After substituting Equation (30) into Inequality (29), it has the form:

𝑢min − 𝑢(𝑡𝑖 − Δ𝑡) ¬ L(0)𝑇𝜼Δ𝑡 ¬ 𝑢max − 𝑢(𝑡𝑖 − Δ𝑡). (32)
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Equation (32) can also be written as:

𝑢min − 𝑢(𝑡𝑖 − Δ𝑡) ¬ C𝑢𝜼 ¬ 𝑢max − 𝑢(𝑡𝑖 − Δ𝑡), (33)

where, from Equation (31):

Cu = L(0)𝑇Δ𝑡 + L(𝜏𝑖)𝑇A−𝑇
𝑝 − L(0)𝑇A−𝑇

𝑝 .

The second type of constraints, refers to the control signal derivatives:

𝑑𝑢min ¬ ¤𝑢(𝑡) ¬ 𝑑𝑢max . (34)

The suitable inequalities:

−L(𝜏𝑖)𝑇𝜼 ¬ −𝑑𝑢min ,

L(𝜏𝑖)𝑇𝜼 ¬ 𝑑𝑢max,
(35)

are given straightforward, which results from the specificity of the algorithm.
Both types of constraints can be combined and the task can be now presented

as a quadratic programming problem:

𝑃 = 𝜼𝑇𝛀𝜼 + 2𝜼𝑇𝚿𝑥(𝑡𝑖) + 2𝜼𝑇𝚪𝜼d ,
M𝜼 ¬ 𝜸,

(36)

where:

M =


−Cu
Cu

−L(𝜏𝑖)𝑇

L(𝜏𝑖)𝑇


, 𝜸 =


−𝑢min + 𝑢(𝑡𝑖 − Δ𝑡)
𝑢max − 𝑢(𝑡𝑖 − Δ𝑡)

−𝑑𝑢min
𝑑𝑢max

 .
In [17] an original approach of dealing with input constraints is proposed. This
idea is also adopted during the performed experiments. When the control signal
is calculated, for each numerical step while calculating 𝑢(𝑡), it is checked if any
of the constraints is violated. If so, the optimal solution (without constraints) is
shifted by the additional term not to exceed the limits of control signals’ or their
derivatives’ values:

𝝀act = −
(
Mact𝛀

−1M𝑇
act

)−1 (
𝜸act + Mact

(
𝛀−1𝚿(𝑥 − 𝑥SP) +𝛀−1𝚪𝜼d

))
,

𝜼 = −𝛀−1𝚿(𝑥 − 𝑥SP) −𝛀−1𝚪𝜼d −𝛀−1M𝑇
act𝝀act ,

(37)

where: 𝜸act is the column vector with 1 for the active constraints and 0 for the
inactive ones,Mact contains the rows ofM referring to the active constraints.
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The signals constraints for the performed experiments are given in Table 3. It
is assumed that the first control signal 𝑢1 refers to the gas-air mixture pressure,
while the second 𝑢2 concerns the cooling valve position.

Table 3: Control signals constraints

Parameter Value

𝑢1 min 0.6 kPa

𝑢1 max 6 kPa

Δ𝑢1 min −0.15 kPa
s

Δ𝑢1 max 0.15
kPa
s

𝑢2 min 5 %

𝑢2 max 75 %

Δ𝑢2 min −1.5 %
s

Δ𝑢2 max 1.5
%
s

4.3. Set point optimization algorithm

Decribed above model identiffcation method is ued to optimize the temper-
ature set point values in subsequent parts of the installation. This problem is
widely discussed in the literature, but usually complex non-linear models are
used as in [5] and [6]. Another approach to optimize the set point values for
predictive controllers is discussed in [18] and adopted in this paper. In the ex-
periments, the algorithm is applied to the last two zones of the forehearth, where
stabilization of the molten glass temperature is especially crucial. It is assumed
that the temperature profile for the last fourth zone is known in advance, as well
as the initial set-point temperature in the third zone, whereas its deviations should
be determined to be used by the optimization procedure.
The formula for a steady-state system output depending on its inputs is derived

using the identified linear models. The performance index𝑄, defined as a squared
difference between the temperature set-point and the predicted steady-state tem-
perature for the last forehearth zone, is minimized by the set point optimization
algorithm:

min
Δ𝑦pr,𝑢ss

𝑄 =
1
2

(
𝑦sp −

[
𝐾y Ku

] [𝑦pr + Δ𝑦pr

𝑢ss

] )2
, (38)
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where: 𝐾y – gain for the temperature in the preceding zone of the forehearth, Ku
– gain for the controlled inputs of the forehearth, 𝑦sp – temperature set point in
the controlled zone of the forehearth, 𝑦pr – temperature set point in the preceding
zone of the forehearth, Δ𝑦pr – temperature set point increment in the preceding
zone of the forehearth, 𝑢ss – control signal values in the controlled zone of the
forehearth.
The set point increments and control signal values are limited by the predefined

constraints:

Δ𝑦
pr
min ¬ Δ𝑦pr ¬ Δ𝑦

pr
max ,

𝑢ssmin ¬ 𝑢
ss ¬ 𝑢ssmax ,

(39)

where: Δ𝑦prmin, Δ𝑦
pr
max – temperature set point increment limits for the preceding

zone of the forehearth, 𝑢ssmin, 𝑢
ss
max – limits for the steady state control signals

values. Note that mentioned variables are dependent on the current operating
point for the fixed control signal value 𝑢0.
The gains values are calculated based on the identified model of the last

foreherth zone as:

𝐾𝑦 =
𝑏10

𝑎0
, K𝑢 =

[
𝑏20

𝑎0
. . .

𝑏𝐾0

𝑎0

]
. (40)

The parameters for performed experiments are given in Table 4. In the de-
scribed case, for the last forehearth zone, the control signal 𝑢ss concerns only the
gas-air mixture pressure.

Table 4: Parameters of the set point optimization algorithm

Parameter Value

Δ𝑦
pr
min −10◦C

Δ𝑦
pr
max 10◦C

𝑢ssmin + 𝑢0 1.6 kPa
𝑢ssmax + 𝑢0 4 kPa

5. Simulation experiments

The algorithms presented above were tested using the simulation model com-
posed of two forehearth zones. Obtained results are given in the further part of
this section.
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5.1. PDE model of the forehearth

The forehearth zone dynamics was simulated with the Partial Differential
Equation (PDE) model. This approach is discussed in [3] and [4].
For the last fourth zone of the forehearth, the model has the following form:

𝛿𝑇 (𝑥, 𝑡)
𝛿𝑡

− 𝑣(𝑡) 𝛿𝑇 (𝑥, 𝑡)
𝛿𝑥

+ 𝐾1𝑇 (𝑥, 𝑡) = 𝐾2𝑢1(𝑡), (41)

where: 𝑇 is the molten glass temperature distribution along the zone, 𝑣 is the
glass velocity (it depends proportionally on the glass pull rate), 𝑢1 is the control
signal (gas-air mixture pressure). It is assumed that its influence is the same along
the whole forehearth. The constant values 𝐾1 and 𝐾2 were identified based on the
historical process data. The first of them can be interpreted as an inverse of the
process time constant, while the second as the control signal gain. Their values
are presented in Table 5. The boundary condition reflects the influence of the
temperature in the preceding zone 𝑤(𝑡) on the simulated one:

𝑇 (0, 𝑡) = 𝑤(𝑡). (42)

Table 5: Identfied parameters of the PDE model for the forehearth zone with a single
control signal

Parameter Value

𝐾1 3.3224 · 10−5

𝐾2 8.7945 · 10−3

For the third zone, where the cooling valve position can be additionally
adjusted, a modified equation was applied:

𝛿𝑇 (𝑥, 𝑡)
𝛿𝑡

− 𝑣(𝑡) 𝛿𝑇 (𝑥, 𝑡)
𝛿𝑥

+ 𝐾1

(
𝐾3𝑢2(𝑡)2 + 𝐾4𝑢2(𝑡) + 1

)
𝑇 (𝑥, 𝑡) = 𝐾2𝑢1(𝑡),

(43)

where the additional parameter 𝑢2 denotes the cooling valve position. The con-
stant values 𝐾3 and 𝐾4 were identified based on the historical data as well.
It was assumed that the cooling time decreases with the square of 𝑢2 and ex-
perimental results confirmed the validity of this simplification. The boundary
condition for the temperature is analogous as in the previous case. The identified
parameters values are given in Table 6. The values in Tables 5 and 6 were de-
termined based on the historical process data using the numerical optimization
procedure.
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Table 6: Identfied parameters of the PDE model for the forehearth zone with two control
signals

Parameter Value

𝐾1 2.7935 · 10−5

𝐾2 1.1686 · 10−2

𝐾3 6.7271 · 10−5

𝐾4 −6.5094 · 10−4

5.2. Simulation examples

Two simulation experiments are depicted in the paper. They were performed
using MATLAB. PDE equations were solved with FEA Tool Multiphysics [19].
Two scenarios, typical for the real process, are presented. In the first case, the
glass temperature increases, while in the second it decreases.
Before presenting the obtained results, a short description concerning the iden-

tification and control procedures is given. The identification method is intended
to be performed on-line, when the successive historical data become available.
Time ranges for subsequent models (that can have different structure and oper-
ating points) are denoted with different background colors. The intervals with
the current model’s parameters update are marked as 𝑅. The first 𝑛start intervals,
when the system model is not yet available are denoted with green background
color.
Model predictive controller is applied from the moment when the system

model is available. Up to this time, the auxiliary PID controller is used. It is
also possible that the current model does not contain one of the real process
inputs because it was impossible to identify this input-output dependency. Thus,
this input is controlled by the PID controller. The same situation occurs when
the defined control signal is inactive during the current task e.g. cooling damper
position is set to its minimal value while the temperature increases. This approach
is implemented to omit numerical problems when calculating the control signal
in such case. In both cases (PID and MPC controllers) the sampling interval Δ𝑡
is set to 10 seconds.

5.2.1. Simulation example 1

Figure 2 presents the glass pull rate changes during the experiment. The glass
velocity varies from 3, 128 to 3, 782

mm
s
. The real value of the parameter is

marked blue and the value known for the identification algorithm is marked red.
Figures 3 and 5 present the system inputs during the simulation for the third
and the fourth zone respectively. The type of a utilized controller is marked with
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Figure 2: Glass pull rate changes during the first experiment

Figure 3: Control system inputs in the third zone of the forehearth – the first experiment

Figure 4: Simulated temperature in the third zone of the forehearth – the first experiment
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Figure 5: Control system inputs in the fourth zone of the forehearth – the first experiment

Figure 6: Simulated temperature in the fourth zone of the forehearth – the first experiment

Table 7: Identified model parameters for the third zone of the forehearth – the first
experiment

Parameter
Time [s]

372–4750 4750–5000 5000–5500
model no 1 1 2
op. point 𝑡01 𝑡01 𝑡02

𝑁 , 𝑀 5, 6 5, 6 3, 4
ℎ 200 200 150
𝑎0 7.90 · 10−5 4.18 · 10−5 1.08 · 10−4

𝑎1 1.83 · 10−2 8.92 · 10−3 4.36 · 10−3

𝑎2 1 1 1
𝑏10 1.01 · 10−4 3.68 · 10−5 8.72 · 10−5

𝑏20 2.95 · 10−4 1.86 · 10−4 1.12 · 10−4

𝑏30 −3.77 · 10−6 −28.2 · 10−6 –
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a different background color. Figures 4 and 6 depict the obtained simulation
results for both zones. The identified model parameters, together with the MFM
properties used for their identification are given in Tables 7 and 8.

Table 8: Identified model parameters for the fourth zone of the forehearth – the first
experiment

Parameter
Time [s]

121–2250 2250–2750 2750–3250 3250–5500
model no 1 1 1 1
op. point 𝑡01 𝑡01 𝑡01 𝑡01

𝑁 , 𝑀 3, 4 3, 4 3, 4 3, 4
ℎ 150 150 150 150
𝑎0 4.96 · 10−5 5.78 · 10−5 5.07 · 10−5 4.94 · 10−5

𝑎1 6.61 · 10−3 4.13 · 10−3 4.11 · 10−3 4.93 · 10−3

𝑎2 1 1 1 1
𝑏10 3.96 · 10−5 5.75 · 10−5 5.33 · 10−5 4.91 · 10−5

𝑏20 1.20 · 10−4 1.08 · 10−4 9.66 · 10−5 1.08 · 10−4

5.2.2. Simulation example 2

In the second experiment, the glass pull rate changes as Figure 7 presents.
In this case, the divergence between the real and the known pull signal value
is included as well. The glass velocity varies from 3, 524 to 3, 981

mm
s
. Input

signals are depicted as previously in Figures 8 and 10, and the results are presented
in Figures 9 and 11. The identified model parameters are gathered in Tables 9
and 10.

Figure 7: Glass pull rate changes during the second experiment
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Figure 8: Control system inputs in the third zone of the forehearth – the second experiment

Figure 9: Simulated temperature in the third zone of the forehearth – the second experi-
ment

Figure 10: Control system inputs in the fourth zone of the forehearth – the second
experiment
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Table 9: Identified model parameters for the third zone of the forehearth – the second
experiment

Parameter Time [s]
376–2750 2750–3000 3000–3250

model no 1 2 3
op. point 𝑡01 𝑡02 𝑡02

𝑁 , 𝑀 5, 6 5, 6 3, 4
ℎ 200 200 150
𝑎0 4.17 · 10−5 9.49 · 10−5 7.76 · 10−5
𝑎1 1.16 · 10−2 1.79 · 10−2 1.47 · 10−2
𝑎2 1 1 1
𝑏10 7.27 · 10−5 2.15 · 10−4 1.12 · 10−4
𝑏20 1.03 · 10−4 5.74 · 10−5 9.11 · 10−5
𝑏30 −1.07 · 10−5 – −1.11 · 10−5

Parameter Time [s]
3250–3750 3750–4250 4250–6500

model no 3 3 3
op. point 𝑡02 𝑡02 𝑡02

𝑁 , 𝑀 3,4 3, 4 3, 4
ℎ 150 150 150
𝑎0 5.32 · 10−5 8.14 · 10−5 7.55 · 10−5
𝑎1 1.40 · 10−2 8.19 · 10−3 4.42 · 10−3
𝑎2 1 1 1
𝑏10 4.12 · 10−5 9.45 · 10−5 7.45 · 10−5
𝑏20 1.50 · 10−4 1.30 · 10−4 9.89 · 10−5
𝑏30 −8.12 · 10−6 −4.34 · 10−6 −3.52 · 10−6

Table 10: Identified model parameters for the fourth zone of the forehearth – the second
experiment

Parameter Time [s]
640–3000 3000–4000 4000–6500

model no 1 1 1
op. point 𝑡01 𝑡01 𝑡01

𝑁 , 𝑀 3, 4 3, 4 3, 4
ℎ 200 200 200
𝑎0 8.09 · 10−5 6.89 · 10−5 7.96 · 10−5
𝑎1 6.44 · 10−3 5.28 · 10−3 3.36 · 10−3
𝑎2 1 1 1
𝑏10 7.13 · 10−5 6.03 · 10−5 7.77 · 10−5
𝑏20 1.98 · 10−4 1.75 · 10−4 1.71 · 10−4
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Figure 11: Simulated temperature in the fourth zone of the forehearth – the second
experiment

6. Conclusion

Comprehensive approach to the problem of process model identification and
control of the glass conditioning process is described in the paper. The presented
simulation results proved that the method can be successfully implemented for
the task. The mean squared differences between the simulated process outputs
and the desired set point values are given in Table 11. The obtained results are
repetitive, which proves the method robustness.

Table 11: Mean squared difference between the temperature set point and the simulated
value

Experiment no
Zone no

3 4
1 1.7857 3.8804
2 1.5448 3.2414

The algorithm enables control of the separate control loops for both zones
of the forehearth more accurately, as well as it makes steady state optimization
possible which keeps the desired temperature profile in the most important last
part of the installation. The described approach could be applied to a real industrial
plant without major changes.
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