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Abstract. The paper introduces a neuromorphic computational approach for breathing rate monitoring of a single person observed using a
Frequency-Modulated Continuous Wave radar. The architecture, aimed at implementation in analog hardware to ensure high energy efficiency
and to provide system operation longevity, comprises two main functional modules. The first one is a data preprocessing unit aimed at the
extraction of information relevant to the analysis objective, whereas the second one is a pre-trained recurrent neural regressor, which analyzes
sequences of incoming samples and estimates the breathing rate. To ensure compatibility with neural processing and to achieve simplicity
of underlying resources, several solutions were proposed for the data preprocessing module, which provides range-wise space segmentation,
selection of a bin of interest (comprising the dominant motion activity), and delivery of data to regressor inputs. To implement these functions,
we introduce an appropriate chirp frequency modulation scheme, apply a neuromorphic filtering procedure and use a Winner-Takes-All network
for extracting information from the bin of interest. The architecture has been experimentally verified using a dataset of indoor recordings
supplied with reference data from a Zephyr BioHarness device. We show that the proposed architecture is capable of making correct breathing
rate estimates while being feasible for analog implementation. The mean squared regression error with respect to the Zephyr-produced reference
values is approximately 3.3 breaths per minute (with a deviation of ±0.27 in the 95% confidence interval) and the estimates are produced by a
recurrent, GRU-based neural regressor, with a total of only 147 parameters.
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1. INTRODUCTION
The advent of deep learning combined with rapid progress in
computational hardware and sensor manufacturing technology
enabled qualitative increase in intelligent data analysis of real-
world data, delivering a variety of tools and systems that sup-
port human activities. One of the application domains that ben-
efits from these advances is the development of systems for im-
proving security and safety of living environments, which in-
clude monitoring aimed, for example, at unusual activity detec-
tion or supervision and care of children or elderly. Visual data is
the predominant source of information on the environment and
multiple systems that implement a variety of different objec-
tives have been already successfully deployed. These include
for example person recognition and tracking for surveillance
and security purposes [1, 2], emotion and mood recognition for
improving quality of human-computer interfacing or fatigue de-
tection for monitoring of ability to perform critical tasks [3, 4].
Action recognition is another area of rapidly growing research
interest, driven by a strive to develop truly situation-aware sys-
tems [5].

Unfortunately, the choice of visual input as the primary
source of information on the environment is prone to several
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shortcomings. The first problem arises from data complexity:
rich and variable image contents need to be extracted from
rich and unpredictable background, which results in the neces-
sity of employing large computational resources for successful
accomplishment of posed tasks. Another shortcoming results
from deterioration of visual data quality under reduced illu-
mination levels, making monitoring useless when dark, foggy
or under presence of heavy smog. These can be partially al-
leviated by applying sensors operating at longer wavelengths
(near or far infrared), but this increases the cost of a system
and still might not provide a viable problem solution [6]. Fi-
nally, from the point of view of health condition monitoring,
visual data is of little use, as it can only provide indirect in-
formation, which is insufficient for efficient operation of target
systems.

Therefore, other sources of information should be consid-
ered in developing effective systems aimed at health condition
monitoring. A possible alternative is to use a low-power radar
to sense indoor environment dynamics. Contactless monitoring
of human vital parameters, such as breathing rate (BR), could
save lives of people suffering from life-threatening conditions,
e.g. sleep apnea or heart/lung diseases. In these cases, continu-
ous, unobtrusive indoor patient surveillance would be beneficial
as an alternative to devices attached to a subject’s body, which
compromise comfort or freedom of movement. Moreover, non-
contact measurement of vital signs, as opposed to the contact
methods, can reduce the spread of pathogenic microorganisms,
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such as viruses or bacteria. Information acquired by a remote
radar could be processed to detect tiny body movements related
to the activity of the human respiratory system and used for
continuous health condition monitoring.

The presented paper is concerned with development of a
computational architecture for contactless monitoring of the
breathing rate in an indoor space, which exploits a Frequency-
Modulated Continuous Wave (FMCW) radar as a source of in-
put data. The proposed approach assumes two data processing
stages: preprocessing, aimed at extraction of information rele-
vant to the considered task, and analysis of the delivered data,
which is expected to produce BR estimates. To implement both
tasks, a neuromorphic architecture, aimed at its analog imple-
mentation in Applications-Specific Integrated Circuit (ASIC)
has been developed. The main reason for focusing on analog al-
gorithm implementation is a pursuit to achieve ultra-low power
consumption, which is a critical requirement to ensure low-
cost, longevity and reliability of the system. However, the al-
gorithm is also suited for its possible energy-efficient digital
implementation in e.g. FPGA devices. In such a case, an ad-
ditional step of analog-to-digital conversion is required. Also,
it implies less energy-efficient realization of elementary arith-
metic operations; however, it offers data processing accuracy
that is far superior to what can be achieved in analog hard-
ware.

To attain the posed objective, we propose a BR estima-
tion procedure that provides an alternative to algorithms com-
monly used in digital signal processing. The procedure in-
cludes a space-scanning scheme that enables minimization of
data preprocessing hardware complexity, asynchronous detec-
tion and tracking of living objects that employs Winner-Takes-
All (WTA) scheme and deep Recurrent Neural Network (RNN)
based regression used for producing BR estimates. Majority of
the data transformations involved in the proposed data analysis
scheme utilize basic multiply-and-sum operations augmented
with nonlinear transformations of resulting values, which are at
the core of neuromorphic computation.

The proposed concept have been evaluated using a publicly
available dataset of recordings [7] acquired using a 77 GHz
Texas Instruments IWR1443 FMCW radar applied for mon-
itoring of a single person present in an indoor environment.
We show that the presented method is capable of estimating
BR with over 80% accuracy, where simulations included a lim-
ited accuracy of the parameter representation that is inevitable
when using analog technology. The complexity of the architec-
ture is low: the hardware required for data preprocessing and
data analysis comprises few dozens of analog memories and in-
volves a few hundred parameters (weights), depending on the
applied network model, making implementation of the algo-
rithm feasible.

The paper has the following structure. A brief review of work
in two relevant research fields – vital parameter monitoring and
analog neuromorphic architectures, has been presented in Sec-
tion 2. The proposed concept for BR estimation using a neuro-
morphic computational approach is elaborated on in Section 3
and the results of the experimental evaluation of the method
have been provided in Section 4.

2. RELATED WORK
2.1. Monitoring vital parameters using FMCW radar
The general principle of any radar is sending a continuous wave
(CW) or an amplitude-modulated or angle-modulated wave
and then listening to its echo. Such radars can detect human
chest movement caused by respiratory activity. One possibil-
ity is to use a CW Doppler radar. It can be used to detect
chest velocity but not distance to the human subject, which,
e.g., makes it difficult to distinguish between several subjects,
even if they are in different range bins. An extensive overview
of this approach can be found in [8]. Another approach is to
emit swept frequency radio waves. One of the first studies in
this area was presented in [9]. Many practical implementations
have become feasible with the advent of low-cost Frequency-
Modulated Continuous-Wave radar sensors.

In an FMCW radar the frequency of the transmitted signal
changes over time, typically in a sweep across some preset
bandwidth. A sawtooth function is the simplest and most often
used frequency change pattern (Fig. 1). Due to the propagation
delay ∆t, a frequency difference ∆ f arises between the trans-
mitted wave and the reflected one. The difference can be deter-
mined by mixing (multiplying) the two signals thus creating a
new, intermediate frequency (baseband) signal.

Fig. 1. Frequency-Modulated Continuous-Wave radar transmitted
and reflected chirp

Blood circulation and breathing lead to both skin impedance
variation and body movement. The body surface displace-
ment has a higher influence on reflecting the signal than the
impedance change of the skin, particularly for millimeter waves
which cannot effectively penetrate more than 1–2 mm of the
skin depth [10].

The distance R to the reflecting object can be determined by:

R =
c∆t
2

=
c∆ f
2S

, (1)

where ∆ f is the intermediate frequency, c is the speed of light
in free space, and S = d f/dt is the slope of the FMCW fre-
quency modulation rate. Additionally, if the reflecting object
has a non-zero radial speed with respect to the radar receiving
antenna, then the echo signal is subject to the Doppler effect,
with a Doppler frequency fD. Equation (1) and additionally the
Doppler effect should be used for tracking fast-moving targets
and large displacements, which is the case in automotive appli-
cations. Chest displacements caused by the respiratory activity,
however, have amplitudes in the range of several millimeters
and speed in the range of 10-3 m/s. In this case, an approach can
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be adopted based on the determination of the received signal
phase. This can be implemented using the complex-baseband
architecture [11], which makes it possible to obtain the in-phase
and quadrature components of the Intermediate Frequency (IF)
signal. This mode of operation can be described by equations
(2), (3) and (4) [12]:

s(t) = A · cos
[
2π fmint +πSt2 +φ(t)

]
, (2)

r(t) = A′ · cos
[
2π fc(t−∆t)+πS(t−∆t)2 +φ(t−∆t)

]
, (3)

y(t) = A′′ · e j(2π fbt+Φ(t)+∆φ(t)), (4)

where s(t) is the transmitted signal, r(t) is the received sig-
nal, y(t) is the low-pass filtered intermediate frequency com-
plex signal, fb = R(t)(2S/c), Φ(t) = 2π fc∆t + πS∆t2, and
∆φ(t) = φ(t)−φ (t−2R/c). The initial phase φ(t) of the trans-
mitted signal is arbitrary. For simplicity, the calculation of the
amplitudes A′ and A′′ is omitted and the influence of noise is
neglected. The impact of frequency chirp nonlinearity, phase
noise, and signal-to-noise ratio on FMCW radar accuracy can
be found, e.g., in [13]. Conventionally, the displacement ∆R(t)
of the chest can be found from (5) [14], where Q(t) and I(t)
are the quadrature and in-phase components of the intermedi-
ate frequency signal y(t):

∆R(t) = arctan
(

Q(t)
I(t)

)
λ

4π
. (5)

If (5) is used, phase unwrapping is necessary to recover the
correct motion information, since π phase discontinuity occurs
in the arctangent function, when the signal trajectory crosses
the boundary of two adjacent quadrants, which corresponds to
the movement of λ/4. The presented procedure can be easily
implemented by applying double-DFT (Digital Fourier Trans-
form) procedure [15], where the first transformation locates ob-
jects (at fb frequencies), whereas the second one tracks their
motion (∆R(t)) from the phase of the complex slow-time sig-
nal.

2.2. Analog neuromorphic architectures
The most successful artificial intelligence approach to problem-
solving involves deep neural models, which need to have ca-
pacity that is sufficient for matching the problem complexity.
Therefore, a size of deep models can reach several or even hun-
dreds of billion parameters [16]. As there is a little progress
in incorporating prior knowledge into neural networks, neural
architectures that are applied to even moderately complex prob-
lems tend to be huge and require specialized and powerful hard-
ware, such as GPUs or GPU clusters, to train and execute. How-
ever, this power-hungry approach to problem-solving, which
additionally generates heavy network traffic to deliver data and
read out processing results, is not necessarily a future trend in
AI, as energy efficiency recently becomes one of the most im-
portant system design criteria.

Intelligent data analysis utilizing deep neural networks that
is to be performed on edge computing or embedded systems
is clearly also subject to strict energy constraints. Among se-
vere problems that prevent power-efficient operation of deep

neural architectures in digital hardware there is for example,
necessity to handle numerous data transfers between memory
and processing units (referred to as von Neumann bottleneck),
which applies not only to CPU-, but also, to GPU-based pro-
cessing [17]. In a search to alleviate the aforementioned short-
comings, considerable amount of work has been done on de-
veloping neuromorphic, primarily, digital architectures that em-
ploy FPGA or digital ASICs [18]. However, it is analog com-
puting that offers a real promise to drastically reduce power
consumption, and at the same time, boost a computing speed.
The main reason for this is to provide natural, physical means
for execution of fundamental operations that underlie neural in-
formation processing pipeline, i.e. multiplication, accumulation
and nonlinear data transformations. Therefore, development of
analog neuromorphic modules that can augment conventional
architectures with efficient execution of energy-critical opera-
tions, or even complete analog implementations of neural net-
works, becomes a focus of intense research that could alleviate
shortcomings of conventional, digital architectures.

Research on analog implementations of various neural mod-
els has been carried out since the very beginning of the
paradigm formulation and multiple analog architectures that
implement simple feedforward and feedback networks have
been reported [19–22]. The shift towards highly complex ar-
chitectures necessary for implementing deep neural networks
caused the corresponding modification of main targets in ana-
log neural hardware development. The focus of research moved
to enabling massively parallel execution of analog operations
by introducing analog resistive (memristor-based) crossbars
[23, 24] together with a variety of technological advances re-
lated to fabrication of non-volatile memories [25]. This in turn
enabled analog implementations of more complex neural cir-
cuits or analog accelerators for deep convolutional networks
[26], deep LSTM networks [27] as well as application-specific
neuromorphic architectures [28]. Among these efforts, neuro-
morphic architectures aimed at radar signal processing have
also been proposed [29].

3. THE PROPOSED CONCEPT
An objective of the presented research was to develop a com-
putational architecture for breathing rate estimation in FMCW
radar signals that is feasible to be implemented in analog ASIC
hardware. The considered vital parameter can be estimated
from a series of observations of object micro-displacements
(respiration-related chest movements) in subsequent time in-
stants. Information on these displacements is embedded in
phase shifts of harmonic components that are present in radar-
generated data in consecutive sweeps. The conventional, digi-
tal signal processing-based approach to solving the posed prob-
lem, which involves double-DFT procedure, requires numerous
data transfers that need to be executed between memory and the
CPU, making it energy-inefficient.

The proposed concept offers a low-power alternative to ac-
complish the task: it gets solved using a computational archi-
tecture of topology that can be directly mapped onto hardware.
The architecture of the proposed algorithm (depicted in Fig. 2),
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comprises two main functional modules. An objective of the
first one, which we refer to as Vital Activity Information Ex-
tractor (abbreviated by VAIE), is to distill only these compo-
nents from radar-produced data that are related to an object that
exhibits motion. This information is then subject to analysis in
the second functional module, which we refer to as Vital Ac-
tivity Analyzer (VAA), where the breathing rate gets estimated
based on a sequence of data samples provided by the extractor.

Fig. 2. Breathing rate monitoring setup
(Zephyr data are used in training phase only)

Both modules of the proposed architecture have neuromor-
phic structures. The main building blocks of the VAIE module
involve dot product calculations, scalar multiplications and ad-
ditions, as well as the Winner-Takes-All unit. The VAA module
is a pretrained Recurrent Neural Network. As all operations un-
derlying data processing of both modules are analog, the pro-
posed data analysis pipeline is well-suited for its analog VLSI
implementation.

3.1. Vital Activity Information Extractor
The assumed objective of processing information produced by
an FMCW radar is to provide online estimates of breathing rates
for a single person inside a closed space, such as e.g. a room.
For typical, furnished spaces, one can expect very rich structure
of information present in data produced for each chirp, com-
prising several harmonic components corresponding to multi-
ple objects present within such spaces. An essence of conven-
tional analysis of such data is to use the first DFT to perform
range-wise segmentation of space (testing for presence of sub-
sequent intermediate frequencies), followed by the second DFT,
performed only for frequencies where objects were found. A
possible analog equivalent to the first procedure is to use a bank
of analog bandpass filters, operating in parallel, and extracting
information from different distance ranges. The resulting space
segmentation is highly desirable, as it significantly simplifies
data to be analyzed by discarding information related to objects
located elsewhere. However, such an approach implies neces-
sity of constructing multiple data analysis paths, which would

significantly increase architectural complexity of a data prepro-
cessing system. Also, one should search for alternative solu-
tions to conventional analog filtering, which involves a use of
bandpass LC filters (or their active equivalents) to provide com-
patibility with the assumed neuromorphic circuit structure.

To overcome these two problems we propose an alterna-
tive way of extracting information related to vital activity from
radar-produced data, which combines architectural simplicity
with neural processing-friendly approach. The proposed pro-
cedure (Fig. 3) involves space segmentation and selection of a
spatial bin, which is likely to contain a ‘living’ object, and re-
sults in producing information that is passed to the VAA mod-
ule. The proposed space segmentation utilizes only a single,
fixed bandpass filter and a single data processing path. In addi-
tion, the proposed bin selection method enables seamless track-
ing of an object that moves among different range bins.

Fig. 3. Procedure for extracting information on moving object loca-
tion from a single frame produced by an FMCW radar, involving space

segmentation and selection of a bin with motion

Both operations involved in data processing in VAIE are de-
tailed in the following subsections.

3.1.1. Space segmentation unit
The proposed idea to eliminate necessity of using multiple, par-
allel data processing paths that handle information from subse-
quent range bins, is to utilize possibility of modifying chirp pa-
rameters (offered by several FMCW radars present on the mar-
ket) and to introduce time-multiplexed scheme for algorithm
execution. It is observed that by varying a slope of chirp fre-
quency modulation, the same intermediate frequency represents
objects located at different distances:

∆ f =
2SR

c
, (6)

where the same notation as in equation (1) is used.
It follows that one can map different distance ranges to the

same frequency band by appropriate modifications of a chirp
slope S. Adoption of an appropriate scheme for chirp frequency
modulation slope (e.g., a linear decrease for all chirps produced
within each frame produced by a radar, as shown in Fig. 4) en-
ables partitioning of the monitored space into distance intervals
by means of just a single bandpass filter. As a result, instead
of using a set of parallel signal processing paths, we propose
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a single path, where information from subsequent spatial bins,
extracted using chirps with the decreasing frequency modula-
tion slopes and a single bandpass filter, will be processed in
subsequent time slots.

Fig. 4. The proposed chirp profile scheme that enables time-
multiplexed scanning of a space monitored by FMCW radar (bottom)

and range bins corresponding to chirps of selected slopes (top)

Using the adopted frequency modulation scheme, subsequent
chirps map different spatial bins onto a fixed frequency band.
This frequency band is a passband of a filter that extracts in-
formation on bin contents. We propose to implement this filter
in a way that is compatible with a neural approach to data pro-
cessing, by executing dot products that involve filter impulse re-
sponse and data provided by a radar in a form of In-Phase and
Quadrature components. Let us assume that impulse response
of the adopted fixed bandpass filter is represented by a vector
of coefficients h = [h1...hn] and data produced by a radar that
emits a chirp k, generated for a frame t, are given by vectors
pt

k = [pt
k,1...p

t
k,n] for In-Phase component and qt

k = [qt
k,1...q

t
k,n]

for the Quadrature one (Fig. 5). Signal filtering in frequency
domain is equivalent to convolution performed in time domain.
Since discrete convolution is made up of dot products, and dot
product is a way of assessing similarity of its two arguments,
computation of the following expressions:

xp,t
k =

(
pt

k
)T h =

n

∑
i=1

pt
k,ihi (7)

and:

xq,t
k =

(
qt

k
)T h =

n

∑
i=1

qt
k,ihi (8)

produces information on how input vectors pt
k and qt

k fit a fil-
ter response h. As the quadrature component qt

k is a phase-
shifted version of qt

k, the expressions (7) and (8) provide infor-
mation that is equivalent to Fourier-domain filtering of Fourier-
transformed pt

k, i.e., they could be considered the real and imag-
inary parts of the vector-filtering result. It follows that informa-
tion provided by the pair {xp,t

k ,xq,t
k } enables evaluation of both

the filtering outcome magnitude (i.e. to what extent frequencies
in the assumed filter pass band are present in data-produced
vectors) but also provides basis for phase evaluation (if only

Fig. 5. The proposed range-filtering scheme employing dot products
between In-Phase and Quadrature components of radar-produced data

(represented by vectors p and q) and filter impulse response (h)

a single harmonic component is present within the considered
frequency range).

The values {xp,t
k ,xq,t

k } produced by the filtering procedure
should be forwarded for further analysis, i.e. to the VAA mod-
ule, only for this range bin k (covered by a k-th chirp of
a current frame t), which contains a moving object (a per-
son), whereas the values produced for all remaining range-bins
(chirps) should be discarded. To achieve this goal, we propose
a procedure that involves detection of a spatial bin with motion
activity and selection of the corresponding filtering outcome to
be outputted from the VAIE module at a frame t.

3.1.2. Selection of the frame processing result
An objective of the proposed procedure is to produce a pair of
values {xp,t

k ,xq,t
k }, which represent a result of processing of a

frame t, and which contain information on a moving object, lo-
cated at some k-th range bin. The assumed ‘liveness’ attribute
is object motion (we clearly simplify the problem, although the
issue of handling motion of mechanical devices, such as fans or
motion caused by airflow, will be addressed later). Therefore,
the first part of the proposed procedure (see Fig. 6) is detection
of a bin, where motion is present. Clearly, to detect a change,
one needs to memorize results of processing of at least the pre-
ceding frame, i.e. all {xp,t−1

k , xq,t−1
k } pairs, for k = 1, . . . ,Nc.

Fig. 6. Derivation of frame processing result: zp
k denotes a complex

number, composed of a real part xp,t
k and imaginary part xq,t

k
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The key observation that enables the presented procedure is
that harmonic components produced by an FMCW radar that
result from wave reflections from still objects are the same for
every frame. As the distance to an object remains the same,
so is a time delay for the arriving reflected wave, which re-
sults in the same frequency difference between outgoing and
incoming components and in the same phase shift between the
two. Therefore, information on still objects can be eliminated
by simple subtraction of vectors {pt−1,qt−1} and {pt ,qt} pro-
duced by the radar in subsequent frames. As the same filter im-
pulse response vector h is used in dot products with both data
vectors, the same effect of component cancellation for still ob-
ject contributions can be obtained by subtracting dot product
results. Therefore, to assess a change caused by motion that
occurs in spatial bins, one needs to calculate a difference be-
tween dot products computed for all chirps in two subsequent
frames:

∆zt
k = zt

k− zt−1
k , (9)

where z denotes a complex representation of the two prod-
ucts, i.e.:

zt
k = xp,t

k + jxq,t
k (10)

and where j is an imaginary unit.
If no motion is present, one should expect harmonic com-

ponents that represent still objects to cancel out, leaving only
non-zero values of (10) for spatial bins (chirps) with motion.
A magnitude of the difference (10), i.e.:

‖∆zt
k‖= ‖(x

p,t
k − xp,t−1

k )+ j
(

xq,t−1
k − xq,t

k

)
‖ (11)

can be seen as a measure of amount of motion present in a k-th
range bin. As monitoring of a single person only is assumed,
results from a single frequency bin should get selected for fi-
nal analysis. To accomplish this objective, a Winner-Takes-All
module, that operates on magnitudes of subtraction results (11)
has been used. The module has a ‘neural’ structure – it is com-
posed of simple linear neurons with lateral inhibitory connec-
tions (Fig. 7). Each neuron is fed with input that represents mo-
tion energy estimates, provided by (11). After transient decays,
WTA module produces a one-hot encoding of inputs, where
the ‘high’ state indicates a spatial bin, where motion has been
present. This ‘high’ output is then used as a selector of a chan-
nel to be passed through an output analog multiplexer.

Fig. 7. A structure of WTA module for selecting
the bin with motion

3.2. Vital Activity Analyzer
VAIE module produces for each frame t a pair of values that can
be used to calculate a phase (arc tangent of a ratio of the ‘imag-
inary’ – xq,t

k , and ‘real’ – xp,t
k components) of an intermediate

frequency harmonic component, generated by a moving object.
As the phase provides an accurate estimate of object location
at a time instant t, reconstruction of phase evolution provides
accurate information on small object displacements, enabling
estimation of various motion parameters.

The proposed approach to analysis of a sequence of values
produced by the VAIE module is to use a Recurrent Neural Net-
work. Adoption of machine learning approach is justified by
several reasons, which make application of any deterministic
approach questionable. Firstly, the detected micro-motions are
combinations of several simultaneously developing processes –
breathing, pulse and person’s motion, which makes the result-
ing waveform to be analyzed very complex. Secondly, exact
motion patterns related to breathing are person-dependent and
also, dependent on a type of activity, which additionally com-
plicates their analysis. Finally, a neural network offers a conve-
nient hardware platform for analog computing.

The VAA module is an RNN, which is fed with a sequence of
two element vectors {xp,t

k ,xq,t
k } derived by VAIE for subsequent

frames (we do not perform explicit phase extraction, as this
is unnecessary and can introduce additional errors) and gener-
ates estimates for BR. We experimented with different RNN ar-
chitectures (’vanilla’ RNN, Gated Recurrent Units (GRU), and
GRUs with Multilayer Perceptron (MLP) or convolutional post-
processing) to find a structure that provides the best trade-off
between analysis accuracy and complexity, as well as with dif-
ferent sequence lengths. To further account for limitations of
the considered implementation method, we considered reduced
parameter representation accuracy, as analog weights are inac-
curate.

The proposed architecture requires simple control circuitry to
handle data flow and distribution among memories that are used
for storing intermediate processing results. Key computations
of the proposed architecture: selection of a bin with motion and
classification, are performed asynchronously.

4. EXPERIMENTAL EVALUATION
4.1. Radar configuration & dataset
The experimental evaluation of the proposed method was
done using the IWR1443BOOST radar board combined with a
DCA1000EVM data acquisition card from Texas Instruments.
The board operates in the 76–81 GHz range and was configured
to emit frames consisting of eleven 175 µs chirps every 250 ms.
The chirp slopes have been chosen in a way to provide complete
coverage of the assumed distance range. The configuration of
the bandpass filter, where 3 dB passband starts at 126350 Hz
and ends at 139 650 Hz, centered at 130 kHz, provides an op-
erational range between approximately 1 m and 3 m. The exact
chirp slopes and their corresponding distance ranges are shown
in Table 1.

The labels (breathing rates) for the dataset have been ac-
quired using the Zephyr BioHarness 3 device [30], which pro-
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Table 1
Observation distances corresponding to each chirp for a bandpass filter

centred at 130 kHz

Chirp slope Minimum distance Maximum distance

20.0 MHz/µs 0.95 m 1.05 m

18.0 MHz/µs 1.05 m 1.16 m

16.0 MHz/µs 1.18 m 1.31 m

14.5 MHz/µs 1.31 m 1.44 m

13.0 MHz/µs 1.46 m 1.61 m

11.5 MHz/µs 1.65 m 1.82 m

10.5 MHz/µs 1.80 m 2.00 m

9.5 MHz/µs 2.00 m 2.21 m

7.5 MHz/µs 2.53 m 2.79 m

6.5 MHz/µs 2.92 m 3.22 m

duces the reference information in two different forms: as
raw data (instantaneous measurement results from a Zephyr-
integrated tensometer), and as on-device calculated BR esti-
mates. As no information is provided on the algorithm used
by the device for BR evaluation, we adopted the tensometer
raw data as a basis for computing the reference values. To
align Zephyr-generated labels with radar-produced waveforms
(Fig. 8), an internal device clock was synchronized with a radar
controlling application, at the beginning of each experiment.

Fig. 8. Comparison of radar-produced chest motion estimation (blue
trace) with Zephyr tensometer data (orange). Observe involuntary-

motion induced drift in radar-extracted waveform

The acquisitions lasted between one and five minutes and
featured a still human seated on a chair. This ‘laboratory’ setup,
featuring only small subject’s movements, provides the easiest
context for BR estimation, however, it is plausible in real indoor
monitoring scenarios, due to common long-lasting intervals of
limited subject’s mobility (sleep, TV-watching, working on a
computer etc.). Moreover, as significant motion can be easily
detected, this can be used to temporarily suspend the estimation
procedure. The full dataset alongside a live viewer is available
on the project website [7].

4.2. VAIE processing
A spectrum of a short snippet of a recording of a person located
approximately 1 m from the radar is shown in Fig. 9. The top
part of the figure shows the DFT spectrum derived for chirps
with the same slope generated in consecutive frames. Two ’hot
spots’ visible at around 1 m and 3.4 m correspond to a person
and a wall behind, respectively.

By stacking all chirps in a frame and observing the result-
ing spectra, as shown in the bottom part of Fig. 9, one can
see how the apparent frequency of each object changes with
the chirp slope. Reducing the slope shifts objects’ frequency
domain ‘echoes’ to match the predefined filter bandpass, indi-
cated by the black lines (as it can be seen, the wall ’moves’ from
0.46 MHz at 20 MHz/µs, to 0.15 MHz at 6.5 MHz/µs).

Fig. 9. Spectrogram (top) 10-second observation of 20 MHz/µs chirp;
(bottom) 1-second observation of all chirps in the frame. Black lines

mark the edges of the band pass filter

Results of WTA operation on differential data are presented
in Fig. 10. Non-zero magnitudes of signal differences (left part
of the figure), derived using (11), appear only for a moving ob-
ject (a sitting person), with the vast majority of peaks being lo-
cated in the range covered by the 18 MHz/µs chirp, albeit with
small occasional flips into the neighbouring range bins. The
wall, which would appear in the 6.5 MHz/µs bin, is not visi-
ble due to no motion, thus showing the effectiveness of the pro-
posed approach in the removal of inanimate objects. The right
part of the figure shows the result of the WTA operation, which
is used for selecting a bin with data to be analyzed in the VAA
module.
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Fig. 10. Normalized magnitude of differential signals (left) and the
corresponding WTA-processing result (right)

4.3. Neural network architectures
Three small architectures were proposed for solving the prob-
lem of breathing rate prediction (Fig. 11). Through an initial
grid search, the optimal width of all hidden layers was deter-
mined to be 4. It should be noted that due to technology-implied
constraints on feasible network size, several better models that
were found during the search were deemed too large to imple-
ment.

Fig. 11. Evaluated model architectures

The first and the second of the considered architectures com-
bined recurrent units: simple, ‘vanilla’ ones in the former case,
and gated recurrent units [31] in the latter case, with a three-
layer dense modules with ReLu [32] activation (except for the
output layer). While adoption of Gated Recurrent Units (GRU)
approximately doubles the number of parameters, it was hy-

pothesised that presence of additional information retention
mechanisms would improve the performance. The third GRU-
based architecture was aimed to simplify the second one by re-
placing dense layers with a couple of convolutional layers.

4.4. Neural network training
All models were trained for 300 epochs (Fig. 12) using 5-
second windows of the radar signal (20 discrete samples at 4 Hz
sampling rate). The Adam optimizer with a cosine annealing
scheduler operating between 0.025 and 0.01 starting with a 60
epoch warm-up was applied. All models were trained with 16-
bit floating point precision and subsequently quantized to 6-bit
precision equivalent values. Additionally, all weights were L2
regularized and clipped to [−1, 1] range.

Fig. 12. Loss over the course of training
(0.6 smoothing applied)

4.5. Neural network performance
The performance comparison of the evaluated models without
quantization can be seen in Fig. 13 and Table 2. As can be
observed, the best performance is achieved by the model that
combines the two-layered GRU network with the convolutional
layers. With only 287 parameters, this model is feasible for ana-
logue implementation.

The addition of quantization resulted in comparable results
to the non-quantized model, as shown in Fig. 14 and Table 3. In

Fig. 13. Performance of the considered network models without quan-
tization on the test set with 95% confidence intervals marked
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Table 2
Performance and standard deviation of the considered network models
without quantization. The lowest test error for each architecture was

highlighted

Architecture
Hidden
layers

Parameters
Mean train

error
Mean test

error

RNN + MLP

1 77 3.50 ± 0.41 3.81 ± 0.11

2 117 3.54 ± 0.41 3.62 ± 0.55

3 157 3.75 ± 0.35 3.66 ± 0.15

4 197 3.78 ± 0.26 4.42 ± 0.48

GRU + MLP

1 141 3.04 ± 0.48 3.36 ± 0.27

2 261 3.02 ± 1.09 3.37 ± 0.62

3 381 2.48 ± 0.74 3.84 ± 0.58

4 501 3.33 ± 0.92 3.97 ± 0.36

GRU + CNN

1 167 3.25 ± 0.28 3.56 ± 0.17

2 287 2.71 ± 0.85 3.26 ± 0.57

3 407 3.11 ± 0.93 3.56 ± 0.36

4 527 3.69 ± 0.27 3.51 ± 1.04

this case, the best performance was also achieved by the com-
bination of GRU and convolutional layers, albeit with an in-
creased depth of the GRU. Given the significant size of this
model, reaching 527 parameters, the second best configura-
tion of GRU with fully connected layers, that achieved slightly
worse performance while having only 141 parameters, could
prove better suited for analogue implementation. It is also worth
noting that this architecture yielded the most stable perfor-
mance across all quantized network depths.

Fig. 14. Performance of the considered network models with quanti-
zation on the test set with 95% confidence intervals marked

While the average error of approximately 3 BPM does not
constitute perfect performance, it is important to note that it is

Table 3
Performance of the considered models with quantization

Architecture
Hidden
layers

Parameters
Mean train

error
Mean test

error

RNN + MLP

1 77 3.65 ± 0.20 3.53 ± 0.20

2 117 3.71 ± 0.35 3.57 ± 0.42

3 157 3.39 ± 1.03 3.67 ± 0.49

4 197 3.88 ± 0.18 3.63 ± 0.25

GRU + MLP

1 141 3.15 ± 0.52 3.13 ± 0.14

2 261 2.86 ± 0.23 3.21 ± 0.16

3 381 2.81 ± 0.17 3.16 ± 0.04

4 501 3.53 ± 0.46 3.52 ± 0.20

GRU + CNN

1 167 3.54 ± 0.38 3.39 ± 0.39

2 287 3.89 ± 0.25 3.75 ± 0.09

3 407 3.39 ± 0.52 3.63 ± 0.78

4 527 2.89 ± 0.51 3.00 ± 0.51

comparable to accuracy of the reference device – Zephyr Bio-
Harness, which reports the accuracy of ±3 BPM for stationary
people and ±2 for a laboratory breathing emulator.

5. CONCLUSIONS
The presented paper shows feasibility of breathing rate estima-
tion, based on data provided by a FMCW radar, using a neuro-
morphic architecture that can be implemented in VLSI. The tar-
get circuit, which is currently under development, is expected to
offer ultra-low energy consumption and to provide data analy-
sis accuracy comparable to conventional approaches to problem
solution.

Although simulation results positively verify the proposed
problem solution concept, further efforts are required to relax
constraints adopted for the design, such as ability to monitor
only a single subject (relevant for the adopted application sce-
nario) or to appropriately respond to motion incurred by non-
living objects. These are the forthcoming research directions,
which require corresponding extensions to the dataset and intro-
duction of additional, neural network-based data analysis units,
operating on generated breathing rate estimates.
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K. Ślot, P Łuczak, and S. Hausman

ERA III, which has received funding from the European
Union’s Horizon 2020 research and innovation programme un-
der grant agreement no 76897.

REFERENCES
[1] R.R. Varior, M. Haloi, and G. Wang, “Gated Siamese

Convolutional Neural Network Architecture for Human Re-
identification,” in Computer Vision – ECCV 2016, ser. Lec-
ture Notes in Computer Science, B. Leibe, J. Matas, N. Sebe,
and M. Welling, Eds. Cham: Springer International Publishing,
2016, pp. 791–808, doi: 10.1007/978-3-319-46484-8_48.

[2] L. Ding, W. Fang, H. Luo, P.E.D. Love, B. Zhong, and
X. Ouyang, “A deep hybrid learning model to detect unsafe be-
havior: Integrating convolution neural networks and long short-
term memory,” Autom. Constr., vol. 86, pp. 118–124, Feb. 2018,
doi: 10.1016/j.autcon.2017.11.002.

[3] G. Borghini, L. Astolfi, G. Vecchiato, D. Mattia, and F. Ba-
biloni, “Measuring neurophysiological signals in aircraft pilots
and car drivers for the assessment of mental workload, fatigue
and drowsiness,” Neurosci. Biobehav. Rev., vol. 44, pp. 58–75,
Jul. 2014, doi: 10.1016/j.neubiorev.2012.10.003.

[4] Y. Dong, Z. Hu, K. Uchimura, and N. Murayama, “Driver Inat-
tention Monitoring System for Intelligent Vehicles: A Review,”
IEEE Trans. Intell. Transp. Syst., vol. 12, no. 2, pp. 596–614,
Jun. 2011, doi: 10.1109/TITS.2010.2092770.

[5] T.B. Moeslund, A. Hilton, and V. Krüger, “A survey of advances
in vision-based human motion capture and analysis,” Comput.
Vision Image Understanding, vol. 104, no. 2, pp. 90–126, Nov.
2006, doi: 10.1016/j.cviu.2006.08.002.

[6] Z. Pan, G. Healey, M. Prasad, and B. Tromberg, “Face recog-
nition in hyperspectral images,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 25, no. 12, pp. 1552–1560, Dec. 2003, doi:
10.1109/TPAMI.2003.125114810.1109/ TPAMI.2003.1251148.
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