
BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. 70(6), 2022, Article number: e143644
DOI: 10.24425/bpasts.2022.143644

CONTROL AND INFORMATICS

Vehicle detection in surveillance videos based on
YOLOv5 lightweight network

Yurui WANG ∗∗∗ , Guoping YANG and Jingbo GUO

Shanghai University of Engineering Science, School of Mechanical and Automotive Engineering, Shanghai, China

1. INTRODUCTION
With the rapid development of the economy, vehicle owner-
ship also increases. Vehicles not only bring convenience to peo-
ple, but also exert great pressure on the transportation system.
Therefore, building an intelligent transportation system has be-
come particularly important [1]. First-hand information on traf-
fic conditions is mainly obtained through real-time road video
surveillance. Information extraction from surveillance videos
is critical for the construction of intelligent transportation, and
object detection is a prerequisite for system decision-making. It
can be seen that vehicle detection based on surveillance videos
is of great significance [2].

The neural network algorithm promotes rapid development
of object detection technology [3]. The current algorithm also
performs well in the deployment of high-performance devices,
but with the continuous improvement of detection accuracy re-
quirements, the complexity of the model also increases. The re-
sulting huge amount of computation makes it difficult to deploy
in mobile or resource-limited devices [4].

This paper proposes a lightweight model based on YOLOv5
to solve the problems of limited computing performance of road
monitoring equipment and high requirements for real-time per-
formance and detection accuracy of the equipment. The main
contributions of this paper are summarized as follows:

First, the lightweight MobileNetV2 network is used to re-
place the backbone feature extraction network of YOLOv5.
MobileNetV2 is redesigned according to the task requirements.
We reduce the number of layers of the network and make the

∗∗∗e-mail: wangyuruistar@163.com

© 2022 The Author(s). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

Manuscript submitted 2022-05-31, revised 2022-10-18, initially
accepted for publication 2022-10-22, published in December 2022.

backbone network more lightweight. This method combines
the efficient feature extraction network of MobileNetV2 with
the excellent detection framework of YOLOv5, effectively re-
duces parameters and computation, reduces the complexity of
the model, and greatly improves the deployment capability of
the model on embedded devices with limited performance.

Second, in the neck network, DSC is introduced to replace
the 3× 3 standard convolutional network in bottleneck block.
And the number of bottlenecks in the C3 layers is set to 1 to re-
duce the convolution branch. We adopt an efficient convolution
method to reduce redundant computing while ensuring infor-
mation fusion between channels.

Finally, experiments are carried out on the UA-DETRAC and
BDD100K datasets and compared with some existing methods.
The results show that the detection network proposed in this
paper not only has fewer model parameters and faster reasoning
speed, but also maintains higher accuracy, which is conducive
to wide application of the model on mobile terminals and small
embedded devices. At the same time, it can also provide other
researchers with integration ideas of different networks, which
is conducive to creating a more efficient network structure.

2. RELATED WORK
As an important branch of computer vision, object detection is
widely used in autonomous driving, intelligent transportation,
etc. Traditional object detection is slow and low in accuracy as
a result of manually extracting features [5–7].

The development of deep learning technology has greatly
improved the performance of detection algorithms, but these
models consume more computing resources and are difficult to
deploy in environments with limited computing performance.
Therefore, it is important to design smaller and more efficient
networks for such limited environments [8].

Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 6, p. e143644, 2022 1

Abstract. The development of surveillance video vehicle detection technology in modern intelligent transportation systems is closely related to
the operation and safety of highways and urban road systems. Yet, the current object detection network structure is complex, requiring a large
number of parameters and calculations, so this paper proposes a lightweight network based on YOLOv5. It can be easily deployed on video
surveillance equipment even with limited performance, while ensuring real-time and accurate vehicle detection. Modified MobileNetV2 is used
as the backbone feature extraction network of YOLOv5, and DSC “depthwise separable convolution” is used to replace the standard convolution
in the bottleneck layer structure. The lightweight YOLOv5 is evaluated in the UA-DETRAC and BDD100k datasets. Experimental results show
that this method reduces the number of parameters by 95% as compared with the original YOLOv5s and achieves a good tradeoff between
precision and speed.

Key words: YOLOv5; MobileNetV2; lightweight network; vehicle detection.

https://orcid.org/ORCID1
https://orcid.org/ORCID2
https://orcid.org/ORCID3
mailto:wangyuruistar@163.com

Y. Wang, G. Yang, and J. Guo

2.1. Object detection based on deep learning
Object detection algorithms based on deep learning can be di-
vided into three categories: object detection based on region
proposal, object detection based on regression and object detec-
tion based on transformers. The first method divides the detec-
tion task into two parts, first extracting candidate regions, and
then classifying and regressing the candidate regions. The sec-
ond method is to directly regress the predicted object, mainly
including SSD and YOLO series [9]. The third method is to
convert the images to sequences for processing and prediction.

As a representative of the two-stage detection algorithm, R-
CNN has proposed a series of detection algorithms after con-
tinuous improvement and research. In 2014, Girshick et al.
applied CNN to the object detection task and proposed R-
CNN [10], which combined AlexNet with a selective search
algorithm to decompose the object detection task into several
independent steps, which greatly improved the performance of
the object detection task. The accuracy of object detection is
higher, but computational efficiency is low. In the same year, He
Kaiming’s team proposed the spatial pyramid pooling network
(SPP-Net) [11], where the input does not need a fixed size and
avoids repeated feature extraction, greatly reducing the amount
of computation. In 2015, Girshick was inspired by the SPP-
Net algorithm, simplified the SPP layer, and improved feature
utilization efficiency through shared convolution computation.
Then he proposed fast R-CNN [12].

The object detection algorithm based on region proposal
achieves high detection accuracy, but expansion of the model
increases the amount of network computation, and real-time re-
quirements cannot be well solved.

In 2016, Redmon et al. proposed the first one-stage ob-
ject detection method based on deep learning, i.e. YOLO [13],
which divides the input image into a fixed number of grids,
and each grid is responsible for predicting that the center falls
into the grid. The goal of the lattice is directly regressed to
the bounding box and class probability. After that, Redmon
improved YOLOv1 and proposed YOLOv2 [14], which intro-
duced mechanisms such as anchor boxes, high resolution clas-
sifier and dimension clusters. In 2018, Redmon et al. proposed
YOLOv3 [15] based on YOLOv2, modified the softmax loss
function in YOLOv2 to cross entropy loss, introduced FPN,
and deepened the network structure through residual connec-
tions. In 2020, Bochkovski proposed YOLOv4 [16], using Mo-
saic to achieve data augmentation, designed the CSPDarkNet53
network structure, added the PANet structure, and replaced Iou
Loss with CIoU Loss, which further improved network perfor-
mance. In the same year, Ultralytics released YOLOv5, adding
auto learning bounding box anchors, GIOU loss, using Leaky
ReLU and sigmoid activation functions, providing models of
different sizes, making the application of the model more flex-
ible. After that, many researchers presented some experienced
improvements to the YOLO series, and proposed a variety of
high-performance detectors. Chien-Yao Wang et al. proposed
a multi-task unified network: YOLOR [17]. It can encode ex-
plicit knowledge and implicit knowledge at the same time, per-
form kernel space alignment, prediction refinement and multi-
task learning in the network, and form a unified representation

for multiple tasks to complete various tasks. Zheng Ge et al.
proposed YOLOX [18], switching the YOLO detector to an
anchor-free manner and conducting a decoupled head and the
leading label assignment strategy SimOTA to achieve state-of-
the-art results across a large scale range of models; Chien-Yao
Wang et al. proposed a network scaling approach that modifies
not only the depth, width and resolution, but also structure of
the network, and released the scaled YOLOv4 [19].

Inspired by the power of the transformer in NLP, recently
researchers extend the use of transformers to object detection
tasks. Carion proposed a detection transformer (DETR) [20],
which is a simple and fully end-to-end object detector. DETR
treats the object detection task as an intuitive set predic-
tion problem and gets rid of traditional hand-crafted compo-
nents such as anchor generation and non-maximum suppres-
sion (NMS) post-processing. Zhu et al. proposed deformable
DETR [21] to address longer training schedules and poor per-
formance for small objects. The deformable attention module
attends to a small set of key positions around a reference point.
This way, computational complexity is greatly reduced and
it also benefits from fast convergence. More importantly, the
deformable attention module can be easily applied for fusing
multi-scale features. Aiming at the high computation complex-
ity problem of DETR, Zheng et al. propose an adaptive cluster-
ing transformer (ACT) [22] to replace the self-attention module
of the pre-trained DETR model. ACT adaptively clusters the
query features using a locality sensitivity hashing method and
broadcasts the attention output to the queries represented by the
prototypes selected.

2.2. Overview of lightweight network development
In order to satisfy the deployment of neural networks to plat-
forms with limited storage space and computing resources,
many researchers have devoted themselves to the research of
small neural networks.

The SqueezeNet uses the Fire module for parameter com-
pression, while SqueezeNext introduces separate convolutions
on this basis for improvement [23, 24]. ShuffleNetV1 proposes
a channel reorganization operation, which allows the network
to fully use grouped convolution to accelerate, while Shuf-
fleNetV2 proposes a channel split operation, which acceler-
ates the network while reusing features and thus achieves good
results [25, 26]. The MobileNet series is a lightweight net-
work proposed by the Google team. MobileNetV1 uses DSC
to replace standard convolutions and builds a lightweight net-
work. MobileNetV2 innovatively proposes the inversed residual
block with linear bottlenecks [27, 28]. MobileNetV3 is tuned
to mobile phone CPUs through a combination of hardware
aware network architecture search (NAS) complemented by the
NetAdapt algorithm and then subsequently improved through
novel architecture advances [29]. GhostNet proposes a novel
ghost module, which can apply a series of linear transforma-
tions to generate many ghost feature maps that could fully re-
veal information underlying intrinsic features [30]. EfficientNet
proposes a new scaling method that uniformly scales all dimen-
sions of depth/width/resolution using a simple yet highly effec-
tive compound coefficient [31].

2 Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 6, p. e143644, 2022

Vehicle detection in surveillance videos based on YOLOv5 lightweight network

The design of a neural network needs to balance real-
time performance and accuracy. Purchasing high-performance
equipment will increase the cost of industrial production.
Therefore, in order to adapt to low-performance equipment, this
paper conducts research on efficient lightweight network struc-
tures.

3. LIGHTWEIGHT NETWORK DESIGN
The YOLO series has significant advantages in balancing ac-
curacy and real-time performance. YOLOv5 can design dif-
ferent models by adjusting parameters, so that these models
have higher flexibility and versatility in practical applications.
Therefore, this chapter makes network modifications based on
YOLOv5-v5.0 released by Ultralytics. At the same time, con-
sidering the limited computing power of traffic monitoring
equipment, YOLOv5s is selected as the baseline network for
lightweight design in order to reduce the amount of parameters
and calculations while ensuring high precision.

3.1. YOLOv5 model
As shown in Fig. 1, the YOLOv5 network consists of three
parts: backbone, neck and head.

The backbone network uses the C3 module to extract image
features. First, the image is sliced through the focus module to

obtain the initial multi-channel feature map. Then the features
are extracted through the cascade connection of multiple con-
volutional layers and C3 modules, so that feature maps which
have different sizes are obtained. The C3 module divides the
basic feature map into two parts. One part passes through the
multi-layer bottleneck, and then it merges with the other part
across stages to alleviate the problem of gradient disappear-
ance. The neck network fuses feature maps from different layers
and passes them to the prediction layer to detect objects of dif-
ferent sizes. In the feature fusion process, the feature pyramid
structure of FPN and PAN is used. The FPN structure transfers
strong semantic features from top to bottom, and the PAN struc-
ture transfers strong localization features from lower feature
maps to higher feature maps. In addition, YOLOv5 also uses the
C3 module at this stage to enhance the feature fusion capability.

3.2. YOLOv5 network lightweight

In this section, due to the YOLOv5s model having a large num-
ber of parameters and high computational complexity, the orig-
inal backbone network is replaced with modified MobilenetV2.
Then channel pruning and convolution replacement are per-
formed on the neck network to make the newly proposed model
more lightweight. The schematic diagram of newly proposed
model architecture is shown in Fig. 2.

Focus CBS CBS CBS CBSC3_3 C3_9 C3_9 SPP

Backbone

CBS = Conv BN SILU

Res
uni t

CBS CBS add

CBSC3_X
X*gd*
ResUni t

CBS *X*gdC3_X_F CBS

sl i ce

CBLFocus
sl i ce

sl i ce

sl i ce

Maxpool

SPP
Maxpool

Maxpool

CBS Upsampl e

Concat

Concat
Concat Concat

Concat C3_3_F CBS Upsampl e

Concat C3_3_F

CBS
Concat C3_3_F

CBS
Concat C3_3_F

Conv

Conv

Conv

Neck Head

76*76*255

38*38*255

19*19*255

C3_3_F

CBS

CBS

CBS

CBS

CBS

Fig. 1. Overall framework of the YOLOv5 model

CBS = Conv BN SILU

Inputs Bneck3 Bneck4 Bneck5 Bneck6

Backbone_Modi f i ed

CBS Upsampl e

Concat C3_1_F CBS Upsampl e

Concat C3_1_F

CBS
Concat C3_1_F

CBS
Concat C3_1_F

Conv

Conv

Conv

Neck_Modi f i ed Head

76*76*255

38*38*255

19*19*255

Bneck1 Bneck2 Bneck7CBS

DSC = Depth Separable Convol uti on

Bottl eneck_F CBS DSC

CBSC3_1_F

Concat

CBS

CBS

Bottl eneck_F

Note

Fig. 2. Overall framework of the Mob_YOLOv5 Model

Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 6, p. e143644, 2022 3

Y. Wang, G. Yang, and J. Guo

3.2.1. Backbone network lightweight

The YOLOv5 backbone network includes the focus layer and
multiple C3 layers. The main function of the focus layer is to
reduce parameters and accelerate the model without reducing
the feature extraction capability of the model. The model per-

(a) Residual block

1×1 3×3

ReLU ReLU

1×1

ReLU

+

(b) Inverted residual block (stride = 1)

Conv 1× 1
Dwi se 3× 3
Stri de = 1

ReLU6

Conv 1× 1

+

ReLU6 Li near

k k

h

h

tk tk

h h

(c) Inverted residual block (stride = 2)

Conv 1× 1
Dwi se 3× 3
Stri de = 2

ReLU6

Conv 1× 1

ReLU6 Li near

k tk

tk k

h

h
h/ 2 h/ 2

Fig. 3. Residual block and inverted residual block

forms well on GPU devices. But for embedded devices, the slic-
ing operation will occupy a lot of cache and increase the burden
of the computing processing. The C3 layer adopts multi-way
branch convolution, which also occupies more cache space and
reduces the running speed. Therefore, it is necessary to design
a more lightweight backbone network.

MobileNetV2 is a lightweight network specially designed for
mobile terminals. It refers to the idea of residual connection
and proposes an inverse residual block with a linear bottleneck
layer. The difference between the residual block [32] and the
inverse residual block is shown in Fig. 3a, b. Different from
the traditional residual block, the inverse residual block first di-
lates and then compresses the number of channels of the feature
map. First it uses 1× 1 convolution to expand the dimension
of the feature map. Then standard convolution is replaced by
depthwise convolution for feature extraction, and finally 1× 1
convolution is used for dimensionality reduction output. Depth-
wise convolution uses multiple two-dimensional convolution
kernels to operate each corresponding channel of the feature
map, which can significantly reduce the amount of computa-
tion. After using 1 × 1 convolution to compress the channel,
the ReLU activation function is replaced with a linear activa-
tion function, which can reduce the information loss of feature
maps.

The schematic diagram of the modification of the back-
bone network is shown in Fig. 4. The backbone feature extrac-
tion network of YOLOv5 is replaced with the modified Mo-
bileNetV2. First, we set the number of repetitions of the bottle-
neck module to 1. This will reduce the original bottleneck layer
number from 17 to 7. It can avoid extracting features repeatedly
and greatly reduce the number of parameters and computation.
Furthermore, due to the dataset in this paper not having com-
plex classification tasks, we directly make feature fusion on the
output of the last bottleneck layer. The last convolutional and
pooling layers are removed, so that the backbone network be-
comes more lightweight.

Focus CBS CBS CBS CBSC3_1 C3_3 C3_3 SPP

YOLOv5 Backbone

Inputs Bneck3 Bneck4 Bneck5 Bneck6

Mobi l eNetV2_Modi f i ed

C3_1_F

Mobi l eNetV2

Conv Bneck1 2*Bneck2 3*Bneck3 4*Bneck4 3*Bneck5 3*Bneck6 Bneck7 Conv Avgpool Conv

Bneck1 Bneck2 Bneck7

modi fy

repl ace

Conv

Fig. 4. The modified backbone network

4 Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 6, p. e143644, 2022

Vehicle detection in surveillance videos based on YOLOv5 lightweight network

3.2.2. Neck network optimization
In this section, the bottleneck module of the C3 layer, which is
located in the neck of YOLOv5, is improved. The 3× 3 con-
volutional standard is replaced with DSC to further reduce the
network computational cost in practical applications. The C3
layer uses demultiplexed convolution. If the network is too frag-
mented (especially multi-channel), the degree of parallelism
will be reduced. Therefore, the number of bottleneck modules
in the C3 layer is set to 1. This can simplify the network and
speed up the inference speed of the model. The modified area
of the C3 module is shown in Fig. 5. Standard convolution uses
weight matrixes to implement convolution calculations of po-
sition and channel dimensions, so the network has high com-
putational complexity, high memory usage and many weight
coefficients. Compared with standard convolution, DSC has the
advantage of high computational efficiency and is usually used
to build lightweight models.

The depthwise separable convolution consists of two parts:
depthwise convolution and point convolution. The depthwise
convolution is to convolve each channel of the input feature
map separately, and then concatenate the outputs of all con-
volution kernels to obtain its final output. Point convolution is
a 1 × 1 standard convolution. On the one hand, it is used to
change the number of output channels. On the other hand, it
can perform channel fusion on feature maps to make up for the
lack of depthwise convolution cross-channel information inter-
action [33]. The process is shown in Fig. 6. Compared with
standard convolution, using DSC can greatly reduce the com-
putational cost. The following formula is the ratio of the cal-

culation amount of DSC to the calculation amount of standard
convolution.

DK ·DK ·M ·DF ·DF +M ·N ·DF ·DF

DK ·DK ·M ·N ·DF ·DF
=

1
N
+

1
D2

K
, (1)

DK is the size of the convolution kernel M is the number of
input channels N is the number of output channels DF is the
size of the feature map.

4. EXPERIMENT AND ANALYSIS
4.1. Datasets and environments
First, this paper evaluates the model on the UA-DETRAC [34]
dataset, and then it tests the generalization ability of the model
on the BDD100k [35] dataset. The UA-DETRAC dataset is a
screenshot from the monitoring of 24 different regional roads in
Beijing and Tianjin. The dataset contains 138 252 training and
test pictures, with a total of 1.21 million labeled bounding boxes
of objects. BDD100K is currently the largest driving dataset,
containing 100 000 images (train: 70%, val: 10%, test: 20%),
and annotated with 13 categories. This paper selects the Car
category for training.

The experimental environment is shown in Table 1. The
hardware used for this experiment was an NVIDIA RTX 2070
graphics card, single GPU, 8G memory; win10 operating sys-
tem; CUDA version 10.2; PyTorch version 1.10.0. The com-
piled virtual environment of Python was v3.6.

In order to ensure fairness of the experiments, the same ini-
tial training parameters were set for each group of experiments.

Bott l eneck_F CBS CBS

CBSC3_X_F

Concat

CBS

CBS
Bott l eneck_F * X

3× 3

C3 Layer（No shortcut）

Bott l eneck_F CBS DSC

CBSC3_1_F

Concat

CBS

CBS

Bott l eneck_F

C3 LaYer_Modi f i ed（No shortcut）

Fig. 5. C3 layer modification area

M channel Input Fi l ter * M Maps * M Fi l ter * N Maps * N

Depthwi se Convol uti on Poi ntwi se convol uti on

1
1

Fig. 6. Schematic diagram of Depthwise Separable Convolution

Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 6, p. e143644, 2022 5

Y. Wang, G. Yang, and J. Guo

Table 1
Operating environment configuration

Component Configuration

Operating system Windows 10

CPU Intel(R) Core(TM) i7-10750H

Memory 8

GPU Nvidia GeForce RTX2070

GPU acceleration library CUDA 10.2 cuDNN v8.2.0

Deep learning framework Torch 1.10.1 torchvision 0.11.1

Programming language Python3.6

The input resolution was uniformly resized to 640× 640. The
training batchsize and epoch are set to 16 and 250. The Adam
algorithm was adopted to optimize the loss function. The initial
learning rate was set to 0.001. Data augmentation and other pa-
rameters were kept the same as the default setting. None of the
experiments adopted transfer learning.

4.2. Evaluation metrics
This paper uses AP@0.5, AP@0.5:0.95 and Fps as evaluation
metrics. FPS means the number of images that can be processed
per second. It can fully evaluate the real-time performance of

the model. Precision refers to the probability of correct detec-
tion in all detected objects, and Recall refers to the probability
of correct identification in all positive samples. AP is the area
enclosed by Precision and Recall as the two axes, which repre-
sents the average value of the detector in each Recall case. 0.5
and 0.95 represent the IoU thresholds for determining positive
and negative samples, and AP@0.5:0.95 represents the average
AP over different IoU thresholds (from 0.5 to 0.95, step size
0.05). The specific formula is as follows:

Precision =
T P

T P+FP
,

Recall =
T P

T P+FN
,

AP =
1

101

100

∑
i=0

Precision
(

Recall =
i

100

)
.

(2)

In the above formula, TP is the number of accurately pre-
dicted labels; FP is the false detection of no object, or the false
detection of an existing object; FN is the missed detection of
the object.

4.3. Model training
The network training process of YOLOv5s, YOLOv5n and
Mob_YOLOv5 is shown in Fig. 7. After 250 epochs of train-
ing, the metrics tend to stabilize. The comparison of confidence

(a)

0 50 100 150 200 250

Epochs

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

O
b
j-
L
o
ss

YOLOv5s

YOLOv5n

Mob-YOLOv5

(b)

0 50 100 150 200 250

Epochs

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

B
o
x-
L
o
ss

YOLOv5s

YOLOv5n

Mob-YOLOv5

(c)

0 50 100 150 200 250

Epochs

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

O
b
j-
L
o
ss

YOLOv5s

YOLOv5n

Mob-YOLOv5

(d)

0 50 100 150 200 250

Epochs

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

B
o
x-
L
o
ss

YOLOv5s

YOLOv5n

Mob-YOLOv5

Fig. 7. Training process loss comparison

6 Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 6, p. e143644, 2022

Vehicle detection in surveillance videos based on YOLOv5 lightweight network

loss during training on UA-DETRAC and BDD100K datasets
for three different methods is shown in Fig. 7a, c. It can be seen
that Mob_YOLOv5 shows the smallest confidence loss in both
datasets. This indicates that the predicted value of the improved
model is closer to the true minimum bounding box of the ob-
ject. The box loss comparison of three different methods dur-
ing training on UA-DETRAC and BDD100K datasets is shown
in Fig. 7b, d. It can be seen that compared with YOLOv5n,
Mob_YOLOv5 shows smaller box loss, which is closer to the
loss value of YOLOv5s. This shows that the predicted boxes of
the newly proposed model have an accurate aspect ratio as com-
pared to YOLOV5s. On the whole, the newly proposed method
shows great improvement in the area of loss of confidence, and
can complete the object detection task of this paper.

4.4. Experimental results
To verify the performance of Mob_YOLOv5 in detection tasks,
comparative experiments are conducted on the UA-DETRAC
dataset. Some detection examples of the improved algorithm
are shown in Fig. 8. It can be seen that after the algorithm
becomes lightweight, it performs well even in complex envi-
ronments such as rainy days, nights, and overlapping objects,
which shows the effectiveness of the designed method in the
detection task.

Fig. 8. Detection examples of Mob_YOLOv5 in different scenarios

Table 2 shows the details of the parameters of the new net-
work. It can be seen that by limiting the number of repetitions
of the BottleneckMOB module, the parameters of the backbone
network are greatly reduced. Therefore, the parameters of the
backbone network using the BottleneckMOB module for fea-
ture extraction are controlled below 190, 000; the parameters of
the neck part optimized by using depthwise separable convolu-
tion are about 130, 000. It can be seen that this paper constructs
an ultra-lightweight object detection network.

To verify the lightness of the model, the total parameters
of Mob_YOLOv5 and lightweight object detection methods
such as YOLOv5n et al. are compared. It can be seen from
Fig. 9 that the total parameters of Mob_YOLOv5 are 325, 766,
while the number of parameters of YOLOv5s is 7, 063, 542
and YOLOv5n has nearly 2 million parameters. The number
of parameters of the new network is about 1/6 of YOLOV5n.
The general parameters of Mob_YOLOv5 are much smaller

Table 2
Detailed parameters of the new network

Module Arguments Params

Conv [3, 16, 3, 2] 464

BottleneckMOB [16, 8, 1, 1] 320

BottleneckMOB [8, 16, 2, 6] 1 808

BottleneckMOB [16, 16, 2, 6] 4 352

BottleneckMOB [16, 32, 1, 6] 5 920

BottleneckMOB [32, 48, 2, 6] 17 952

BottleneckMOB [48, 80, 1, 6] 40 768

BottleneckMOB [80, 160, 1, 6] 121 760

Conv [160, 64, 1, 1] 10 368

Upsample [None, 2, ‘nearest’] 0

Concat [1] 0

C3 [96, 64, 1, False] 12 960

Conv [64, 32, 1, 1] 2 112

Upsample [None, 2, ’nearest’] 0

Concat [1] 0

C3 [48, 32, 1, False] 3, 408

Conv [32, 32, 3, 2] 9 280

Concat [1] 0

C3 [64, 64, 1, False] 10 912

Conv [64, 64, 3, 2] 36 992

Concat [1] 0

C3 [128, 128, 1, False] 42 304

yolo 1

SUM 325 766

than those of the other models, which can prove that the pro-
posed lightweight method can significantly reduce the parame-
ter amount of the original network model.

Table 3 compares the metrics and model size of YOLOv5s,
YOLOv5n and Mob_YOLOv5 in AP@50, AP@0.5:0.95, FPS.

Fig. 9. Comparison of total parameters of different models

Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 6, p. e143644, 2022 7

Y. Wang, G. Yang, and J. Guo

It can be seen that compared with YOLOv5s and YOLOv5n, the
model size of Mob_YOLOv5 is reduced by 94% and 67%, re-
spectively. This is beneficial to the deployment of the model on
devices with limited memory. In addition, the response time of
Mob_YOLOv5 is significantly shortened, and it can process 12
pictures per second on the CPU, which is 50% faster than that of
YOLOv5s. Compared with YOLOv5n, FPS increased by 9%.
The real-time performance of the model is further improved,
which is suitable for real-time road monitoring scenarios. At the
same time, on the test datasets of UA-DETRAC and BDD100K,
average accuracy of the improved method shows a slight de-
crease. Compared with YOLOv5n, AP@0.5 did not drop by
more than 1% in both datasets. Compared with YOLOv5s,
AP@0.5:0.95 did not drop by more than 7.5% in both datasets.
Although it has decreased, it still maintains good performance.
In a word, the new network achieved a good tradeoff between
precision and speed. Additionally, it can be seen from the eval-
uation results on two different datasets that the new network has
strong generalization ability and can be applied to other object
detection tasks.

Table 3
Comparison of experimental results

Method Dataset
FPS
(cpu)

Model
Size/
(MB)

AP@0.5
AP@0.5:

0.95

YOLOv5s
UA-

DETRAC
8 14 99.5 82.5

YOLOv5n
UA-

DETRAC
11 2.7 98.5 79.4

Mob_YOLOv5
UA-

DETRAC
12 0.9 98.1 75.7

YOLOv5s BDD100k 8 14 88.5 62.4

YOLOv5n BDD100k 11 2.7 84.7 59.5

Mob_YOLOv5 BDD100k 12 0.9 83.8 55.0

5. CONCLUSIONS
This paper analyzes the network structure parameters and cal-
culation amount of YOLOv5, and optimizes the backbone and
neck network of YOLOv5s. First, the lightweight MobileNetV2
network is used to replace the backbone feature extraction net-
work of the original network, and the MobileNetV2 network is
adaptively processed to reduce the convolution layer with high
channel number and further simplify the network. Secondly,
DSC is introduced. We reduce the model parameters by chang-
ing the convolution method of model neck network. Finally, the
C3 module in the neck network is pruned to reduce memory
usage and model complexity, and then an improved model, i.e.
Mob_YOLOv5, is proposed. The model is trained and tested
on the UA-DETRAC and BDD100K datasets. The experimen-
tal results show that:
1. Compared with the original YOLOv5s network, the model

of the network is reduced by 94%, which greatly improves

the application and deployment capability of the model in
embedded devices;

2. The number of network layers and channels of the opti-
mized network are reduced, which improves the inference
speed of the model, while recognition speed of a single im-
age is increased by about 50%, and real-time performance
is further improved;

3. The solutions introduced greatly improve the real-time per-
formance of the network and reduce the size of the model,
but accuracy still maintains a high level, which fully meets
the requirements of road monitoring scenarios.

REFERENCES
[1] L. Qiu et al., “Deep learning-based algorithm for vehicle de-

tection in intelligent transportation systems,” J. Supercomput.,
vol. 77, no. 10, pp 11083–11098, 2021, doi: 10.1007/s11227-
021-03712-9.

[2] J. Zhao et al., “Improved vision-based vehicle detection and
classification by optimized YOLOv4,” IEEE Access, vol. 10,
pp. 8590–8603, 2022, doi: 10.1109/ACCESS.2022.3143365.

[3] K. Simonyan and A. Zisserman, “Very deep convolutional net-
works for large-scale image recognition,” in Proc. 3rd Int.
Conf. Learn. Represent. (ICLR), 2015, doi: 10.48550/ARXIV.
1409.1556.

[4] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“MobileNetV2: Inverted residuals and linear bottlenecks,” 2018
IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, 2018, pp. 4510–4520, doi: 10.1109/CVPR.2018.00474.

[5] P. Viola and M. Jones, “Rapid object detection using a boosted
cascade of simple features,” Proceedings of the 2001 IEEE
Computer Society Conference on Computer Vision and Pat-
tern Recognition. CVPR 2001, 2001, pp. I–I, doi: 10.1109/
CVPR.2001.990517.

[6] N. Dalal and B. Triggs, “Histograms of oriented gradients for
human detection,” 2005 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’05), 2005,
vol. 1, pp. 886–893, doi: 10.1109/CVPR.2005.177.

[7] P.F. Felzenszwalb, R.B. Girshick, D. McAllester, and D. Ra-
manan, “Object detection with discriminatively trained part-
based models,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 32, no. 9, pp. 1627–1645, Sept. 2010, doi: 10.1109/TPAMI.
2009.167.

[8] H. Fuhrmann, A. Boyko, M.H. Abdelpakey, and M.S. Shehata,
“DETECTren: Vehicle object detection using self-supervised
learning based on light-weight network for low-power devices,”
2021 IEEE 7th World Forum on Internet of Things (WF-IoT),
2021, pp. 807–811, doi: 10.1109/WF-IoT51360.2021.9594927.

[9] L. Jiao et al., “A survey of deep learning-based object detec-
tion,” in IEEE Access, vol. 7, pp. 128837–128868, 2019, doi:
10.1109/ACCESS.2019.2939201.

[10] R. Girshick, J. Donahue, T. Darrell and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmen-
tation,” 2014 IEEE Conference on Computer Vision and Pattern
Recognition, 2014, pp. 580–587, doi: 10.1109/CVPR.2014.81.

[11] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling
in deep convolutional networks for visual recognition,” in IEEE
Trans. Pattern Anal. Mach. Intell., vol. 37, no. 9, pp. 1904–1916,
2015, doi: 10.1109/TPAMI.2015.2389824.

[12] R. Girshick, “Fast R-CNN,” in Proc. of 33rd IEEE International
Conference on Computer Vision (ICCV), 2015, pp. 1440–1448,
doi: 10.48550/arXiv.1504.08083.

8 Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 6, p. e143644, 2022

https://doi.org/10.1007/s11227-021-03712-9
https://doi.org/10.1007/s11227-021-03712-9
https://doi.org/10.1109/ACCESS.2022.3143365
https://doi.org/10.48550/ARXIV.1409.1556
https://doi.org/10.48550/ARXIV.1409.1556
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1109/CVPR.2001.990517
https://doi.org/10.1109/CVPR.2001.990517
https://doi.org/10.1109/CVPR.2005.177
https://doi.org/10.1109/TPAMI.2009.167
https://doi.org/10.1109/TPAMI.2009.167
https://doi.org/10.1109/WF-IoT51360.2021.9594927
https://doi.org/10.1109/ACCESS.2019.2939201
https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1109/TPAMI.2015.2389824
https://doi.org/10.48550/arXiv.1504.08083

Vehicle detection in surveillance videos based on YOLOv5 lightweight network

[13] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, “You only
look once: Unified, real-time object detection,” 2016 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR),
2016, pp. 779–788, doi: 10.1109/CVPR.2016.91.

[14] J. Redmon and A. Farhadi, “YOLO9000: Better, faster, stronger,”
2017 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2017, pp. 6517–6525, doi: 10.1109/CVPR.
2017.690.

[15] J. Redmon and A. Farhadi, “YOLOv3: An incremental improve-
ment,” arXiv, 2018, doi: 10.48550/ARXIV.1804.02767.

[16] A. Bochkovskiy, Ch.-Y. Wang, and H.-Y.M. Liao, “YOLOv4:
Optimal speed and accuracy of object detection,” arXiv, 2020,
doi: 10.48550/ARXIV.2004.10934.

[17] Ch.-Y. Wang, I-H. Yeh, and H.-Y.M. Liao, “You only learn one
representation: Unified network for multiple tasks,” arXiv, 2021,
doi: 10.48550/ARXIV.2105.04206.

[18] Z. Ge, S. Liu, F. Wang, Z. Li, J. Sun, “YOLOX: Exceeding
yolo series in 2021,” arXiv, 2021, doi: 10.48550/ARXIV.2107.
08430.

[19] Ch.-Y. Wang, A. Bochkovskiy and H.-Y.M. Liao, “Scaled-
YOLOv4: Scaling cross stage partial network,” in Proc. 39th
IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2021,
pp. 13029–13038, doi: 10.48550/arXiv.2011.08036.

[20] N. Carion et al., “End-to-end object detection with transformers,”
in Proc. 17th European Conference on Computer Vision (ECCV),
2020, pp. 213–229, doi: 10.1007/978-3-030-58452-8_13.

[21] X. Zhu et al., “Deformable DETR: Deformable transformers
for end-to-end object detection,” arXiv, 2020, doi: 10.48550/
ARXIV.2010.04159.

[22] M. Zheng et al., “End-to-end object detection with adaptive clus-
tering transformer,” arXiv, 2020, doi: 10.48550/ARXIV.2011.
09315.

[23] F.N. Iandola et al., “SqueezeNet: AlexNet-level accuracy with
50x fewer parameters and<0.5 MB model size,” arXiv, 2016, doi:
10.48550/ARXIV.1602.07360.

[24] A. Gholami et al., “SqueezeNext: Hardware-aware neural net-
work design,” 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW), 2018, pp. 1719–
171909, doi: 10.1109/CVPRW.2018.00215.

[25] X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An ex-
tremely efficient convolutional neural network for mobile de-

vices,” 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2018, pp. 6848–6856, doi: 10.1109/CVPR.
2018.00716.

[26] N. Ma, X. Zhang, H.T. Zheng, and J. Sun, “Shufflenet v2: Prac-
tical guidelines for efficient CNN architecture design,” in Proc.
16th European Conference on Computer Vision (ECCV), 2018,
pp. 122–138, doi: 10.1007/978-3-030-01264-9_8.

[27] A.G. Howard et al., “Mobilenets: Efficient convolutional neural
networks for mobile vision applications,” arXiv, 2017, doi: 10.
48550/arXiv.1704.04861.

[28] M. Sandler et al., “Mobilenetv2: Inverted residuals and linear
bottlenecks,” in Proc. 36th IEEE conf. Comput. Vis. Pattern
Recognit. (CVPR), 2018, pp. 4510–4520, doi: 10.1109/CVPR.
2018.00474.

[29] A. Howard et al., “Searching for mobilenetv3,” in Proc. 17th
IEEE Int. Conf. Comput. Vis. (ICCV), 2019, pp. 1314–1324, doi:
10.48550/arXiv.1905.02244.

[30] K. Han, Y. Wang, Q. Tian, J. Guo, C. Xu, and C. Xu, “GhostNet:
More Features From Cheap Operations,” 2020 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR),
2020, pp. 1577–1586, doi: 10.1109/CVPR42600.2020.00165.

[31] M. Tan and Q.V. Le, “Efficientnet: Rethinking model scaling for
convolutional neural networks,” in Proc. 36th International Con-
ference on Machine Learning, 2019 (ICML), 2019, pp. 6105–
6114, doi: 10.48550/arXiv.1905.11946.

[32] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” 2016 IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 2016, pp. 770–778, doi:
10.1109/CVPR.2016.90.

[33] F. Chollet, “Xception: deep learning with depthwise separa-
ble convolutions,” 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2017, pp. 1800–1807, doi:
10.1109/CVPR.2017.195.

[34] L. Wen et al., “UA-DETRAC: A new benchmark and protocol
for multi-object detection and tracking,” Comput. Vision Image
Understanding., vol. 193, p. 102907, 2020, doi: 10.1016/j.cviu.
2020.102907.

[35] F. Yu et al., “BDD100K: A Diverse Driving Dataset for Het-
erogeneous Multitask Learning,” 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2020,
pp. 2633–2642, doi: 10.1109/CVPR42600.2020.00271.

Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 6, p. e143644, 2022 9

https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/CVPR.2017.690
https://doi.org/10.1109/CVPR.2017.690
https://doi.org/10.48550/ARXIV.1804.02767
https://doi.org/10.48550/ARXIV.2004.10934
https://doi.org/10.48550/ARXIV.2105.04206
https://doi.org/10.48550/ARXIV.2107.08430
https://doi.org/10.48550/ARXIV.2107.08430
https://doi.org/10.48550/arXiv.2011.08036
https://doi.org/10.1007/978-3-030-58452-8_13
https://doi.org/10.48550/ARXIV.2010.04159
https://doi.org/10.48550/ARXIV.2010.04159
https://doi.org/10.48550/ARXIV.2011.09315
https://doi.org/10.48550/ARXIV.2011.09315
https://doi.org/10.48550/ARXIV.1602.07360
https://doi.org/10.1109/CVPRW.2018.00215
https://doi.org/10.1109/CVPR.2018.00716
https://doi.org/10.1109/CVPR.2018.00716
https://doi.org/10.1007/978-3-030-01264-9_8
https://doi.org/10.48550/arXiv.1704.04861
https://doi.org/10.48550/arXiv.1704.04861
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.48550/arXiv.1905.02244
https://doi.org/10.1109/CVPR42600.2020.00165
https://doi.org/10.48550/arXiv.1905.11946
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2017.195
https://doi.org/10.1016/j.cviu.2020.102907
https://doi.org/10.1016/j.cviu.2020.102907
https://doi.org/10.1109/CVPR42600.2020.00271

	Introduction
	Related work
	Object detection based on deep learning
	Overview of lightweight network development

	Lightweight network design
	YOLOv5 model
	YOLOv5 network lightweight
	Backbone network lightweight
	Neck network optimization

	Experiment and analysis
	Datasets and environments
	Evaluation metrics
	Model training
	Experimental results

	Conclusions

