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Abstract. The main goal of estimating models for industrial applications is to guarantee the cheapest system identification. The requirements for
the identification experiment should not be allowed to affect product quality under normal operating conditions. This paper deals with ensuring
the required liquid levels of the cascade system tanks using the model predictive control (MPC) method. The MPC strategy was extended with
the Kalman filter (KF) to predict the system’s succeeding states subject to a reference trajectory in the presence of both process and measurement
noise covariances. The main contribution is to use the application-oriented input design to update the parameters of the model during system
degradation. This framework delivers the least-costly identification experiment and guarantees high performance of the system with the updated
model. The methods presented are evaluated both in the experiments on a real process and in the computer simulations. The results of the robust
MPC application for cascade system water levels control are discussed.
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1. INTRODUCTION
System identification for the purposes of control received ex-
tensive interest over recent decades [1–3]. Many industrial pro-
cesses show slow response, which makes identification exper-
iments long and costly. It was shown that about three fourths
of the total costs associated with real-life control system design
are absorbed by modelling [4]. The costs of the identification
experiment can be defined as the experiment duration as well as
power and length of the excitation signal. Other more compli-
cated costs are expressed by the acceptable control performance
during model-based control. The often used framework for
model-based control development is called application-oriented
input design [5].

A key issue in system identification is to perturb the system
under diagnosis using an informative input signal and to esti-
mate the model parameters with maximum accuracy [6]. Early
announcement of optimal input design for system identification
described minimization of the error of the parameters to be esti-
mated regarding the process constraints. The fundamental rule
of optimal input design is to maximize the sensitivity of state
variables to unknown parameters [1]. Most recently, an idea of
the acceptable application performance degradation instead of
the estimated parameters variance minimization was presented
in [7]. Robust control considers the nominal model identifica-
tion regarding constraints on the model uncertainty set.

In the worst-case scenario for the identification experiment,
model parameters are estimated with the guaranteed error
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bounds expressed in the form of the noise disturbing the model
of the system [8]. For optimal average performance input de-
sign for control, where the obtained uncertainty set suits H∞,
robust control can be found in [9]. However, the methods de-
scribed above do not provide satisfactory control of the system.
It is enough that the conditions of the identification experiment
guarantee that the uncertainty of the model is smaller than an
assumed threshold. This leads to the concept of the least-costly
identification experiment design for control. The goal is to de-
sign the least-costly identification strategy where model uncer-
tainty is relatively small and ensures satisfactory control per-
formance. Instead of minimizing the performance degradation
defined as experiment cost (i.e. input energy, experiment du-
ration), the experiment cost includes the input design problem
through the objective function [10]. Another method used to
experiment with cost minimization is called plant-friendly sys-
tem identification [11, 12]. The plant-friendly input signal de-
sign is related to the application-oriented system identification
method. The common goal is to find a trade-off between min-
imal deviation from the operating point and precision of the
model parameters identified [13]. In [14], the idea of a robust
plant-friendly input design with constraints on input move size
and output power was presented. The application-oriented input
design minimizes the cost of the identification experiment and
guarantees satisfactory application performance. The input sig-
nal design is performed in terms of the excitation signal spec-
trum selection [15]. There are some trends associated with the
use of the application-oriented input design. One of them is to
simultaneously improve the performance of the system by ame-
liorating its model. This problem can be solved by the model
predictive control method where the input signal yielded by the
MPC is designed to provide satisfactory control performance in

Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 6, p. e143646, 2022 1

https://orcid.org/0000-0003-0942-8903
mailto:w.jakowluk@pb.edu.pl


W. Jakowluk and S. Jaszczak

a sequential manner [16,17]. Robust MPC deals with designing
controllers that satisfy stability and performance demands for
diagnosed models.

The main goal of this research is to ensure the required liquid
levels of the cascade tanks system using the MPC method. The
MPC strategy augmented by the Kalman filter (KF) was used to
predict the system’s succeeding states subject to the designed
reference input signal. For this purpose, the state-space model
of the cascade tanks system was linearized around a working
point and then discretized. The cascaded tanks system pump
control signal was designed using the single weighted cost
function method to estimate model parameters more precisely.
The parameters of the diagnosed model can be re-estimated
during normal operation using the application-oriented input
design framework. This method uses a finite impulse response
(FIR) filter to obtain an optimal input signal spectrum, subject
to the trajectory power constraints. The A- and D-optimal cri-
teria were verified as measures of optimality [14, 18].

The novelty of the problem considered in this paper is re-
lated to the input design method for system identification when
the obtained model is used in the MPC. The advantage of this
approach is a convex optimization problem formulation in the
frequency domain.

2. CASCADE TANKS SYSTEM
2.1. System overview
The physical plant of the water tanks process consists of three
tanks placed above each other and another tank responsible for
water storage, as shown in Fig. 1.

Fig. 1. Multitank system [19]

The upper tank has a constant cross-section, while the oth-
ers are spherical or prismatic and have variable cross-sections.
Water is poured into the upper tank from the reservoir tank by
the pump driven by a DC motor. The water outflows the tanks
by the force of gravity but output orifices act as flow resistors.
The water levels are measured using pressure transducers and
the frequency signals are transmitted to the digital inputs of the
I/O board. The goal of the tanks system control is to reach and
stabilize desired water levels via pump control.

2.2. System modeling
The main objective of system identification is to deliver a model
that provides acceptable control performance. The water tank
system (Fig. 1) is defined by the volumetric inflow qin(t) into
the tank to the water outflow qout(t) through the output orifice.
The equation of the water flow in the tank can be formulated as:

Ai
dhi(t)

dt
= qin(t)−qout(t), (1)

where: Ai is the cross-sectional area of the tank, hi(t) is the liq-
uid level in the tank, and i = 1,2,3. The laminar water outflow
rate (i.e. for αi = 1/2) from the tank is defined by Torricelli’s
law described as:

qout(t) = Si ·
√

2ghi(t) , (2)

where: Si is the cross-sectional surface of the orifice i and g
is the gravitational acceleration. For the real configuration of
tanks and valves, if turbulence and acceleration of the water in
the tube cannot be omitted, more general coefficients α should
be used. Substituting equation (2) to (1) and considering that
qin(t) = u(t), x1(t) = h1(t), x2(t) = h2(t), x3(t) = h3(t), it is
possible to formulate the following nonlinear state-space equa-
tions:

dx1(t)
dt

=−C1

A1
· xα1

1 (t)+
kv

A1
·u(t), x1(0) = h10 ,

dx2(t)
dt

=
C1

A2
· xα1

1 (t)− C2

A2
· xα2

2 (t), x2(0) = h20 ,

dx3(t)
dt

=
C2

A3
· xα2

2 (t)− C3

A3
· xα3

3 (t), x3(0) = h30 ,

y1(t) = x1(t)+ v1(t),

y2(t) = x2(t)+ v2(t),

y3(t) = x3(t)+ v3(t),

(3)

where: Ci is the solenoid valve output resistance of tank i, αi is
the outflow coefficient for the i tank, kv is the maximum volu-
metric flow rate of the pump, and vi is the stationary, zero-mean,
white process of the i−th output. The water levels in the tanks
hi(t) have real limitations:

hi,max ≥ xi(t)≥ 0, i = 1,2,3. (4)

The physical limitations and the system parameters of the
cascade tanks process are listed in Table 1.
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Table 1
Numerical parameters of the system

Parameter Value Unit Description

hi,max 2.5e–1 [m] Max. water level of tanks 1, 2, 3

hi,min 0.0 [m] Min. water level of tanks 1, 2, 3

hi0 2.0e–2 [m] Initial condition of tanks 1, 2, 3

A1 8.7e–3 [m2] Cross-sectional area of tank 1

A2 1.1e–2 [m2] Cross-sectional area of tank 2

A3 1.2e–2 [m2] Cross-sectional area of tank 3

kv 1.5e–4 [m3/s] Max. rate flow of pump

Ci 2.5e–5 [–] Valve resistance of tank 1, 2, 3

αi 5.0e–1 [–] Outflow factor for tank 1, 2, 3

The identification experiment was performed for fixed set-
tings of the solenoid valve output resistance Ci and the outflow
factor αi for all tanks of the system. The coefficient values were
then tuned based on the comparison of the flow results of the
physical plant and the Simulink model. For the model of the
system identification purposes, the pump control signal should
be carefully selected.

3. OPTIMAL PUMP CONTROL SIGNAL DESIGN
System identification relies on an accurate mathematical model
built using experimental data and a priori knowledge of the
plant [20]. The accuracy of the model to be estimated is deeply
related to an excitation signal [1, 12]. To design an optimal in-
put signal, an adequate scalar norm of the Fisher information
matrix (FIM) should be used. The FIM is defined as:

M =
1
N

N

∑
t=1

E

{(
d

dθ
y(t,θ)

)
Λ
−1
(

d
dθ

y(t,θ)
)T
}
, (5)

where: y is the observable random variable and θ is the un-
known parameter vector. The different criteria for optimal de-
sign performance could be found in [21]:
• A-optimality: tr(M−1), minimizes the variance of the pa-

rameters to be estimated,
• E-optimality: λmax(M−1), minimizes the maximum eigen-

value of M−1,
• D-optimality: det(M) maximizes the determinant of the

FIM and minimizes the volume of the ellipsoidal confidence
region of the estimated parameters.

Sensitivity of the measurements to the parameters is guaran-
teed by the Cramér–Rao inequality described as:

cov
(
θ̂
)
= E

[(
θ̂ −θ

)(
θ̂ −θ

)T
]
≥M−1. (6)

The optimal pump control signal is designed to ensure reason-
ably accurate parameter estimates during the identification of
the cascaded system. To solve the input design problem, the

RIOTS_95 toolbox [22] dedicated to the problems of optimal
control is used. This issue can be solved considering the upper
tank equation formulated as:

ẋ1(t) =−
a

A1
· xα1

1 (t)+
b

A1
u(t), x1(0) = h10 ,

y1(t) = x1(t)+ v1(t).
(7)

According to Table 1, a = Ci and b = kv, respectively. The
FIM for the upper tank of the state-space model (3) can be ex-
pressed as:

M(T ) =
T∫

0

XT
θ Λ
−1Xθ dt =

1
σ2

n

T∫
0

[
xa

xb

][
xa xb

]
dt, (8)

where: xa = ∂x1/∂a, xb = ∂x1/∂b are the sensitivities of the
measurements to the parameters and Λ is the variance matrix
given by:

Λ
−1 =

1
σ2

n

[
1 0
0 1

]
. (9)

It is assumed that σn = 1 to obtain the optimal pump control
signal for model parameters estimation. Proceeding to the opti-
mal pump control design, it was assumed that α1 = 0.5. Then
problem (7) is modified by defining the state vector augmented
by the sensitivity equations and the FIM ingredients:

x1 = x1, ẋ1 =−
a

A1

√
x1 +

b
A1

u, x1(0) = h10,

x2 = xa, ẋ2 =−
a

2A1

x2√
x1
−
√

x1

A1
, x2(0) = 0,

x3 = xb, ẋ3 =−
a

2A1

x3√
x1

+
u

A1
, x3(0) = 0,

x4 = m11, ẋ4 = x2
2, x4(0) = 0,

x5 = m12 = m21, ẋ5 = x2x3, x5(0) = 0,

x6 = m22, ẋ6 = x2
3, x6(0) = 0,

(10)

where: mi j are ingredients of the FIM. Finally, the optimal in-
put design problem considering Mayer’s canonical formulation,
which maximizes the FIM determinant with respect to input and
state trajectory constraints, is:

J = max
u

[
x4
(
Tf
)

x6
(
Tf
)
− x2

5
(
Tf
)]
,

subject to

0≤ u(t)≤ 1, t ∈
[
0,Tf

]
,

x1(t)≤ 0.25, t ∈
[
0,Tf

]
,

(11)

where: Tf = 20 [s] is the fixed termination time chosen arbitrar-
ily. The pump control signal obtained by solving optimization
problem (11) is shown in the Fig. 2.

It can be noticed that for two seconds the pump is off
and after that it pumps the water at full power for about
seven seconds. During operation time, the pumped water can
fill about half the volume of the upper tank. It is because valve
resistance, and not the valve cross-section of the tank, was as-
sumed for calculation.
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Fig. 2. Pump control signal

4. IDENTIFICATION OF THE LINEARIZED MODEL

To provide the acceptable water levels in tanks of the cascade
system (Fig. 1), the model predictive control strategy is used.
To apply both MPC and the Kalman filter methods, the con-
trolled system should be linearized and discretized. In general,
the discrete-time model can be expressed as:

x(t +1) = Adx(t)+Bdu(t)+ v(t),

y(t) =Cdx(t)+w(t),
(12)

where: x(t) is a state vector, u(t) means an input signal, y(t)
denotes a measured output, whereas v(t) and w(t) represent the
zero-mean process and measurement noise, respectively.

The nonlinear state-space model (3) is linearized around the
steady-state point [23]. The equilibrium state can be calculated
from:

ustd =C1xα1
1std =C2xα2

2std =C3xα3
3std,

xstd =

x1std

x2std

x3std

=



(
ustd

C1

)1/α1

(
ustd

C2

)1/α2

(
ustd

C3

)1/α3


.

(13)

Assuming that αi, Ci are constant values for i = 1,2,3, (see
Table 1) and xistd = 2.0e−2, the linearized state-space matrices
obtained using the first-order Taylor expansion are as follows:

Al =

−τ1 0 0
τ2 −τ2 0
0 τ3 −τ3

 , Bl =


kv

A1
0
0

 ,
Cl =

[
1 1 1

]
, τi =

Ciαi

Aix
1−αi
std

, i = 1,2,3.

(14)

The results of linearization are given by:

Al =

−0.0133 0 0
0.0096 −0.0096 0

0 0.0294 −0.0294

 ,

Bl =

0.12
0
0

 , Cl =
[
1 1 1

]
.

(15)

The zero-order hold discretization at the sampling rate of 10
Hz according to (11) gives:

Ad = eAl , Bd =

1∫
0

eAl(1−t)Bl dt, Cd =Cl . (16)

The identification experiment was performed by energizing
the pump using the control signal shown in Figure 2. The initial
water level conditions and valve resistances of cascade system
tanks are given in Table 1. The results of the identification ex-
periment, performed using the real system, as well as the lin-
earized model (3) are shown in Figs. 3 and 4 below.
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Fig. 3. Upper tank experiment results
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Fig. 4. Middle tank experiment results
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The lower tank experiment results are very similar to that
obtained for the middle one. It can be noted from Figs. 3 and 4
that the fitting of the flows in the linearized model compared to
the real plant flows is satisfactory around the equilibrium point.

5. PLANT MODEL PARAMETER ADAPTATION
The objective of the application-oriented input design is to ob-
tain the linear model of the system that provides acceptable ap-
plication performance. This type of experiment can be used for
updating the plant model parameters during the model predic-
tive control operation.

The construction of the excitation signal relies on the input
signal spectrum design. The spectrum of the input signal affects
the model parameters to be estimated during the identification
experiment [5]. The spectral density of the input signal can be
written as:

Φu(ω) =
m−1

∑
k=−(m−1)

ckℜk
(
e jω) , (17)

where the scalar basis functions
{

ℜk
(
e jω
)}∞

k=0 are proper, sta-
ble rational so that ℜ−k

(
e jω
)
= ℜk

(
e− jω

)
, and the real co-

efficients are c−k = cT
k . The basis function used for model

identification is ℜk
(
e jω
)
= e− jωk. The finite-dimensional

parametrization approach for finding coefficient ck is applied.
This can be achieved by using the positive real lemma which
arises from the Kalman-Yakubovich-Popov lemma [24]. The
partial expansion defined by (17) ensures that only first m fac-
tors are used to compute the input spectrum.

In this section the discrete-time linear dynamic model of
the cascade system G(q,θ), defined by (27), and the transfer
function H(q,θ) describing the noise dynamic are considered
during identification. The open-loop system diagram used for
model parameter estimation is presented in Fig. 5. Here, u(t)
is the input signal, y(t) is the output signal and e(t) is the
noise signal. The transfer functions G(q,θ) and H(q,θ) are
parameterized by the parameter vector θ , and q is the time-shift
operator.

Fig. 5. System set-up

The model (Fig. 5) response is expressed as:

y(t) = G(q,θ)u(t)+H(q,θ)e(t). (18)

The model’s unknown parameters are estimated using the
prediction error method (PEM). The one-step-ahead predicted
output of the model is:

ŷ(t|θ) = H−1 (q,θ)G(q,θ)u(t)+
[
I−H−1 (q,θ)

]
y(t). (19)

Consequently, the one-step-ahead prediction error becomes:

ε(t,θ) = y(t)− ŷ(t|θ)
= H−1(q,θ) [y(t)−G(q,θ)u(t)] . (20)

In this paper the criterion function is defined as the quadratic
criterion required by the Moose2 toolbox [25]:

VN(θ) =
1

2N

N

∑
t=1

ε(t,θ)Λ−1
ε(t,θ)T, (21)

where Λ is a zero-mean, white noise variance matrix. The val-
ues of the parameters are estimated from:

θ̂N = argmin
θ

VN(θ). (22)

The obtained estimates θ̂N , with probability α , are located
inside the system identification ellipsoid centered around real
parameters:

εSI =

{
θ |
(
θ̂N−θ

0)M
(
θ̂N−θ

0)T ≤ χ2
α(n)
N

}
, (23)

where: χ2
α(n) is the α-percentile of the χ2 distribution with

n−degrees of freedom, symbol M denotes the FIM defined in
(5) and N signifies the number of observations.

The different constraints of the identification experiment are
related to the application and quality of the model. The degra-
dation in performance between the model and the system is de-
fined by the application cost function. With the increasing value
of the application cost, the system performance degrades. Ac-
ceptable degradation is formulated as:

Vapp(θ)≤
1
γ
, (24)

where: γ is the pre-specified value that guarantees that the per-
formance degradation is less than γ−1 when using the identified
model [26]. The parameters that fulfill inequality (24) are con-
tained in the application set Θapp:

Θapp(γ) =

{
θ |Vapp(θ)≤

1
γ

}
. (25)

Implementing equation (25) in application-oriented input de-
sign, we guarantee, with high probability, that estimated param-
eters are accurate. This requirement is equivalent to:

εSI(α)⊆Θapp(γ), (26)

for appropriately selected values of α and γ .
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The application-oriented input design is performed using the
Matlab-based toolbox Moose2 [27]. This package handles only
discrete-time polynomial models with identifiable parameters.
The model of the idpoly type is defined as:

A(q)y(t) =
B(q)
F(q)

u(t)+
C(q)
D(q)

e(t), (27)

where: A, B, C, D, and F are polynomials, and q is the
time-shift operator. The optimal input is constructed using an
FIR parameterization of the spectrum with 20 lags, that is
20 coefficients in the spectral density function (17). The cas-
cade tanks system upper reservoir implementation is: A = 1.0;
B = [0.0 θ1]; F = [1.0 θ2]; C = 1.0; D = 1.0; θ 0 = [1.20e−
1 1.33e−2] – initial parameters values; λ = 1.0 – variance of
measurement noise; Ts = 0.1 – sampling duration [s]; N = 500
– number of samples; γ = 100 – allowed application degrada-
tion; α = 0.95 – confidence level of degradation. The goal of
input design is to solve the optimization problem as:

minimize
Φu(ω)

1
2π

π∫
−π

Φu(ω)d(ω)

subject to εSI(0.95)⊆Θapp(100)
Φu(ω)≥ 0, ∀ω.

(28)

The optimal input signal spectra (17) obtained for D- and A-
optimal criteria are displayed in Fig. 6.
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Fig. 6. Designed optimal input signals spectra

One hundred independent Monte Carlo runs have been made
to estimate polynomial model (27) parameters while the output
of the model is disturbed by normally distributed random num-
bers. The ellipsoidal confidence regions of the estimated model
parameters for chosen criteria are shown in Figs. 7 and 8.

The comparison of the ellipsoidal confidence regions
(Fig. 7, 8) of the first tank parameters estimation confirms that
the spaces occupied by the estimated parameters are different.
The confidence region obtained using the D-optimal criterion
indicates performance degradation of less than 1%. But the val-
ues of the estimates achieved for the A-optimal input signal
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Fig. 7. D-optimal experiment application set
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Fig. 8. A-optimal experiment application set

have greater dispersion (i.e. about 3%). In the given case, for
different input signal amplitude constraints, the A-optimal iden-
tification experiment produces worse results.

For the model of the system parameter adaptation purposes,
a D-optimal input design should be preferred. The problem con-
sidered in this section describes how to find a model set that
guarantees the performance of the controller to be chosen.

6. MULTITANK SYSTEM CONTROL
To control the water levels of the linearized cascade system, the
robust MPC method was used. The MPC diagram containing
the Kalman filter (KF) is presented in Fig. 9.

Fig. 9. Schematic overview of the robust MPC

6 Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 6, p. e143646, 2022



Cascade tanks system identification for robust predictive control

The state-space model (3) linearized around its equilibrium
point was discretized at the sampling rate of 10 Hz. The
discrete-time matrices referring to the system (12) are:

Ad =

9.9e−1 0 0
9.6e−4 9.9e−1 0
1.4e−6 2.9e−3 9.9e−1

 ,

Bd =

1.2e−2
5.8e−6
5.6e−9

 , Cd =
[
1 1 1

]
.

(29)

The robust MPC structure consists of the reference plant, the
model under diagnosis, and the Kalman filter as the prediction
model. The core of any recursive MPC is to use an accurate
model of the process and incoming data to predict the system’s
output regarding future input [28]. To predict the future output
of the system from time t, recognition of a system’s state esti-
mate x̂ f (t) is required:

ŷ f (t + k |t ) =CdAk
d x̂ f (t)+

k−1

∑
i=0

Ak−i−1
d Bdu(t + i), (30)

where: k≥ 0. The state estimate x̂ f (t) is obtained by the Kalman
filter using the output data acquired from the model. The input
signal can be calculated using the following cost function:

J(t) =
Ny

∑
i=0

∥∥ŷ f (t + i|t)− r (t + i)
∥∥2

Q +
Nu

∑
i=0
‖∆û(t + i)‖2

R , (31)

where: ŷ(t + i|t) and ∆û(t + i) are i – step-ahead predictions of
the output and input signals. The r(t) denotes the known ref-
erence trajectory over the prediction horizon. Q and R are ex-
perimentally chosen weighting matrices. The values of Ny and
Nu define the prediction region and the control horizon, respec-
tively. They determine the number of future time intervals to
construct the input signal. The input signal sequence was cal-
culated as a solution to the optimization problem:

minimize
u(t)

J(t)

subject to ŷ ∈ Y

û ∈U.

(32)

where: Y and U are the constraint regions of the outputs
and inputs, respectively. The objective of any MPC task is to
provide control of the process while satisfying a set of con-
straints [29, 30]. Robust MPC deals with designing a controller
that satisfies performance demands using the prediction model,
e.g. (27). The recursive KF algorithm was implemented to esti-
mate the internal-states x f of the model under diagnosis using
a series of noise measurements.

The cascade system water flows control problem was solved
using the model predictive controller from the Matlab-Simulink
environment. The Kalman filter state estimator (Fig. 9) was
disturbed by zero-mean Gaussian noise. Process v(t) and the

observation w(t) noise (12) have arbitrarily selected variance
values of 1e− 5 and 1e− 1, which correspond to weighting
matrices Q and R, respectively. The predictions of the system
state variables were made using discrete-time parameters (29)
with a time duration of 700 sec. The states of the cascaded sys-
tem were predicted using the fixed-step, 4th-order Runge–Kutta
method with a grid interval of 0.1 sec, and the initial conditions
are shown in Table 1.

The waveforms of the state variables obtained using the
Simulink model of the plant are shown in Fig. 10 and repre-
sents the water flows in each tank of the linearized system (3).
Figure 11 displays the input signal obtained for the discrete-
time model (29) controlled by the robust MPC method. The
blue (solid) line represents water flow in the upper tank, the red
(dotted) curve illustrates water flow in the middle tank and the
black (dash-dotted) plot depicts the lower tank water flow.
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Fig. 10. States of the cascaded system controlled by MPC
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Fig. 11. Input signal of the prediction model controlled by MPC

The input signal u(t) predicted by the MPC considering the
plant model (29) is disturbed by observation noise w(t)= 1e−1
(Fig. 11). Increasing the measurement noise would certainly
make it difficult to control the expected water levels in the tanks
of the system. When comparing the trajectories of state vari-
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ables received for the linearized model (Fig. 3 and 4) to those
obtained from the predictive controller (Fig. 10), they were con-
firmed to be very similar. It should be stated that the proposed
control strategy is robust for the model parameter changes of
even up to thirty percent. However, significant changes in the
operating point of the cascade system should be diagnosed us-
ing the application-oriented input design method.

7. CONCLUSIONS
In this paper, we proposed the robust MPC method for the wa-
ter levels control in the laboratory cascade tanks system. This
method allows for maintaining the assumed water levels in
the tanks despite changes in system parameters. The presented
framework consists of modelling the multitank system, the op-
timal pump control signal design, and the tanks water levels
predictive control. Optimal water inflow into the first tank was
designed using the well-known single weighted cost function
method. The obtained model of the cascade system was lin-
earized around its equilibrium point, discretized, and then used
for robust MPC purposes. The system performance loss can
be detected independently during normal operation. Then the
above-described application-oriented technique can be applied
to the parameter of model re-estimation. The robust predictive
control design was verified on desk using the Simulink envi-
ronment. The simulation results show the effectiveness of the
proposed scheme.
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