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Abstract
Recently, simultaneous monitoring of process mean and variability has gained increasing at-
tention. By departing from the accurate measurements assumption, this paper investigates
the effect of gauge measurement errors on the performance of the maximum generally weighted
moving average (Max-GWMA) chart for simultaneous monitoring of process mean and vari-
ability under an additive covariate model. Multiple measurements procedure is employed to
compensate for the undesired impact of gauge inaccuracy on detection capability of the Max-
GWMA chart. Simulation experiments in terms of average run length (ARL) are conducted
to assess the power of the developed chart to detect different out-of-control scenarios. The
results confirm that the gauge inaccuracy affects the sensitivity of the Max-GWMA chart.
Moreover, the results show that taking multiple measurements per item adequately decreases
the adverse effect of measurement errors. Finally, a real-life example is presented to demon-
strate how measurement errors increases the false alarm rate of the Max-GWMA chart.

Keywords
Max-GWMA Control Chart, Average Run Length, Measurement Errors, Simultaneous Mon-
itoring, Multiple Measurements.

Introduction

The most important objective of statistical process
monitoring (SPM) is to detect variations in different
parameters of a manufacturing system and to enable
the control system to take the necessary corrective
actions before producing additional defective items.
To achieve this goal, quality engineers use control
charts which is first proposed by Shewhart in the 1924
to monitor the quality characteristics. Control charts
enjoy widespread popularity in practice for monitor-
ing the process parameters such as mean, variance,
the proportion of defective items and so on. Control
Charts could be categorized into two general types in-
cluding memory-less and memory-based approaches.
In spite of memory-less control charts, memory-based
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ones such as exponentially weighted moving average
(EWMA) and cumulative sum (CUSUM) methods
take into account the information of previous samples
along with the current one. This property improves
the sensitivity of memory-based control charts to de-
tect small and moderate process changes. As the most
common memory-type approach, the EWMA control
chart first proposed by Roberts (2000), have been fre-
quently used for monitoring different process param-
eters. After Roberts (2000), various types of EWMA
statistics have been extended for monitoring process
mean and variability, separately. We can refer to an
expanded EWMA control chart, called as the gener-
ally weighted moving average (GWMA) control chart
which is used by some researchers such as Sheu and
Lin (2003) and Sheu and Tai (2006). This approach
is a moving average of a set of past data in which a
weight is assigned to each data point. Note that, the
addition of an adjustment parameter, α, makes this
approach more sensitive than the typical EWMA in
detecting small process shifts.

As noted, different EWMA-based statistics have
been used for monitoring process mean or variability,
separately. However, in most manufacturing and non-
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manufacturing situations, it is important to analyze
the process mean and variability, simultaneously. Re-
cently, the quality engineers have had some attempts
to extend EWMA-based approaches for monitoring
both process mean and variability simultaneously. In
this regard usually two separate EWMA-based statis-
tics are combined into a single statistic.

In recent years, the simultaneous monitoring of
process mean and variability has been well docu-
mented in the literature. In this regards, Domangue
and Patch (1991) developed an omnibus EWMA chart
for detecting changes in both the location and spread
of a process, simultaneously. Chen et al. (2001) ex-
tended Max-EWMA chart proposed by Xie (1999)
and pointed out that the Max-EWMA chart was more
effective in detecting both increasing and decreasing
shifts in process mean and/or variability. To detect
small shifts in the process mean or variability as early
as possible, Sheu et al. (2012) applied a new ver-
sion of GWMA statistic called as maximum gener-
ally weighted moving average (Max-GWMA) for the
purpose of simultaneous monitoring the process mean
and variability. Salmasnia et al. (2018b) presented a
non-central chi-square chart for joint monitoring of
process mean and variance.

Most of statistical process monitoring (SPM) tech-
niques have assumed that the data gathered from the
process are accurate. However, an exact measurement
is a rare phenomenon in any manufacturing and ser-
vice environment where human involvement is neces-
sary. As a consequence, the existence of errors due
to either the measurement instruments and/or oper-
ators is inevitable. In other words, a difference be-
tween the real quantities and the measured ones will
always exist even with highly sophisticated advanced
measuring instruments. It is stipulated in the litera-
ture that due to an increase in the process variabil-
ity, imprecise measurements affect the performance
of different schemes in SPM areas. Such adverse ef-
fects can be considered from two general points of
view: (1) the measurement errors reduce the per-
formance of monitoring schemes in detecting out-of-
control situations and (2) the measurement errors in-
crease the rate of false alarms. It has been pointed
out in the literature that the measurement errors sig-
nificantly affect the performance of different control
charts and should be considered in evaluations. How-
ever, most of the researches have neglected the ef-
fect of measurements errors on the performance of
control charts. Fortunately, in recent years, the qual-
ity engineering researchers have investigated the ef-
fect of measurement errors on detecting performance
of different control charts. Most recent examples in-
clude Maleki and Salmasnia (2017), Cheng and Wang

(2018), Tang et al. (2018), Tran et al. (2019), Tang
et al. (2019), Khalafi et al. (2020), Nguyen et al.
(2020a), Nguyen et al. (2020b), Maleki et al. (2022a)
and Maleki et al. (2022b). For detailed information
please refer to review paper provided by Maleki et
al. (2017).

As far as we know, most of publications considering
the effect of gauge measurement errors have focused
on the case of process mean or process variability, sep-
arately. To the best of our knowledge, there are only
few researches available in the literature that incorpo-
rates the measurement errors in constructing control
charts for simultaneous monitoring of process mean
and variability such as Kahti Dizabadi et al. (2015),
Ghashghaei et al. (2016) and Salmasnia et al. (2018a).

On the other hand, as noted the, capability of Max-
GWMA control chart in simultaneous monitoring pro-
cess mean and variability has been proved in recent
researches. Due to importance of simultaneous moni-
toring, the effective performance of Max-GWMA con-
trol chart as well as considering the measurement er-
rors, in this paper we explore the capability of Max-
GWMA control chart in detecting either separate or
simultaneous shifts under an additive measurement
errors model. We also utilize multiple measurement
approach to compensate for the negative effect of
gauge measurement errors. The rest of this paper is
organized as follows: In Section 2, first Max-GWMA
control chart is described. Then the additive mea-
surement errors model is briefly explained. In Sec-
tion 3, we incorporate the measurement errors model
into Max-GWMA control chart. In Section 4, multi-
ple measurement approach to construct Max-GWMA
control chart in the presence of measurement errors
is described. In Section 5, we provide a numerical ex-
ample based on simulation studies and investigate the
effect of measurement errors on Max-GWMA control
chart. A real data example to illustrate the negative
effect of gauge measurement errors on Max-GWMA
control chart is given in Section 6. Finally, in Sec-
tion 7, we conclude the main findings and present a
future study.

Max-GWMA control chart and
measurement errors

In this section, first the Max-GWMA chart as one
of the most effective approaches in simultaneous mon-
itoring of process mean and variability is expressed.
Then, the additive covariate model which is most com-
mon model in the literature is discussed.
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Brief review of the Max-GWMA control chart

The concept of the GWMA control chart was firstly
introduced by Sheu and Griffith (1996) and also used
by some other researches such as Sheu and Lin (2003)
and Sheu and Tai (2006). The main advantage of this
approach over the competing methods is its capabil-
ity to identify the source and direction of a change.
The Max-GWMA control chart proposed by Sheu et
al. (2012), could be used not only for monitoring the
process mean and variability but also for simultane-
ous monitoring purposes. This control chart, as the
newest version of GWMA method is explained as fol-
lows.

Suppose that the quality characteristic of interest
follows a normal distribution as X ∼ N(µ0, σ2

0) when
the process is in-control. Let Xt and S2

t denote the
sample mean and sample variance corresponding to
tth; t = 1, 2, . . . sample of size nt. We assume that the
sample size is fixed from sample to sample and the ob-
servations within each sample are independent. Here,
we standardize Xt and S2

t according to Equations (1)
and (2), respectively:

Ut =
Xt − µ0
σ0√
nt

(1)

Vt = φ−1
{
F

[
(nt − 1)S2

t

σ2
0

nt − 1

]}
(2)

where φ−1(.) and F (h, v) denote the inverse standard
normal distribution function and the cumulative chi-
square distribution function with v degrees of free-
dom, respectively (these transformations and their ap-
plications were proposed by Quesenberry (1995). Note
that, both Ut and Vt are independent standard nor-
mal random variables, whose distributions are inde-
pendent of the sample size. Among a sequence of inde-
pendent samples, letM counts the number of samples
between subsequent occurrences of event A. Hence, we
could write:

∞∑
m=1

P (M = m) = P (M = 1) + P (M = 2)

+ . . .+ P (M = t) + P (M > t) = 1 (3)

Let P (M = 1), P (M = 2), . . . , and P (M = t) de-
note the weights of the current sample, the previous
sample, . . . , and the most out-of-data sample, respec-
tively. Therefore, P (M > t) is weighted with the tar-
get value of the process. To construct a single statistic
for jointly monitoring of the process mean and vari-
ability, the GWMA statistic for process mean and
variability can be defined as Equations (4) and (5),

respectively where G0 = H0 = 0 are the initial values
of Gt and Ht statistics, respectively. In order to make
it easier, P (M > t) = qt

α

is chosen. As a result, we
have:

Gt = P (M = 1)Ut + P (M = 2)Ut−1 + . . .

+ P (M = t)U1 + P (M > t)G0; G0 = 0 (4)

Ht = P (M = 1)Vt + P (M = 2)Vt−1 + . . .

+ P (M = t)V1 + P (M > t)H0; H0 = 0 (5)

where 0 ≤ q < 1 is a constant design parameter
whereas α > 0 is the adjustment parameter which
is determined by the practitioner. Finally, the Max-
GWMA statistic is defined as:

P (M = t) = P (M > t− 1)− P (M > t)

= q(t−1)
α

− qt
α

(6)

MGt = max {|Gt| , |Ht|} ; t = 1, 2, . . . (7)

Since MGt is a non-negative value, the Max-
GWMA chart requires only an upper control limit
(UCL). For the tth sample, whenever the process mean
and process variability are both close to their corre-
sponding targets, the chart statistic MGt will be less
than the UCL value; otherwise,MGt exceeds the UCL
and consequently the chart triggers an out-of-control
signal.

Linearly covariate errors model

Let vector Xt = (xt1, . . . , xtn) includes n observa-
tions of interested quality characteristic. When the
process is in its in-control state, we assume that x′tjs
are identically distributed normal random variables
with known parameters as N

(
µ0, σ

2
0

)
. We also as-

sume that a step shift could occur in the mean and/or
standard deviation such that the out-of-control pa-
rameters change to µx = µ0 + ρσ0 and σx = ρσ0,
respectively. Note that, σ and ρ are the magnitude of
shifts in mean and standard deviation, respectively.
As suggested by Linna and Woodall (2001), due to
the measurement errors, the accurate value of the
quality characteristic X could not be directly ob-
served but can be assessed by the measured values
Yt = (yt1, . . . , ytn). A linear covariate model uses the
following equation to associate the accurate and mea-
sured values of interested quality characteristic:

ytj = A+Bxtj + εtj ;

t = 1, 2, . . . ; j = 1, 2, . . . , n
(8)
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where A and B are two known constants whereas εtj
denote the error term which is a normally distributed
random variable with mean zero and constant vari-
ance of σ2

ε . Note that xtj and εtj are assumed to be
independent from each other.

Max-GWMA chart under
measurement errors

As noted, due to the measurement errors, we are
not able to observe the true value of quality charac-
teristic X under investigation. Instead of X, we can
observe and monitor Y that is related to the quality
characteristic X according to Equation (8). Here, Y
denotes a normal distribution with following parame-
ters:

Y ∼ N
(
A+BµxB

2σ2
x + σ2

ε

)
(9)

The recommended steps to design the Max-GWMA
chart under measurement errors are summarized as
follows:
1. Taking a random sample of size n from the process

as Yt = (yt1, . . . , ytn).
2. Estimating the sample mean and sample variance

according to Equations (10) and (11), respectively.

Y t =
1

n

n∑
j=1

ytj (10)

S2
t
′

=

n∑
j=1

(
ytj−Y t

)2
n− 1

(11)

3. Standardizing the sample mean as:

U ′t =
Y t − (A+Bµx)√

B2σ2
x + σ2

ε

n

(12)

4. Standardizing the sample variance as:

V ′t = φ−1

{
F

[
(n− 1)S2′

t

B2σ2
x + σ2

ε

, n− 1

]}
(13)

5. Choosing the combination (q, α, UCL, n) such that
a desired in-control ARL (ARL0) is achieved. Note
that value of these parameters are discussed by
Sheu et al. (2012).

6. Computing G′t using G′0 = 0 as the initial value
corresponding to the mean statistic:

G′t = P (M = 1)U ′t + P (M = 2)U ′t−1 + . . .

+ P (M = t)U ′1 + P (M > t)G′0 (14)

7. Computing H ′t using H ′0 = 0 as the initial value
corresponding to the variability statistic:

H ′t = P (M = 1)V ′t + P (M = 2)V ′t−1 + . . .

+ P (M = t)V ′1 + P (M > t)H ′0 (15)

8. Calculating the value of MG′t based on G′t and H ′t
via Equation (16):

MG′t = max {|G′t| , |H ′t|} ; t = 1, 2, . . . (16)

Afterwards, the chart statistic is plotted against
the UCL which is determined to achieve a pre-
determined ARL0.

Multiple measurement approach

As noted, gauge measurement errors affect the ca-
pability of control charts to react to process changes.
As a consequence, it is important to decrease the neg-
ative effects of extra variation caused by the measure-
ment errors on the performance of control charts. In
this regard, it has been proved that multiple measure-
ment procedure by taking multiple measurements of
a single unit of the quality characteristic could effec-
tively reduce the effect of measurement errors. This
procedure has been utilized by many researches such
as Asif et al. (2020), Noor-ul-Amin et al. (2022), Zaidi
et al. (2020), and Yousefi et al. (2022). In this sec-
tion, we incorporate multiple measurement procedure
into Max-EWMA chart to compensate for the effect of
gauge measurement errors. The linear covariate model
considering multiple measurements per item can be
rewritten as:

ytjk = A+Bxtj + εtjk, k = 1, . . . ,m (17)

where ytjk denotes the j-th; j = 1, . . . , n observa-
tion of the t-th; t = 1, 2, . . . sample under k-th;
k = 1, 2, . . . ,m inspection. For j-th observation of t-th
sample we have:

ytj ∼ N
(
A+BµX , B

2σ2
X +

σ2
ε

m

)
(18)

where ytj is the average of the j-th observation which
is obtained by m inspections. Here, the sample mean
and the sample variance are computed based on ytj

as Y t =
1

n

n∑
j=1

ytj and S2′′

t =

n∑
j=1

(
ytj − Y t

)2
n− 1

, re-

spectively. It could be statistically checked that the
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standardized mean and variance statistics could be
computed as:

U ′′t =
Y t − (A+BµX)√

B2σ2
X

n
+

σ2
ε

nm

(19)

V ′′t = Φ−1

F
 (n− 1)S2′′

t

B2σ2
X +

σ2
ε

m

n− 1


 (20)

Next Equations (14)–(16) are rewritten according to
U ′′t and V ′′t . Similar to previous section, the UCL
value is set through simulation experiments such that
a pre-determined ARL0 value is obtained.

Performance evaluation

In this section, in terms of ARL metric, the de-
tection capability of the developed Max-GWMA con-
trol chart under gauge measurement errors is inves-
tigated through a detailed numerical example based
on simulation studies. Note that, all simulation ex-
periments in this section are conducted in MATLAB
computer software. It is worth mentioning that when
the process is in-control, a large value of ARL implies
a sufficient performance of control charts in terms of
false alarm rate. Adversely, to rapidly react to out-of-
control situations, the value of ARL needs to be suf-
ficiently small. To have a fair comparison, the UCL
value of each scenario is set such that ARL0 ' 370
which is equivalent to the probability of Type I error
0.0027. Without loss of generality, the subgroup size
of n = 5 is taken at each sample point. We assume
that X follows a normal distribution with parameters
µ0 = 0 and σ2

0 = 1. To simulate the out-of-control
scenarios, the magnitude of mean shift is considered
as δ ∈ {0, 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3}. Similarly, dif-
ferent step shifts in standard deviation parameter as
ρ ∈ {0.25, 0.5, 0.75, 1, 1.25, 1.5, 2, 2.5, 3} is taken into

account in our simulations. Moreover, the ARLs are
extracted based on 100,000 iterations. To investigate
the impact of gauge measurement errors in our eval-
uations, the variance of error term is considered as
σ2
ε ∈ {0.1, 0.2, 0.5, 1}. Recall that the sensitivity of the

developed Max-GWMA statistic depends on the val-
ues of q and α. The effect of these parameters on de-
tection capability of the Max-GWMA chart has been
well discussed by Sheu et al. (2012). Based on the
mentioned research we set q = 0.95 and α = 1.1.
Here, for each value of σ2

ε , the ARLs under different
mean shifts (ρ = 1) are given in Table 1 and com-
pared with no-error scenario. It could be concluded
from Table 1 that for each scenario of σ2

ε , the ARL
values are larger than those obtained under no-error
condition. The results also represent that as the vari-
ance of error term increases, the sensitivity of the
Max-GWMA chart to detect process mean shifts de-
creases. For instance, in the case of δ = 0.5, the ARL
increases from 10.3989 up to 16.2614 when σ2

ε changes
from 0 to 1 (60% decrease). This represents that the
detection performance of the developed Max-GWMA
control charting method is highly affected by the in-
accuracy of measurement instruments. The obtained
results in terms of the logarithm of ARL are also de-
picted in Figure 1.

Here, the capability of Max-GWMA control chart-
ing method under the additive covariate error model
to detect variance shifts (δ = 0) is investigated and
the results are given in Table 2 and Figure 2. It
could be observed that as the contamination due to
measurement errors increases, the capability of this
method to detect variance shift reduces which demon-
strates the negative effect of the measurement errors
on the chart’s performance. It is worth mentioning
that this trend can be seen not only in increasing vari-
ance shifts but also in decreasing ones. Moreover, it
should be noted that the trend of ARL obtained un-
der variance shifts is similar to those under process
mean shifts. The obtained results are also depicted in
Figure 2.

Table 1
ARLs of Max-GWMA chart under mean shifts when n = 5, q = 0.95, and α = 1.1

σ2
ε

δ
0 0.25 0.5 0.75 1 1.5 2 2.5 3

0 370.0787 26.6580 10.3989 6.4912 4.7884 3.2270 2.4583 2.0434 1.9666

0.1 369.9631 28.5504 11.0473 6.8672 5.0216 3.3676 2.5850 2.0922 1.9864

0.2 370.4672 30.4847 11.6435 7.2104 5.2618 3.5067 2.7003 2.1561 1,9991

0.5 368.4913 36.2223 13.3977 8.1808 5.9345 3.9070 2.9934 2.4054 2.0615

1 368.6922 45.3266 16.2614 9.7003 6.9415 4.5032 3.4067 2.7810 2.3094
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Fig. 1. The ARL values corresponding mean shifts

Table 2
ARLs of Max-GWMA chart under variance shifts when n = 5, q = 0.95, and α = 1

σ2
ε

δ
0.25 0.5 0.75 1 1.25 1.5 2 2.5 3

0 4.0574 7.1726 19.4352 370.0787 20.3993 9.0350 4.5354 3.1872 2.5213

0.1 5.3883 8.6587 23.0906 369.9631 22.9313 9.8438 4.8511 3.3715 2.6536

0.2 6.5821 10.2010 27.2167 370.4672 25.4042 10.6478 5.1720 3.5479 2.7800

0.5 10.1833 15.2494 41.5901 368.4913 33.6062 13.2679 6.1079 4.0946 3.1521

1 17.1177 25.8521 72.3447 368.6922 49.3825 18.1007 7.6985 4.9954 3.7582

0.25 0.5 0.75 1 1.25 1.5 2 2.5 3

0.5

1

1.5
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2.5

Variance shift (rho)

L
og
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L
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Fig. 2. The ARL values corresponding variance shifts
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Next, the ARL values of the developed Max-
GWMA control charting scheme under different si-
multaneous shifts in both mean and variability pa-
rameters are given in Tables 3–7. It is concluded form
Tables 3–7 that in comparison with separate mean
and variance shifts, the developed control chart has a
better performance in detecting simultaneous shifts.
As seen in all tables, under different values of error
variance, inaccurate measurements affect the perfor-
mance of the developed Max-GWMA chart to detect
simultaneous mean/variance shifts. Similar to results
of Tables 1 and 2, the detection capability of this
method is highly dependent to the variance of error
term. In the other words, as the variance of error term
increases, the sensitivity of the Max-GWMA chart not
only in separate shifts but also in joint shifts reduces.

As seen, the existence of gauge measurement er-
rors destroy the capability of the Max-GWMA con-

trol charting method to detect not only separate mean
and variance shifts but also simultaneous ones. Here,
in the presence of measurement errors, we utilize mul-
tiple measurements strategy as a remedial approach
to improve the efficiency of the Max-GWMA chart-
ing method. Considering the similar setting for pro-
cess parameters, Tables 8–10 contain the simulated
ARL values when σ2

ε = 0.2 and m ∈ {2, 3, 4, 5} mea-
surements per item. As seen, taking multiple measure-
ments on each item can play a key role to reduce the
negative effect of measurement errors on detecting ca-
pability of Max-GWMA chart. In other words, when
m increases, the values of ARL tend to decrease. For
instance, when δ = 0.5, we have ARL = 11.0559 for
m = 2 and ARL = 10.6793 for m = 5 (see Table 8).
The results show that m = 5 measurements per item
can adequately compensate for the undesired effect of
measurement errors.

Table 3
ARLs under simultaneous shifts when n = 5, q = 0.95, α = 1.1 and σ2

ε = 0

ρ

δ
0 0.25 0.5 0.75 1 1.5 2 2.5 3

0.25 4.0574 4.0563 4.0564 4.0548 4.0195 3.0082 2.3209 2.0000 2.0000

0.5 7.1726 7.1695 7.0829 6.0547 4.6804 3.1146 2.4097 2.0003 1.9998

0.75 19.4352 17.2679 10.0713 6.4267 4.7443 3.1924 2.4412 2.0119 1.9926

1 370.0787 26.6580 10.3989 6.4912 4.7884 3.2270 2.4583 2.0434 1.9666

1.25 20.3993 15.8275 9.7210 6.4916 4.8262 3.2456 2.4884 2.0780 1.9332

1.5 9.0350 8.5849 7.3812 5.9017 4.7121 3.2604 2.5138 2.1054 1.9038

2 4.5354 4.4908 4.3539 4.1111 3.7927 3.0833 2.5138 2.1281 1.8698

2.5 3.1872 3.1707 3.1313 3.0598 2.9537 2.6631 2.3530 2.0704 1.8302

3 2.5213 2.5140 2.4940 2.4596 2.4158 2.2755 2.1098 1.9303 1.7515

Table 4
ARLs under simultaneous shifts when n = 5, q = 0.95, α = 1.1 and σ2

ε = 0.1

ρ

δ
0 0.25 0.5 0.75 1 1.5 2 2.5 3

0.25 5.3883 5.3905 5.3948 5.3307 4.7679 3.1967 2.6784 2.0003 2.0000

0.5 8.6587 8.6524 8.2658 6.5181 4.9348 3.2761 2.6238 2.0090 1.9999

0.75 23.0906 19.5378 10.7289 6.7858 4.9822 3.3297 2.5929 2.0435 1.9974

1 369.9631 28.5504 11.0473 6.8672 5.0216 3.3676 2.5850 2.0922 1.9864

1.25 22.9313 17.2784 10.3378 6.8594 5.0736 3.3925 2.5983 2.1356 1.9697

1.5 9.8438 9.3201 7.9048 6.2665 4.9659 3.4133 2.6160 2.1700 1.9552

2 4.8511 4.8038 4.6381 4.3612 4.0012 3.2333 2.6175 2.2036 1.9370

2.5 3.3715 3.3670 3.6381 3.2238 3.1056 2.8019 2.4563 2.1517 1.9060

3 2.6536 2.6492 2.6181 2.5855 2.5363 2.3930 2.2087 2.0156 1.8278
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Table 5
ARLs under simultaneous shifts when n = 5, q = 0.95, α = 1.1 and σ2

ε = 0.2

ρ

δ
0 0.25 0.5 0.75 1 1.5 2 2.5 3

0.25 6.5821 6.5892 6.5734 6.1740 5.0832 3.4229 2.8239 2.0157 2.0000

0.5 10.2010 10.1765 9.2652 6.9200 5.1720 3.4477 2.7626 2.0507 1.9999

0.75 27.2167 21.6905 11.3924 7.1367 5.2161 3.4745 2.7183 2.1031 1.9998

1 370.4672 30.4847 11.6435 7.2104 5.2618 3.5067 2.7003 2.1561 1.9991

1.25 25.4042 18.6851 10.9296 7.1809 5.3047 3.5363 2.7044 2.2007 1.9989

1.5 10.6478 10.1094 8.4224 6.5990 5.1928 3.5590 2.7255 2.2377 1.9975

2 5.1720 5.1138 4.9276 4.6193 4.2107 3.3811 2.7162 2.2780 1.9955

2.5 3.5479 3.5370 3.4822 3.3936 3.2680 2.9299 2.5577 2.2336 1.9743

3 2.7800 2.7739 2.7540 2.7140 2.6546 2.5045 2.3049 2.0917 1.8991

Table 6
ARLs under simultaneous shifts when n = 5, q = 0.95, α = 1.1 and σ2

ε = 0.5

ρ

δ
0 0.25 0.5 0.75 1 1.5 2 2.5 3

0.25 10.1833 10.1964 9.6424 7.6585 5.7999 3.8659 2.9925 2.3446 2.0062

0.5 15.2494 14.9668 11.7056 7.9744 5.8493 3.8669 2.9863 2.3653 2.0147

0.75 41.5901 28.1161 13.2022 8.1153 5.8966 3.8834 2.9865 2.3867 2.0332

1 369.4913 36.2223 13.3977 8.1808 5.9345 3.9070 2.9934 2.4054 2.0615

1.25 33.6052 23.0112 12.6522 8.1434 5.9566 3.9330 2.9949 2.4270 2.0907

1.5 13.2679 12.3592 9.9296 7.7665 5.8617 3.9568 3.0120 2.4519 2.1175

2 6.1079 6.0263 5.7740 5.3630 4.8336 3.7932 3.0083 2.4846 2.1531

2.5 4.0946 4.0829 4.0079 3.8961 3.7266 3.3034 2.8434 2.4521 2.1545

3 3.1521 3.1496 3.1234 3.0818 2.9999 2.8106 2.5667 2.3165 2.0886

Table 7
ARLs under simultaneous shifts when n = 5, q = 0.95, α = 1.1 and σ2

ε = 1

ρ

δ
0 0.25 0.5 0.75 1 1.5 2 2.5 3

0.25 17.1177 16.8098 13.4776 9.3821 6.8424 4.4594 3.3595 2.8151 2.2467

0.5 25.8521 23.4871 14.9636 9.5446 6.8834 4.4718 3.3718 2.8039 2.2657

0.75 72.3447 38.2421 16.0700 9.6599 6.9067 4.4886 3.3872 2.7904 2.2847

1 368.6922 45.3266 16.2614 9.7003 6.9415 4.5032 3.4067 2.7810 2.3094

1.25 49.3825 30.0880 15.3823 9.6367 6.9693 4.5385 3.4191 2.7864 2.3345

1.5 18.1007 16.2598 12.3709 9.0511 6.8695 4.5532 3.4346 2.7926 2.3539

2 7.6985 7.5882 7.1822 6.5496 5.8008 4.3929 3.4354 2.8109 2.3935

2.5 4.9954 4.9650 4.8716 4.6916 4.4640 3.8713 3.2793 2.7858 2.4091

3 3.7582 3.7435 3.7086 3.6516 3.5588 3.2898 2.9766 2.6477 2.3631
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Table 8
ARLs of Max-GWMA chart under mean shifts when n = 5 and k ∈ {1, 2, 3, 4, 5}

k

δ
0 0.25 0.5 0.75 1 1.5 2 2.5 3

Error free 370.0782 26.6580 10.3989 6.4912 4.7884 3.2270 2.4583 2.0434 1.9666

1 368.3707 30.4847 11.6435 7.2104 5.2618 3.5067 2.7003 2.1561 1.9991

2 368.8663 28.5227 11.0559 6.8576 5.0235 3.3652 2.5849 2.0950 1.9869

3 369.2207 28.0003 10.8410 6.7304 4.9467 3.3213 2.5431 2.0756 1.9816

4 370.2998 27.5868 10.7101 6.6755 4.9215 3.2956 2.5218 2.0643 1.9779

5 368.4867 27.3523 10.6793 6.6672 4.8833 3.2814 2.5147 2.0588 1.9763

Table 9
ARLs of Max-GWMA chart under variance shifts when n = 5 and k ∈ {1, 2, 3, 4, 5}

k

ρ
0.25 0.5 0.75 1 1.25 1.5 2 2.5 3

Error free 4.0574 7.1726 19.4352 370.0787 20.3993 9.0350 4.5354 3.1872 2.5213

1 6.5821 10.2010 27.2167 370.4672 25.4042 10.6478 5.1720 3.5479 2.7800

2 5.3889 8.6584 23.1404 368.7078 22.7760 9.8468 4.8548 3.3598 2.6493

3 4.9754 8.1608 21.9142 370.0880 22.0146 9.5569 4.7566 3.3125 2.6079

4 4.7568 7.9281 21.1998 369.6123 21.5984 9.4076 4.7081 3.2764 2.5865

5 4.6203 7.7669 20.8392 368.3797 21.3078 9.3563 4.6667 3.2596 2.5699

Table 10
ARLs of Max-GWMA chart under simultaneous shifts when n = 5 and k ∈ {1, 2, 3, 4, 5}

k

δ

ρ 0.75
0.75

0.75
1.25

0.75
1.5

1
0.75

1
1.25

1
1.5

1.5
0.75

1.5
1.25

1.5
1.5

Error free 6.4267 6.4916 5.9017 4.7443 4.8462 4.7121 3.1924 3.2456 3.2604

1 7.1367 7.1809 6.5990 5.2161 5.3047 5.1928 3.4745 3.5363 3.5590

2 6.7878 6.8395 6.2404 4.9767 5.0723 4.9564 3.3280 3.3942 3.4138

3 6.6657 6.7366 6.1518 4.9045 5.0035 4.8851 3.2844 3.3473 3.3616

4 6.6148 6.6655 6.0947 4.8688 4.9451 4.8364 3.2613 3.3220 3.3420

5 6.5716 6.6202 6.0548 4.8443 4.9214 4.8038 3.2477 3.3170 3.3293

Case study

In this section, using a real data example in health-
care industry, we elaborate the impact of inaccurate
data on detection capability of Max-GWMA control
chart. The data set which is also discussed by Hawkins
and Maboudou-Tchao (2008) as well as Amiri et al.
(2018) comes from a longstanding research project
in ambulatory monitoring. In this data set, subjects
were equipped with instruments that measure and

record four physiological variables. The wearer’s blood
pressure and heart rate were measured and recorded
every 15 min for 6 years. Before the analysis, each
week’s raw data was condensed into weekly summary
numbers using statistical process monitoring (SPM)
methods. The measured data include mean systolic
blood pressure (SBP), mean diastolic blood pressure
(DBP), mean heart rate (HR) and overall mean ar-
terial pressure (MAP). Here, we focus on DBP vari-
able which follows a normal distribution with mean
77.48 variance 5.83. In order to illustrate the impact
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Table 11
Ambulatory monitoring data under exact and contaminated scenarios.

Sample
number

No error
MG

With error
MG’

x1 x2 x3 y1 y2 y3

1 78.3570 79.2830 80.7560 0.0781 79.4695 79.4753 79.4843 0.2364

2 81.4120 81.2940 79.6340 0.2037 80.6927 81.8744 79.9066 0.2842

3 81.0600 77.6760 78.7290 0.2585 80.7866 78.3139 79.0465 0.3128

4 78.7310 78.2670 76.6320 0.2599 79.4084 77.7010 78.1304 0.3632

5 75.2460 75.2460 76.4280 0.2166 74.3095 75.2299 74.8742 0.4456

6 75.7420 75.9940 73.5810 0.2400 76.1677 76.6163 73.2267 0.4363

7 73.9460 79.5880 77.3500 0.1899 73.8715 80.1214 77.7842 0.3723

8 75.7290 77.8280 76.3890 0.2298 74.3302 77.4387 76.2875 0.3801

0.25 0.5 0.75 1 1.25 1.5 2 2.5 3

0.5
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2.5
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L
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Fig. 3. Max-GWMA statistics under exact and contaminated data

of contaminated data by measurement errors we set
q = 0.95, α = 1.1 and n = 3. Similar to section 5,
we set the UCL value of Max-GWMA chart such that
ARL0 ' 370 which is equivalent to Type I error of
α = 0.0027. Table 11 contains the accurate and mea-
sured values of data set along with the correspond-
ing Max-GWMA statistics. Figure 3 depicts the Max-
GWMA statistics under both no-error and with-errors
cases to show how measurement errors could affect the
occurrence of false alarms. As see in Figure 3, in both
cases, these is no false alarm. However, in with-error
case, the values of Max-GWMA statistic correspond-
ing to 5th and 6th samples are close to UCL implying
that gauge measurement errors could increase the rate

of false alarm.

Conclusions and directions for future
research

In this paper, we studied the impact of inaccurate
measurements on simultaneous monitoring of process
mean and variability. For this purpose, the detection
capability of Max-GWMA control chart under mean
shifts, variance shifts, as well as simultaneous shifts
evaluated based on simulation studies. We found
that the measurement errors can seriously destroy
the capability of the Max-GWMA control chart in
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detecting different out-of-control scenarios both for
separate and joint ones. Moreover, we developed
multiple measurements approach and showed that
this method can adequately reduce the negative
effect of measurement errors. Finally, thorough a
case study in healthcare context, we represented
that measurement errors could affect the false alarm
rate of the developed Max-GWMA control chart.
Investigating the effect of measurement errors on si-
multaneous monitoring of process mean and variance
by considering the estimation error is recommended
as a future research. Moreover, considering other
error models such as the multiplicative and TCME
models in simultaneous monitoring purposes could
be considered as the second future study.
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