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for optimization of a line-start PM

synchronous motor
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Abstract. The paper presents a novel hybrid cuckoo search (CS) algorithm for the optimization of the line-start permanent magnet synchronous
motor (LSPMSM). The hybrid optimization algorithm developed is a merger of the heuristic algorithm with the deterministic Hooke–Jeeves
method. The hybrid optimization procedure developed was tested on analytical benchmark functions and the results were compared with the
classical cuckoo search algorithm, genetic algorithm, particle swarm algorithm and bat algorithm. The optimization script containing a hybrid
algorithm was developed in Delphi Tiburón. The results presented show that the modified method is characterized by better accuracy. The
optimization procedure developed is related to a mathematical model of the LSPMSM. The multi-objective compromise function was applied as
an optimality criterion. Selected results were presented and discussed.
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1. INTRODUCTION
Heuristic (probabilistic) optimization algorithms have been ap-
plied for several years now in order to solve different optimiza-
tion problems [1–3]. Such algorithms are very often used to
solve optimal design problems of electromagnetic devices, such
as transformers, motors, generators and actuators [4–8]. The
optimization procedure often cooperates with a mathematical
model of the devices studied, elaborated by means of finite el-
ement analysis (FEA). Applying the algorithms, which require
the determination of partial derivatives, is extremely difficult
due to the necessity to determine the derivative.

In heuristic optimization algorithms, the optimal solution
is sought within a group of individuals called, depending on
the algorithm: a generation (genetic algorithms), a swarm [9,
10] (swarm methods), a colony (bat algorithm), and even a
pack [11,12] (grey wolf method). If considering successive iter-
ations, the optimization procedure tries to find the optimal solu-
tion by moving a group of “agents” around the permissible area.

When executing calculations for successive iterations and
subsequent individuals, the objective function for each variant
of the device (individual), i.e. repeatedly determining the dis-
tribution of the electromagnetic field for the optimized object,
must be calculated.

Applying a very complex mathematical model extends com-
putation time for a single individual. For heuristic algorithms,
the determination of each successive position of an individ-
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ual depends on a random coefficient. The optimization process
must be repeated several times to obtain reliable and good-
quality results [13, 14].

In order to minimize the number of calls to the objective
function corresponding with the total computation time, sci-
entists are looking for newer and more effective optimization
algorithms. These new methods may allow for obtaining the
optimal solution faster, with fewer iterations of the algorithm.

In the last few years, many new methods have been devel-
oped, including the bat method, the grey wolf method, the salp
swarm algorithm [9], the whale optimization algorithm [15] and
the sparrow optimization algorithm [16]. These methods use
various mathematical models and may have different perfor-
mance properties [17].

In the case of a solution optimization task concerning the
optimal designing of a permanent magnet motor, classical op-
timization algorithms were most frequently applied, includ-
ing genetic algorithms [18–21] and particle swarm optimiza-
tion algorithm [22]. Moreover, the authors dealing with the
optimization of PM motors use heuristic (metaheuristic) algo-
rithms [2, 4, 11] or others [23]. Hybrid optimization algorithms
are very rarely applied to the optimization of PM motors.

The aim of this research is to develop a novel hybrid opti-
mization algorithm. The hybrid algorithm connects the heuris-
tic cuckoo search (CS) optimization algorithm and Hooke–
Jeeves deterministic method. For each iteration, new cuckoo
positions for part of the population are determined randomly.
Additionally, for the selected pair of cuckoos, the new position
is looked for by the Hooke–Jeeves method. The hybrid proce-
dure thus elaborated will be applied to optimize the LSPMSM
rotor.
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2. HYBRID OPTIMIZATION ALGORITHM
Nowadays, research on the development of new heuristic algo-
rithms to solve optimization problems is carried out very in-
tensively. New methods are being created based on the obser-
vations of behavior of various social groups of animals living
in the Earth’s ecological system. In order to improve the per-
formance of the optimization algorithm being developed, the
authors very often combine two different approaches [24–27].

A new hybrid optimization algorithm, combining the heu-
ristic algorithm (cuckoo search) and deterministic method
(Hooke–Jeeves) is proposed to obtain optimal design of the
LSPMSM.

2.1. Classical cuckoo search algorithm
The SC algorithm was introduced in 2009 by Xin-She Yang
and Suash Deb [28]. The method was developed based on the
reproductive behavior of the common cuckoo. The cuckoo is
a reproductive predator. Cuckoos lay their eggs in the nests of
other birds.

They favor two potential reproduction scenarios: (a) to lay
their own egg in the nest of another species after removing the
owner’s egg from the nest, (b) to take over another species’ nest
for their own reproduction purposes. The CS algorithm was de-
veloped taking into account the following assumptions [29]:
(a) The selected cuckoo lays one egg in a randomly chosen

nest;
(b) The nest with the best eggs is moved to the next iteration of

the algorithm;
(c) The number of nests is constant and assigned before start-

ing the optimization process. A host can also find and rec-
ognize the “foreign” egg. Therefore, a certain probability
pa ∈ (0, 1) is assumed. The assumed probability describes
the possibility of removing a cuckoo’s egg from the host’s
nest (the solution is eliminated), or the host will abandon
the nest and build a new nest in a different location (the
new nest is added in a random place).

In the classical CS algorithm, we use the following terms: a
cuckoo, nest and egg. The nest is a point (potential solution)
in a permissible area of a problem being solved. Each cuckoo
randomly selects the nest and lays an egg. The nest with an egg
is one solution of the analyzed problem. All cuckoos lay the
selected number of eggs in the single iteration.

2.2. Hybrid cuckoo search algorithm
The nomenclature of the hybrid algorithm developed was mod-
ified. The nest, i.e. the potential locations where the cuckoo can
lay an egg, was omitted. For the sake of simplicity, the author
decided to use the term “cuckoo” as an acceptable solution.

A new position for the randomly selected half of the cuckoo
group in the k-th iteration is determined:

x j
k = x j

k−1 +λσ

(
xb−x j

k−1

)
, (1)

where: j is the randomly selected cuckoo, xb is the position of
the best cuckoo, λ is the step size scaling factor [30], and σ

is the distribution probability density function for non-negative
random variables (Levy flight coefficient).

The value of the probability density function is calculated as:

σ =

√
c

2π

e
− c

2x j
k−1(

x j
k−1−xb

)1.5 , (2)

where c is the constant factor.
In the next stage of the proposed algorithm – (N/2) times,

where N is the number of cuckoos in the population – two cuck-
oos are randomly selected. The values of the objective function
for both cuckoos are compared, and the position of the better
cuckoo is determined. The best displacement (τ̂) of the worse
cuckoo in the direction of the better cuckoo is determined by the
use of the Hooke–Jeeves method. A new position of the worse
cuckoo is calculated by the following equation:

x2
k = x2

k + τ̂
(
x1

k−x2
k
)
, (3)

where x2
k is the position vector of the worse cuckoo, x1

k is the
position vector of the better quality cuckoo from a randomly
selected pair, respectively, and τ̂ is the length of the “optimal”
displacement of the worse cuckoo towards the better cuckoo,
determined by the Hooke–Jeeves method.

In the optimization procedure being developed, probability
pa, for the beginning stage of the optimization process, is taken
into consideration (only for the first 10 iterations). Probability
pa determines how many new cuckoos in random positions will
be created in the current iteration.

Moreover, in the proposed hybrid approach, a simple elitism
procedure is applied [31]. This strategy prevents the position of
the best cuckoo from changing in each iteration.

The block diagram of the thus developed hybrid optimization
procedure is presented in Fig. 1.

3. HYBRID CS VERSUS CLASSICAL CS
To compare the advantages and disadvantages of the proposed
hybrid CS optimization algorithm, comparative calculations
were executed for two analytical benchmark functions: (a) the
Matyas function, and (b) the Himmelblau function.

Matyas function has one global minimum equal to
fM(0,0) = 0, and is described by the formula below:

fM(x,y) = 0.26
(
x2 + y2)−0.48xy, (4)

where x and y are in the range of (–10, 10).
The Himmelblau function has four global minima equal to 0.

It is defined by the following equation:

fH(x,y) =
(
x2 + y−11

)2
+
(
x+ y2−7

)2
, (5)

where −6≤ x≤ 6 and −6≤ y≤ 6.
Optimization calculations for the classical CS procedure [30]

were made for the following parameters: number of nests equal
to n = 125, number of cuckoos N = 100 and pa = 0.25. For
the hybrid CS algorithm, the calculations were performed for
N = 100, pa = 0.15 and kmax = 50. The optimization process
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Fig. 1. Flow chart of an optimization procedure

was repeated 20 times for random starting cuckoo populations.
Performing a series of optimization calculations allows for sta-
tistical evaluation of the quality of the proposed algorithm.

Table 1 presents results from the best-adapted cuckoo in suc-
cessive iterations according to classical CS and Himmelblau
function. In successive columns, the values of coordinates x and
y, the difference ∆ f (x,y) between the value for the objective
function and global minima and the numbers of call functions
Nof are all listed.

From the comparison results presented in Table 2, it can be
concluded that the hybrid CS algorithm obtains better quality
results. It is worth noting that after 20 iterations a better value
of objective function was obtained for the classical CS proce-
dure. However, after 30 iterations much better computation re-
sults were obtained for the hybrid CS algorithm. The disadvan-
tage of the hybrid optimization algorithm is the distinctly higher
number of calls in the function.

Then, computations were performed for the Matyas function.
The convergence curves for the classical CS algorithm (green)
and the hybrid CS algorithm (red) for the best optimization pro-
cess were compared (see Fig. 2).

It can be observed that despite the worse starting positions
in cuckoos in the initial population, the hybrid method provides

Table 1
Course of the optimization process for CS

k x y ∆ f (x,y) Nof

1 2.8881171 2.45504721 3.710164 100

2 3.7677678 −1.9077475 1.825653 225

4 3.7453086 −1.8046252 1.495028 475

8 3.5913946 −1.8473621 0.003278 975

10 3.5913946 −1.8473621 0.002378 1225

20 3.5913946 −1.8473621 0.003278 2325

40 3.5909618 −1.8480482 0.002914 4525

50 3.5909618 −1.8480482 0.002914 5656

Table 2
Results for hybrid CS

k x y ∆ f (x,y) Nof

1 2.6948872 0.7289877 32.4437263 100

2 3.1861291 2.3086872 4.43066841 268

4 –2.8998311 3.0901732 0.3721568 592

8 3.0342150 1.8713965 0.2210426 1358

10 3.0001121 1.9497031 0.0418830 1850

20 3.0056238 2.0199493 0.0102512 3170

40 3.0013331 1.9949794 0.0003595 6290

50 3.0002560 1.9999081 0.0000021 7922

Fig. 2. Comparison of the convergence curves for both algorithms

better convergence. For the Matyas function, the hybrid CS al-
gorithm obtained better results after six iterations. Moreover,
the optimal solution for the hybrid CS was 0.000026 and for
classical CS it was 0.0009.

In order to perform a solid evaluation of the quality and re-
liability of both the optimization algorithms being compared, a
statistical analysis was carried out. Using the results of 20 runs
for both optimization procedures, the best, worst, average and
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standard deviations (SD) were determined for both test func-
tions. Results of the statistical analysis are given in Table 3.

Table 3
Results of statistical analysis

Classical CS Hybrid CS

fM fH fM fH

Best 0.000069 0.001441 0.000092 0.000002

Worst 0.059978 0.089610 0.008060 0.006309

Average 0.008318 0.009611 0.001545 0.000602

SD 0.015212 0.019985 0.002217 0.001537

According to the results presented in Table 3, it can be seen
that for both the analytical functions analyzed the classical
cuckoo search algorithm obtained better results only for the
Matyas function (best results from all runs of optimization pro-
cedure). It is worth noting that the hybrid CS algorithm ensures
better values of standard deviation in comparison to the classi-
cal CS algorithm.

In order to compare advantages of the hybrid CS (HCS) be-
ing developed with other heuristic algorithms, the calculation
has been made for following algorithms: (a) genetic algorithms
(GA), (b) particle swarm optimization (PSO), and (c) bat algo-
rithm (BA) [32]. The calculations have been executed for the
Himmelblau function. All optimization procedures (hybrid CS,
GA, PSO and BA) were started 20 times for random initial pop-
ulations. The results of statistical analysis are presented in Ta-
ble 4.

Table 4
Results of statistical analysis for selected heuristic algorithms

HCS GA PSO BA

Best 0.21E–04 4.50E–04 1.29E–05 6.76E–04

Worst 6.3E–03 73.6E–03 9.13E–03 80.3E–03

Average 0.6E–03 27.1E–03 1.77E–03 22.5E–03

SD 1.53E–03 23.9E–03 3.28E–03 29.4E–03

Based on the results presented in Table 4, it can be concluded
that the HCS algorithm allows to obtain better statistical values
than the other compared heuristic algorithms. Additionally, the
standard deviation for hybrid CS algorithm is the best among
the compared algorithms.

According to the author, hybrid algorithms can be interesting
tools in comparison to other nature-inspired algorithms.

4. OPTIMIZATION OF LINE-START PM SYNCHRONOUS
MOTOR

The hybrid procedure developed was added to the computer
software in order to optimize LSPMSM [33]. The software de-
veloped consists of two main parts: (a) the optimization proce-
dure, and (b) the mathematical model of the LSPMSM.

The optimization script and mathematical model of
LSPMSM were developed in Delphi Tiburón and Ansys
Maxwell, respectively. Various optimization procedures can be
used in the optimization module. The hybrid procedure devel-
oped was added to the computer software and the tested opti-
mization problem was solved.

The optimization problem consisted in searching the rotor
structure for the dimensions that ensure good functional param-
eters. The stator dimensions were adopted from earlier research
works [33]. The rotor has been described by five design vari-
ables describing the motor excitation system: x1 = r, x2 = g,
x3 = l, x4 = O1 and x5 = O2, where r is the distance between
poles, g and l are the permanent magnet thickness and length,
respectively, and O1 and O2 are the parameters responsible for
the location of the magnets (see Fig. 3).

Fig. 3. Rotor structure with marked design variables

The following stator dimensions were adopted during the
optimization process: (a) outer stator diameter Do = 154 mm,
(b) inner stator diameter Di = 94 mm, (c) stack length Li =
140 mm, (d) the number of slots Ns = 36, (e) stator yoke length
h jS = 16.2 mm, and (f) air gap length δ = 0.82 mm.

During the solution of the optimal designing problems of
line-start motors, especially LSPMSM, the parameters taken
into account in the objective function must be selected care-
fully. The authors point out [34] that the researchers often fo-
cus on including only the steady-state operation parameters or
transient parameters during start-up operation states. According
to the author’s experience, it is necessary to search for a com-
promise between both types of parameters. Taking into account
only the parameters’ steady-state operation or the parameter’s
transient operation leads to the deterioration of the parameters
of the other type [35].

A compromise objective function was adopted as an opti-
mality criterion. The description of objective function has been
taken into account for both types of parameters: (a) param-
eters related to energy consumption, and (b) parameters tied
to proper synchronizing ability. The objective function for i-th
cuckoo has the following form:

f i(x) =
((

η i(x)
η0

)(
cosi ϕ(x)

cos0 ϕ

))α

·
(

T i
80(x)
T80_0

)β

, (6)

where x = [r,g, l,O1,O2]
T is the vector composed of design

variables, η(x) and cosi ϕ(x) are the efficiency and power
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factor for i-th cuckoo, respectively, T i
80(x) is electromagnetic

torque at the speed equal to 0.8 of synchronous speed [36], η0,
cos0 ϕ and T80_0 are average values of efficiency, power factor
and electromagnetic torque calculated as average values from
several initial cuckoo populations, and α and β are the weight-
ing coefficients.

The α and β coefficients were determined on the basis of the
first three iterations of the optimization algorithm for random
positions of the cuckoo. Both coefficients were chosen using
a Microsoft Excel spreadsheet (64-bit version). The weighting
factor for steady state parameters was selected to obtain a prod-
uct (power factor and efficiency) greater than 75 for the first
three iterations of the optimization algorithm. Moreover, the
beta factor was chosen to guarantee T80_0 bigger than 12 Nm.

The optimization procedure was run 8 times for random ini-
tial cuckoo populations. The number of cuckoos in the popula-
tion was N = 30, the probability was pa = 0.1 and the maxi-
mum number of iterations was kmax = 20. The weighting coef-
ficients of the objective functions were assumed as α = 2 and
β = (2/3). The average values of functional parameters (η0,
cosϕ0 and T80_0) were calculated as an average from 10 runs of
the optimization software for the random positions of cuckoo in
the initial population. During optimization calculation, the fol-
lowing values of these parameters were adopted: η0 = 86.63,
cosϕ0 = 0.852 and T80_0 = 14.49. The results of computation
in the selected iterations are listed in Table 5.

Table 5
Results of LSPMSM optimization

k r l g O1 O2 η(x) cosϕ(x) T80(x)

[mm] [mm] [mm] [mm] [mm] [%] [–] [Nm]

1 3.98 20.17 2.87 16.8 16.66 89.57 0.863 13.83

3 3.35 25.79 2.70 18.7 8.13 89.89 0.880 15.76

5 3.93 21.23 2.75 16.6 12.10 91.08 0.894 16.53

8 3.55 37.85 3.48 18.6 14.08 92.12 0.981 15.64

10 3.93 21.82 2.66 16.6 17.10 91.06 0.925 17.76

11 3.93 21.54 2.88 16.5 16.86 90.63 0.934 17.62

12 3.93 21.28 2.93 16.6 17.10 90.10 0.952 17.54

13 3.93 21.23 2.95 16.6 17.10 90.08 0.954 17.53

15 3.93 21.23 2.95 16.6 17.10 90.08 0.954 17.53

20 3.93 21.23 2.95 16.6 17.10 90.08 0.954 17.53

It can be noted that the optimal solution was obtained af-
ter the 13-th iteration of the optimization process. The optimal
solution of the optimization process depends on the values of
weighting coefficients (α and β ) and also on the mean val-
ues of functional parameters in the initiation procedure (η0, and
T80_0) [37]. The obtained results of the calculations show that
the power factor and the value of electromagnetic torque at 80%
of synchronous speed are opposite criteria [38]. They also point

out that regardless of the iteration parameters r, O1 and O2 do
not change.

Next, the start-up process was computed for the optimal
structure of LSPMSM obtained from optimization. The load
torque was equal to 0.5 rated torque. The velocity waveform
during the start-up process is presented in Fig. 4.

Fig. 4. Velocity waveform for optimized motor

Next, the impact of the load torque on the motor electromag-
netic (functional) parameters, such as the line current and motor
efficiency, was analyzed. The calculation for the optimal values
of design variables has been executed with the use of Maxwell.
The 2D FEA has been employed to compute the value of ef-
ficiency and line current. The optimized LSPMSM has rated
power PN = 4 kW. The value of rated electromagnetic torque is
about 25.5 Nm.

Figure 5 illustrates the efficiency characteristic for an optimal
solution (LSPMSM) as a function of electromagnetic torque.

Fig. 5. Characteristic of η = f (T ) for optimal LSPMSM

The efficiency characteristic in the function of electromag-
netic torque is similar to that of the classical induction motor.
The maximum value of the efficiency is obtained for load torque
smaller than the rated torque.

The characteristic of line current as a function of output
torque for the optimal solution is presented in Fig. 6.
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Fig. 6. Characteristic of I = f (T ) for optimal LSPMSM

Next, the characteristic of the power factor as a function
of electromagnetic torque for the optimal solution was deter-
mined. The chart of cosϕ = f (T ) is presented in Fig. 7.

Fig. 7. Characteristic of cosϕ = f (T ) for optimal LSPMSM

In the case of the line current, a shape similar to V-curve
can be observed. The better values of efficiency and the power
factor in the optimized LSPMSM decrease the line current for
the same loading torque. This phenomenon was described in
detail in [39].

5. CONCLUSIONS
The computer software supporting the process of optimal de-
signing of the LSPMSM was developed. A proposed hybrid
optimization procedure was employed in the optimization mod-
ule. The hybrid procedure is a combination of (a) a heuris-
tic (cuckoo search) algorithm, and (b) a deterministic (Hooke–
Jeeves) method.

The optimization algorithm developed has better accuracy in
comparison with the classical CS algorithm. Moreover, it al-
lows for determining solutions with better quality. The results
obtained show that the algorithm developed is characterized by
better values of mean and standard deviation. Also, the hybrid
CS procedure allows to achieve a better convergence curve for
the selected test function.

The proposed hybrid CS algorithm showed high precision
during searching for a global extremum in the Himmelblau

function. The present results of comparative calculations for
selective optimization algorithms (HCS, GA, PSO and BA)
proved that the developed  algorithm  as good convergence and
reliability and can be successfully applied for the optimal de-
sign of electromagnetic devices.

The main disadvantage of the hybrid CS algorithm is the
large number of calls of the objective function. A single call
of the objective function consists in determining the distribu-
tion of the electromagnetic field distribution and calculating all
components of the objective function. Therefore, the algorithm
should be used for the optimization of electromagnetic devices
described by simplified models, i.e. models with lumped pa-
rameters.

On the other hand, the proposed hybrid CS algorithm can
provide acceptable results faster (see convergence curve in
Fig. 2). Obtaining a result close to the optimal one after ex-
ecuting a smaller number of iterations in the case of time-
consuming field models describing phenomena in an optimized
motor allows for significant reduction of the total computation
time. If a more accurate optimal solution is needed, it is pos-
sible to perform the optimization process on a reduced range
of decision variables near to optimal point from the previous
optimization process.
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