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A study on the influence of particle size  
on the identification accuracy of coal and gangue

Introduction

Coal is one of the primary energy sources in China, and it is also a basic energy resource 
to guarantee the development of our economy (Li et al. 2019). Coal and gangue separation 
can not only improve the quality of coal (Sun et al. 2022) and reduce transportation costs 
but can also enable the use of gangue for underground filling and making gangue bricks. 
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Traditional methods of gangue selection have low efficiency, high water consumption, en-
vironmental pollution, and high labor intensity (Hu et al. 2022). With the development of 
artificial intelligence, intelligent sorting has gradually replaced traditional gangue selection. 
Intelligent sorting has high efficiency, low labor intensity, environmental friendliness, re-
duced staff, and improved efficiency, which promotes the development of intelligent mines 
(Kazanin et al. 2021; Varnavskiy et al. 2022). At present, there are two main ways of in-
telligent sorting: 1. Image recognition technology based on visible light in which a CCD 
industrial camera is used to image raw coal on the conveyor belt; 2. Radiation-based image 
recognition technology is used to reflect raw coal on the conveyor belt with γ and X rays. 
γ and X-rays can be identified by different degrees of radiation absorption or attenuation in 
coal and gangue (Zhang and Liu 2018; Robben et al. 2020), but this kind of equipment is 
radioactive (Sun et al. 2021). CCD industrial cameras use no radiation and low cost, so they 
are widely used.

In recent years, domestic and foreign scholars have done a lot of research on the ex-
traction of coal gangue features and the influence of the external environment on the coal 
gangue identification rate.

In terms of the feature extraction of coal and gangue, Reddy, K.g.R. et al. used the tra-
ditional threshold segmentation method to study the gray characteristics of coal and coal 
gangue images and proposed a histogram threshold-based model for the separation of coal 
gangue from coal (Reddy and Tripathy 2013). Snehamoy, C. et al. extracted color, mor-
phology, and texture features from the images and classified the rock types using an SVM 
model (Snehamoy et al. 2013). Alpana et al. analyzed the color and texture characteristics of 
coal and proposed an accurate, timely, and cost-effective automated characterization system 
based on machine learning (Alpana et al. 2020). Tripathy, D.P. et al. improved the recogni-
tion accuracy by combining color and texture features (Tripathy and Reddy 2017). The above 
scholars only studied the gray-scale texture features of coal gangue and did not integrate the 
surface gradient information of coal gangue with gray-scale information.

In terms of exploring the influence of external factors on the recognition of coal and 
gangue, Zhang et al. analyzed the influence on recognition efficiency under different water 
temperature and liquid intervention (Zhang et al. 2021). Eshaq, R.M.A. et al. verified that the 
infrared image is superior to the visible image under conditions of different temperatures, 
different illumination, and different areas of coal and gangue (Eshaq et al. 2020). Li et al. 
studied changes in the gray level and texture features of coal and gangue images under 
different surface water contents (Li et al. 2022). Wang et al. studied the influence of surface 
moisture of coal and gangue on the feature extraction and recognition accuracy of coal and 
gangue and proposed a coal and gangue identification method based on dielectric features 
and geometric constraints (Wang et al. 2021). The above scholars only studied the influence 
of the external environment on the features and recognition accuracy of coal and gangue but 
ignored the influence of the particle size change of coal and gangue itself.

On the one hand, the above kinds of literature only extract the gray-scale texture fea-
tures of coal and gangue, ignoring the different effects of gradient information fluctuation. 
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On the other hand, the influence of coal and gangue particle size variation on the recognition 
accuracy is not considered. Therefore, in this paper, the features of different particle sizes 
are extracted from the gray level, gray level co-occurrence matrix, and gray level gradient 
co-occurrence matrix, and the optimal feature combination of each particle-size range is 
obtained. The influence of particle-size variation on recognition accuracy was studied under 
the same external conditions. Through experiments, it is found that when the training model 
has a single particle-size range, the identification accuracy of each particle-size range will 
be low. By broadening the training model of the particle-size range, the identification accu-
racy of coal and gangue in each particle-size range is improved. The method proposed in 
this paper can effectively improve the performance of the identification of coal and gangue 
sorting equipment with a single particle-size range, which has a guiding role in practical 
applications.

1. Experimental platform and image acquisition

The coal and gangue samples in this experiment are from Zhulinshan Mine, Jincheng 
City, Shanxi Province, which mainly produces anthracite with a particle size distribution 
of 0~100 mm. In this paper, the particle size range was divided into 20 mm intervals. Coal 
and gangue are divided into five particle size ranges by vernier caliper measurement, which 
are 0~20 mm, 20~40 mm,40~60 mm, 60~80 mm, and 80~100 mm. Partial coal and gangue 
samples are shown in Figure 1.

The experimental set up includes a feeder, belt conveyor, Hikvision CCD industrial cam-
era, blue background plate, and LED light.

The resolution of the HikVision CCD industrial camera is 2448×2048, and the number 
of frames collected is 35 fps. The industrial camera is connected to a computer through 
USB 3.0 to capture and store images. Coal and gangue are transported by belt conveyor and 
discharged into a blue background plate industrial camera for real-time image collection. 
Through the LED light supplement light, the light intensity is constant at 1600 lux, and the 
conveyor-belt speed is 0.3 m/s.

Fig. 1. Partial elements of coal and gangue

Rys. 1. Fragmenty węgla i skały płonnej
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In each particle size range, 200 pieces of coal and 200 pieces of gangue are analyzed. 
A total of 2,000 pieces of coal and gangue in the five groups with particle size range are ana-
lyzed. A total of 1,500 pieces of coal and gangue are taken as the training set, and the other 
500 pieces are taken as the test set. The collected images of some different particle sizes are 
shown in Figure 2.

2. Image processing

2.1. Image segmentation

In the process of image acquisition, uneven illumination occurs in the background due to 
non-parallel light irradiation, as shown in Figure 3.

As shown in Figure 4, OTSU global threshold segmentation can find a segmentation 
threshold by the maximum between-class variance. However, if the illumination is not 

Fig. 2. Experimental platform and coal and gangue of different particle sizes

Rys. 2. Platforma doświadczalna oraz węgiel i skała płonna o różnej wielkości cząstek

Fig. 3. Dark area

Rys. 3. Ciemny obszar
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uniform in the image, it is easy to make the gray distribution histogram of coal and gangue 
images in the dark area without forming a double peak, failing traditional OTSU segmen-
tation.

To solve the problem of uneven illumination, this paper proposes a block OTSU thresh-
old segmentation method. In this method, the image is divided into multiple image blocks, 
and each image block is segmented by OTSU threshold segmentation. The uneven illumi-
nation is weakened in each image block, and the background and target gray histogram 
have obvious double peaks. The acquired image is divided into 5×5 blocks, and the OTSU 
method is used to calculate the segmentation threshold for each image block. Due to some 
image blocks only containing a background, it is necessary to calculate the average gray 
difference formula (1) between classes of each image block to judge whether there is a target 
in the image block and to perform OTSU threshold segmentation. If there is a target, OTSU 
threshold segmentation is performed. If there is no target, all of the pixels of the segmented 
image is set to zero.

 ( ) ( )1 2d d T d T∆ = −  (1)

ªª Δd   – average gray difference between classes, 
T   – segmentation threshold, 
d1(T)  – average gray value of the background image when the threshold is T, 
d2(T)  – average gray value of the target image when the threshold is T.

Fig. 4. Histogram of gray distribution

Rys. 4. Histogram rozkładu szarości
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As shown in Figure 5, Δd of the objects is greater than 20, and Δd of the background is 
less than 20. In this paper, the average gray difference between classes is selected as 20 to 
distinguish the two image blocks with pure backgrounds and objects. Finally, the image 
block with the target is binarized.

By comparing the Canny (Kalbasi et al. 2020), LOg (Mallick et al. 2014; Ansari et 
al. 2017), OTSU global threshold (Zou et al. 2020) segmentation methods with the block 
OTSU threshold segmentation method, it can be seen from Figure 6 that Canny and LOg 

Fig. 5. Information diagram of image block segmentation

Rys. 5. Diagram informacyjny segmentacji bloków obrazu

Fig. 6. Comparison of different segmentation methods

Rys. 6. Porównanie różnych metod segmentacji
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cannot segment the edge of each piece of coal and gangue well, and it is almost impossible 
to segment small targets. The OTSU global threshold segmentation method is affected 
by uneven illumination, and the large area background is segmented into the foreground 
target. The block OTSU threshold segmentation method adopted in this paper has the best 
effect.

As shown in Figure 7, channel B is extracted from the collected RgB image (a) to obtain 
picture (b). Median filtering is used to denoise image (b), and the denoised image is segment-
ed by the OTSU threshold to obtain a binarized image (c). Based on the binarization image, 
the original image background is removed by mask processing, and the object image (d) is 
obtained without the background. After obtaining the target without the background, feature 
extraction can be carried out on a single target.

3. Feature extraction

3.1. Texture features

3.1.1. gray gradient co-occurrence matrix

A gray level gradient co-occurrence matrix (ggCM) is a combination of the gray level 
of the image and gradient information (Hong 1984; Luo et al. 2022). The image gray level 
value can describe the specific content of the image, and the image gradient value can pro-
vide image contour edge information. Therefore, the gray gradient co-occurrence matrix 
can display the feature information of the image texture more comprehensively.

The elements h (x, y) in the gray gradient co-occurrence matrix H are defined by the total 
number of pixels with a gray value of x and a gradient value of y contained in the normalized 
gray image F (i, j) and the normalized gradient image G (i, j). The elements in the co-occur-
rence matrix H are obtained by the statistics x = F (i, j) and y = G (i, j) in the normalized gray 
image F (i, j) and gradient image G (i, j). To reduce the computational burden, the gray level, 
gradient, and gray level gradient co-occurrence matrix should be normalized.

Fig. 7. Foreground image extraction 
a – RGB image, b – B-channel image, c – binarized image, d – image without background target

Rys. 7. Ekstrakcja obrazu pierwszego planu 
a – obraz RGB, b – obraz z kanałem B, c – obraz zbinaryzowany, d – obraz bez docelowego tła
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The normalized gray image is defined as:

 
( )

( ) ( )
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ªª f(i, j) – gray value of the original image at point (i, j),
F(i, j) – gray value of the transformed image at point (i, j),
fmax – maximum gray value of the original image,
Lgy  – maximum gray value after normalization. 

In this paper, Lgy = 16 (Luo et al. 2022).
The normalized gradient image is defined as:
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ªª g(i, j) – gradient value of the original image at point (i, j),
G(i, j) – gradient value of the transformed image at point (i, j),
gmax – maximum gradient value of the original image,
Lgt  – normalized maximum gradient value. 

In this paper, Lgt = 16 (Luo et al. 2022), g(i, j) is obtained by the average sum of the 
gradient method of the Sobel operator in horizontal and vertical directions, as shown in 
the equation:

 ( ) 2 2, x yg i j g g= +  (4)

 ( ) ( )1, ,xg f i j f i j= + −  (5)

 ( ) ( )1, ,yg f i j f i j= + −  (6)

The logarithms of pixels containing x = F(i, j) and y = G(i, j) in the normalized gray ma-
trix F(i, j) and the normalized gradient matrix G(i, j) were counted.

The normalized gray gradient co-occurrence matrix is:
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The gray gradient co-occurrence matrix contains small gradient advantages (T1), big 
gradient advantages (T2), gray level distribution inhomogeneity (T3), gradient distribution 
inhomogeneity (T4), energy (T5), average gray level (T6), average gradient (T7), gray mean 
square error (T8), gradient mean square error (T9), relevant (T10), gray entropy (T11), gra-
dient entropy (T12), mixing entropy (T13), inertia (T14) and deficit moment (T15). A total of 
fifteen features were extracted.

3.1.2. gray level co-occurrence matrix

Use of a gray level co-occurrence matrix (gLCM) is a common method to describe the 
texture which reflects the texture condition through the spatial correlation features of the 
gray level in a certain region. The gray level co-occurrence matrix can reflect the compre-
hensive information of the image gray level in the direction, adjacent interval, and change 
amplitude. Haralick et al. proposed a total of fourteen texture features in the gray-level 
co-existence matrix (Haralick et al. 1973). In this paper, four features including energy, 
entropy, contrast, and correlation were selected as texture features (Li et al. 2022), and the 
specific formula is shown in Table 1.

In this paper, the distance d = 1 is selected to extract features from the four directions 
of 0°, 45°, 90° and 135° (Zhang et al. 2017), and the means and standard deviations of the 

Table 1.  gLCM feature calculation formula

Tabela 1.  Formuła obliczania cech GLCM

Feature name Computational Formula

Energy ( )
1 1

2

0 0
, , ,

Z Z

i j
A p i j d

− −

= =
= θ∑ ∑

Entropy ( ) ( )
1 1

2
0 0

, , , log , , ,
Z Z

i j
E p i j d p i j d

− −

= =
= − θ θ∑ ∑

Contrast ( )
1 1 1

2 2

0 0 0
, , ,

Z Z Z

n i j
C n p i j d

− − −

− = =

 
 = θ
  

∑ ∑ ∑

Correlation
( )

1 1
2

1 2
0 0

1 2

, , ,
Z Z

i j
ijp i j d

R

− −

= =
θ −µ µ

=
σ σ

∑ ∑

Where Z is the gray level series, P (i, j, d, θ) represents the number of pixel pairs in direction θ with adjacent 
distance d; μ1 is the mean value of variable i; μ2 is the mean value of variable j; σ1 is the variance of variable i; σ2 
is the variance of variable j.
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four directions are taken as the basis for analysis and recognition. The mean energy (T16), 
the standard deviation of energy (T17), the mean entropy (T18), the standard deviation of 
entropy (T19), the mean contrast (T20), the standard deviation of contrast (T21), the mean 
correlation (T22) and the standard deviation of correlation (T23).

3.2. Gray level features

The gray level feature is the most intuitive reflection of the difference between coal and 
gangue. The surface of coal is black, and there is a reflection phenomenon of mirror body 
tissue after lighting, and the gray level is low. The surface of gangue is gray white, not re-
flective, the gray level is higher. In this paper, the mean (T24) and variance (T25) of the gray 
level of coal and gangue are selected as the gray level features (He et al. 2023). The gray 
mean m and gray variance σ are described as:

 
( )

1 1

1 ,
N M

i j
m q i j

W = =
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 (8)
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Where W is the number of non-zero image pixels, N and M are the length and width of 
the image, q(i, j) is the gray value of image pixels.

4. Feature selection and classifier

4.1. Relief feature selection

Because image feature extraction takes a lot of time and the importance of each feature 
to classification is different, the less important features should be eliminated. Relief feature 
selection assigns different weights to features according to the relevant statistics of each fea-
ture, which can effectively eliminate redundant features. Compared with traditional filtering 
feature-selection methods, such as Information gain (Ig), PCA dimensionality reduction, 
the relief feature selection method has a linear increase in running time with the increase 
of sampling times and the number of original features (He et al. 2022; Dou et al. 2019). 
Therefore, the relief method has high operational efficiency and accurate results (Urbano- 
wicz et al. 2018).



119Li et al. 2023 / Gospodarka Surowcami Mineralnymi – Mineral Resources Management 39(1), 109–129

5. Experimental analysis

5.1. Experimental parameter configuration

The training and testing in this study were run on a computer with an AMD Ryzen 
5 5600X 6-Core CPU and an nvidia geForce RTX3060 gPU. MatlabR2020b was installed 
and used as the programming language to implement this study.

5.2. Classifier selection

Five groups of coal and gangue images with different particle sizes were formed into 
a 1500×25 matrix dataset, and the dataset was randomly sorted. The machine-learning clas-
sifier types were compared and analyzed by using the five-fold cross-validation method. 
Common classifier models include SVM with different kernel functions, K-nearest neighbor 
(Knn), Decision TREES and naive Bayes.

To ensure the stability of recognition accuracy of each classifier model, the average val-
ue of each classifier model was repeated five times. During the experiment, the recognition 

Fig. 8. Recognition accuracy of each classifier

Rys. 8. Dokładność rozpoznawania każdego klasyfikatora
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accuracy of each classifier model was counted and the bar chart was drawn for comparative 
analysis. The results are shown in Figure 8.

According to Figure 8, the recognition accuracy of the SVM classifier is higher than 
that of other classifier models and the quadratic SVM has the highest recognition accuracy 
among SVM classifiers. Therefore, quadratic SVM will be used in this paper as a classifier 
for coal and gangue identification in each particle-size range.

Fig. 9. Flow chart of recognition rate fluctuation when the number of features is two

Rys. 9. Schemat przepływowy fluktuacji współczynnika rozpoznawania, gdy liczba cech wynosi dwa

Fig. 10. Fluctuation of recognition accuracy

Rys. 10. Fluktuacja dokładności rozpoznawania
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5.3. The influence of particle-size change on recognition rate

From 0~20 mm, 20~40 mm, 40~60 mm, 60~80 mm, and 80~100 mm, each particle 
size range of 60 data selected, a total of 300, the number of features increased from 1 to 25, 
each additional feature formed a training model, a total of 25 models. The 300 data with 
particle sizes ranging from 0 to 20 mm were increased from 1 to 25, and each additional 
feature formed a test set. The same was true for other particle-size ranges. Each model is 
trained and tested to obtain the recognition accuracy of five particle-size ranges (, , , 
, ), and the maximum difference of the five recognition accuracies () is calculated, 
which is the fluctuation of the recognition rate. Figure 9 shows the flow chart of recognition 
rate fluctuation when the number of features is two. Figure 10 shows the fluctuation of the 
recognition rate.

As can be seen from Figure 10, when the number of feature inputs is 11, the fluctuation 
is still 3.7% and shows a large fluctuation. It can be seen that the change in particle size has 
an impact on recognition accuracy.

5.4. Feature selection

5.4.1. Characteristic weights of coal and gangue with different particle sizes

The twenty-five gray level and texture features of coal and gangue images in each par-
ticle size range are extracted. Set 1 as the label of coal and 2 as the label of gangue. Some 
feature extraction results are shown in Table 2.

Table 2.  Partial feature extraction results

Tabela 2.  Wyniki częściowej ekstrakcji cech

Feature
Label

T1 T2 T16 T18 T21 T23 T24 T25

1 0.9765 0.0662 0.9354 0.00014 0.2281 0.0031 75.88 192.48

1 0.9651 0.1319 0.9167 0.00017 0.3238 0.0049 99.96 450.57

1 0.9630 0.1121 0.9048 0.00018 0.3395 0.0051 82.53 344.02

1 0.9640 0.1106 0.9035 0.00021 0.3664 0.0057 95.21 504.75

2 0.9665 0.0787 0.9060 0.00018 0.2981 0.0037 105.52 515.88

2 0.9792 0.0563 0.9387 0.00019 0.2201 0.0032 104.90 337.47

2 0.9760 0.0579 0.9300 0.00015 0.2376 0.0030 107.76 403.77

2 0.9742 0.0648 0.9241 0.00019 0.2648 0.0036 113.69 487.63
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In MatLab R2020b, the weight of coal and gangue features of each particle-size range 
is calculated by relief feature selection, and the weight curve of each feature is drawn, as is 
shown in Figure 11.

As can be seen from Figure 11, the arrangement of feature weights with different particle 
sizes is different, and the arrangement order is shown in Table 3.

Table 3.  Weight sizes of different particle sizes

Tabela 3.  Wielkości wagowe cząstek o różnych rozmiarach

Particle-size range Weight Size Order

0~20 mm T24 > T2 > T7 > T10 >T6 > T9 > T21 > T14 > T8 > T17 > T25 > T15 > T5 > 
> T16 > T20 > T11 > T22 > T12 > T13 > T18 > T1 > T23 > T19 > T3 > T4

20~40 mm T21 > T24 > T2 > T7 > T10 > T23 > T20 > T17 > T6 > T9 > T8 > T22 > T14 >  
> T25 > T19 > T12 > T15 > T5 > T16 > T3 > T18 > T1 > T13 > T4 > T11

40~60 mm T24 > T2 > T7 > T10 > T21 > T6 > T14 > T9 > T19 > T8 > T25 > T20 > T12 >  
> T23 > T17 > T18 > T22 > T1 > T15 > T16 > T5 > T13 > T11 > T3 > T4

60~80 mm T24 > T2 > T7 > T10 > T14 > T21 > T25 > T8 > T23 > T9 > T20 > T6 > T17 > 
> T12 > T19 > T22 > T18 > T1 > T13 > T11 > T5 > T15 > T16 > T4 > T3

80~100 mm T24 > T21 > T2 > T7 > T10 > T20 > T19 > T12 > T18 > T17 > T9 > T23 > T1 > 
> T13 > T14 > T8 > T25 > T6 > T11 > T4 > T16 > T5 > T15 > T3 > T22

Fig. 11. The weight of each feature with different particle sizes

Rys. 11. Masa każdej cechy przy różnych rozmiarach cząstek
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5.4.2. The optimal characteristic combination of coal  
and gangue with different particle sizes

According to 5.4.1, the feature weights of coal and gangue with different particle sizes 
are in a different order. The features of coal and gangue with each particle-size range are 
increased from large to small, forming 300×1, 300×2 ... for 300×25 matrices, the 50% fold 
cross-validation method was used, and the recognition accuracy of the number of features 
in each particle-size range from 1 to 25 was counted. To reduce the fluctuation of operating 
results and ensure the stability of experimental verification, the above process was repeated 
five times for each particle-size range, and the final results were taken as the optimal average 
value, as shown in Figure 12.

As can be seen from Figure 12, the optimal characteristic combination of coal and 
gangue is different due to the change in particle size. When the recognition accuracy reach-
es the optimum, the continuous increase of features will lead to a decrease in recognition 
accuracy. Therefore, the optimal number of features from 0 mm to 20 mm is 6, which are 
T24, T2, T7, T10, T6 and T9. The optimal number of features from 20 mm to 40 mm is 7, 
which are T21, T24, T2, T7, T10, T23 and T20. The optimal number of features from 40 to 
60 mm is 5, which are T24, T2, T7, T10 and T21. The optimal number of features from 
60 mm to 80 mm is 5, which are T24, T2, T7, T10 and T14. The optimal number of features 
from 80 mm to 100 mm is 13, which are T24, T21, T2, T7, T10, T20, T19, T12, T18, T17, T9,  
T23 and T1. 

Fig. 12. Optimal combination of features with different particle sizes

Rys. 12. Optymalna kombinacja cech przy różnych wielkościach cząstek
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5.5. Particle-size identification experiment

The coal gangue with different particle sizes was identified by particle sizes through 
setting experiments, as shown in Table 4. The average recognition rate is 97.2%.

To improve the recognition accuracy of different particle sizes, experiments were set to 
broaden the particle size range of the training set to 0~100 mm, as shown in Table 5. The ex-
perimental results show that the recognition accuracy of each particle size range is improved 
and the average recognition accuracy reaches 99.2%.

Therefore, increasing the training particle-size range of the training set can effectively 
improve the recognition accuracy of coal and gangue with different particle sizes, and the 
maximum increase is 4%. If the particle-size range of the training set is the same as that of 
the test set, the recognition accuracy of the test set is low.

Table 4.  Particle size identification accuracy

Tabela 4.  Dokładność identyfikacji wielkości cząstek

Training Set Test Set Recognition accuracy

300×6 (0~20 mm) 100×6 (0~20 mm) 97%

300×7 (20~40 mm) 100×7 (20~40 mm) 97%

300×5 (40~60 mm) 100×5 (40~60 mm) 96%

300×5 (60~80 mm) 100×5 (60~80 mm) 98%

300×13 (80~100 mm) 100×13 (80~100 mm) 98%

Table 5.  Particle size identification after broadening the training set particle-size range

Tabela 5.  Identyfikacja wielkości cząstek po rozszerzeniu zakresu wielkości cząstek w zbiorze uczącym

Training Set Test Set Recognition accuracy

1500×8 (0~100 mm) 100×8 (0~20 mm) 199%

1500×8 (0~100 mm) 100×8 (20~40 mm) 100%

1500×8 (0~100 mm) 100×8 (40~60 mm) 100%

1500×8 (0~100 mm) 100×8 (60~80 mm) 198%

1500×8 (0~100 mm) 100×8 (80~100 mm) 199%
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6. Experimental verification

To verify the reliability of the above experiments by changing the extent of broadening 
the particle-size range of the training set , the 0~100 mm particle-size range was divided 
into the 0~40 mm particle size range and the 40~100 mm particle size range, and the train-
ing set with 600×8 and 900×8 matrices was composed. The 100×8 test sets of 0~20 mm, 
20~40 mm, 40~60 mm, 60~80 mm and 80~100mm were classified, and the accuracy of 
training and recognition in a single particle size range was compared with Table 4. This is 
shown in Figure 13. 

As can be seen from Figure 13, the recognition accuracy after broadening the particle 
size range of the training set is higher than that of a single particle size range, and the max-
imum increase is 3%. Therefore, broadening the particle size range of the training set is an 
effective method to improve the recognition accuracy of a single particle size range.

Conclusions

The difference in the optimal feature combination of different particle sizes was studied. 
The fluctuation of recognition accuracy caused by the change in particle size was studied. 
In addition, methods to improve the accuracy of coal and gangue identification in a single 
particle-size range are proposed. The specific conclusions are as follows:

1. The optimal feature combination of coal and gangue with different particle-size rang-
es is different. Change of particle size is a key factor affecting the recognition rate. 

Fig. 13. Experimental verification diagram

Rys. 13. Schemat weryfikacji eksperymentalnej
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The influence of particle-size change of coal gangue should be considered in the rec-
ognition technology based on visible light technology. The fluctuation of recognition 
accuracy due to the change of particle size gradually decreases with the increase of 
the number of features.

2. The size range of the training set is broadened and the maximum improvement of 
the recognition accuracy of particle size is 4%, and the average recognition accuracy 
is 99.2%. Therefore, for equipment sorting coal and gangue in a certain single par-
ticle-size range, materials that exceed the upper and lower limits of the particle-size 
range treated by the equipment should be introduced to train the identification model 
in order to improve the identification performance of the equipment.
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A study on the Influence of PARtIcle sIze on the 
IdentIfIcAtIon AccuRAcy of coAl And GAnGue

K e y w o r d s

particle size, gray feature, texture feature, support vector machine,  
coal and gangue identification

A b s t r a c t

In order to explore the impact of coal and gangue particle size changes on recognition accuracy 
and to improve the single particle size of coal and gangue identification accuracy of sorting equip-
ment, this study established a database of different particle sizes of coal and gangue through image 
gray and texture feature extraction, using a relief feature selection algorithm to compare different par-
ticle size of coal and gangue optimal features of the combination, and to identify the points and parti-
cle size of coal and gangue. The results show that the optimal features and number of coal and gangue 
are different with different particle sizes. Based on visible-light coal and gangue separation technolo-
gy, the change of coal and gangue particle size cause fluctuations in the recognition accuracy, and the 
fluctuation of recognition accuracy will gradually decrease with increases in the number of features. 
In the process of particle size classification, if the training model has a single particle size range, the 
recognition accuracy of each particle size range is low, with the highest recognition accuracy being 
98% and the average recognition rate being only 97.2%. The method proposed in this paper can 
effectively improve the recognition accuracy of each particle size range. The maximum recognition 
accuracy is 100%, the maximum increase is 4%, and the average recognition accuracy is 99.2%. 
Therefore, this method has a high practical application value for the separation of coal and gangue 
with single particle size.

BAdAnIE wPływu wIElkośCI CząsTEk nA dokłAdność IdEnTyFIkACjI  
węGlA I skAły PłonnEj

S ł o w a  k l u c z o w e

wielkość cząstek, cecha szarości, cecha tekstury, maszyna wektorów pomocniczych,  
identyfikacja węgla i skały płonnej

S t r e s z c z e n i e

W celu zbadania wpływu zmian wielkości cząstek węgla i skały płonnej na dokładność rozpo-
znawania oraz poprawienia dokładności identyfikacji pojedynczych cząstek węgla i skały płonnej 
przez urządzenia sortujące, w ramach tej pracy utworzono bazę danych różnych rozmiarów cząstek 
węgla i skały płonnej za pomocą obrazów szarych i ekstrakcję cech tekstury przy użyciu algorytmu 
wyboru cech reliefowych w celu porównania różnych rozmiarów cząstek węgla i skały płonnej przy 



129Li et al. 2023 / Gospodarka Surowcami Mineralnymi – Mineral Resources Management 39(1), 109–129

optymalnych cechach kombinacji oraz identyfikacji punktów i wielkości cząstek węgla i skały płon-
nej. Wyniki pokazują, że optymalne liczby cech węgla i skały płonnej są różne dla różnych rozmia-
rów cząstek. W oparciu o technologię separacji węgla i skały płonnej w świetle widzialnym, zmiana 
wielkości cząstek węgla i skały płonnej powoduje fluktuacje dokładności rozpoznawania, a te z kolei  
będą stopniowo zmniejszać się wraz ze wzrostem liczby cech. W procesie klasyfikacji wielkości 
cząstek, jeśli model uczący ma jeden zakres wielkości cząstek, dokładność rozpoznawania każdego 
zakresu wielkości cząstek jest niska, przy czym najwyższa dokładność rozpoznawania wynosi 98%, 
a średni wskaźnik rozpoznawania wynosi tylko 97,2%. Metoda zaproponowana w tym artykule może 
skutecznie poprawić dokładność rozpoznawania każdego zakresu wielkości cząstek. Maksymalna 
dokładność rozpoznawania wynosi 100%, maksymalny wzrost to 4%, a średnia dokładność rozpo-
znawania to 99,2%. Dlatego ta metoda ma dużą praktyczną wartość użytkową do oddzielania węgla 
i skały płonnej według rozmiaru pojedynczej cząstki.
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