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Dynamical properties of a modified chaotic Colpitts
oscillator with triangular wave non-linearity

Rasappan SURESH, Kumaravel SATHISH KUMAR, Murugesan REGAN,
K.A. NIRANJAN KUMAR, R. NARMADA DEVI and Ahmed J. OBAID

The purpose of this paper is to introduce a new chaotic oscillator. Although different chaotic
systems have been formulated by earlier researchers, only a few chaotic systems exhibit chaotic
behaviour. In this work, a new chaotic system with chaotic attractor is introduced for triangular
wave non-linearity. It is worth noting that this striking phenomenon rarely occurs in respect of
chaotic systems. The system proposed in this paper has been realized with numerical simulation.
The results emanating from the numerical simulation indicate the feasibility of the proposed
chaotic system. More over, chaos control, stability, diffusion and synchronization of such a
system have been dealt with.

Key words: chaos, Colpitts oscillator, Lyapunov exponent, diffusion, stability, synchroniza-
tion, triangular wave non-linearity

1. Introduction

The study of chaotic dynamical systems is drawing the attention of the re-
searchers in the recent times. Research on a chaotic system with chaotic attractor
is posing several challenges thereby making the study quite interesting.
A non-linear dynamical system exhibiting complex and unpredictable behav-

ior is called chaotic system [1]. The parameter values are varying with range and
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the sensitivity depends on initial conditions. These are the remarkable proper-
ties [2] of chaotic systems. Sometimes, the chaotic systems are deterministic [3,4]
and they have long-term unpredictable behavior [5, 6].
While chaotic systems are highly sensitive, their sensitivity depends on their

initial conditions. The chaotic nature is one of the qualitative [7, 8] properties of
a dynamical system [9, 10].
The controlling of the chaotic systemsmay be accomplished in threeways such

as stabilization [11,12] of unstable periodic motion “contained” in the chaotic set,
suppression of chaotic behavior by external forcing like periodic noise, periodic
parametric perturbation and algorithm of various automatic control like feedback
[13, 14], backstepping [15–18], sample feedback, time delay feedback, etc.
There exist two ways for the application of controls in a chaotic system. The

first one is the change of attractor of the system. The second one is the change in
the point position of the phase space for the system which is a constant value in
its parameter.
A continuous, repeated and alternating wave production without any input is

an oscillator. Converting power supply to an alternating current signal is one of
the primary properties of oscillators. The signal of feedback containing a pair of
coils and an inductive divider in the server is called Colpitts oscillator [19, 20].
Due to some parametric change and the variation of input, the chaotic nature may
occur in Colpitts oscillators.
In this paper, a new chaotic Colpitts oscillator is proposed. It is a modified

formof the earlier version of Colpitts oscillators. In section 2, themodified formof
Colpitts oscillator [21–23] is presented with the formulation of the mathematical
model. In addition, invariant property, equilibrium point and Lyapunov exponents
[24–27] are investigated. In section 3, adaptive backstepping technique [28] is
explained for the proposed system. In section 4, a non linear feedback system is
established. The control strategy of backstepping is employed to analyze the non
linear feedback system in section 5. Finally, the numerical simulation [29–32] is
upheld for the hypothetical outcomes.

2. The mathematical model of chaotic Colpitts oscillator

The depiction of simplified illustrative diagram formodifiedColpitts oscillator
is undertaken in Figure 1. In addition to Electronic devices, communication
systems also have wide usage of the Colpitts oscillator. It is a single-transistor
implementation of a sinusoidal oscillator.
The following are the hypotheses for simplifying the extensive simulation of

the complete circuit model.
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• The base-emitter(B-E) driving point(V-I) characteristic of the 𝑅𝐸 with tri-
angular Wave function is

𝐼𝐸 = 𝑓 (𝑉𝐵𝐸 ) = 𝐼𝑆

[
2𝑎
𝜋
sin−1

(
sin

(
2𝜋
𝑝
(𝑥3)

))]
,

and 𝐼𝐸 = 𝑓 (𝑉𝐵𝐸 ) = 𝐼𝑆

[
2𝑎
𝜋
sin−1

(
sin

(
2𝜋
𝑝
(𝑥1)

))]
,

where 𝐼𝑆 is the emitter current (inverse saturation current), 𝑎 is amplitude
and 𝑝 is period of the B-E junction.

• The state space is schematically represented in Figure 1.

𝑅𝐶𝐶1
d𝑉𝐶1
d𝑡

= 𝑉0 −𝑉𝐶1 −𝑉𝐶2 + 𝑅𝐶 𝐼𝐿 − 𝑅𝐶 𝑓 (𝑉𝐵𝐸 ) ,

𝑅𝐶𝐶2
d𝑉𝐶2
d𝑡

= 𝑉0 −𝑉𝐶1 −𝑉𝐶2 − 𝑅𝐶 𝐼0 + 𝑅𝐶 𝐼𝐿 ,

𝐶3
d𝑉𝐶3
d𝑡

= 𝐼𝐿 − (1 − 𝛼) 𝑓 (𝑉𝐵𝐸 ) ,

𝐿
d 𝐼𝐿
d𝑡

= −𝑅𝑏 𝐼𝐿 −𝑉𝐶1 −𝑉𝐶2 −𝑉𝐶3 .

𝐵
𝐼𝐵

𝑅𝐸
𝑉𝐵𝐸

𝑉𝐶𝐸𝐸 𝐶

𝐼𝐶𝐼𝐸

𝛼𝐹 𝐼𝐸

− +
−

+

Figure 1: The circuit diagram

The following is the proposed new system with Colpitts oscillator:

¤𝑥1 = 𝜎1(−𝑥1 − 𝑥2) + 𝑥4 − 𝛾𝜙1(𝑥3),
¤𝑥2 = 𝜀1𝜎1(−𝑥1 − 𝑥2) + 𝜀1𝑥4 ,

¤𝑥3 = 𝜀2(𝑥4 − (1 − 𝛼)𝛾𝜙2(𝑥1)),
¤𝑥4 = −𝑥1 − 𝑥2 − 𝑥3 − 𝜎2𝑥4 ,

(1)

where 𝜙1(𝑥3) =
2𝑎
𝜋
sin−1

(
sin

(
2𝜋
𝑝
(𝑥3)

))
, 𝜙2(𝑥1) =

2𝑎
𝜋
sin−1

(
sin

(
2𝜋
𝑝
(𝑥1)

))
.
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In system (1), the state variables are assumed as 𝑥1, 𝑥2, 𝑥3 and 𝑥4 along with
six positive parameters, 𝜎1, 𝛾, 𝜀1, 𝜀2, 𝜎2 and 𝛼. The system (1) is an autonomous
system to which a triangular wave expression is associated.
With the modification of coordinates provided by the scheme (𝑥1, 𝑥2, 𝑥3, 𝑥4)

↦→ (−𝑥1,−𝑥2,−𝑥3,−𝑥4), the system (1) is found to be invariant.
The mathematical system of the Colpitts oscillator mathematical systemwhen

equated to zero gives the equilibrium points of the system as specified below:

𝜎1(−𝑥1 − 𝑥2) + 𝑥4 − 𝛾𝜙1(𝑥3) = 0,
𝜀1𝜎1(−𝑥1 − 𝑥2) + 𝜀1𝑥4 = 0,

𝜀2(𝑥4 − (1 − 𝛼)𝛾𝜙2(𝑥1)) = 0,
−𝑥1 − 𝑥2 − 𝑥3 − 𝜎2𝑥4 = 0.

(2)

Solving the system (2), it is seen that the new chaotic system (2) has a unique
equilibrium at the origin.
The Jocobian matrix of the system (1) at the equilibrium point 𝐸 is given by

𝐽𝐸 =


−𝜎1 −𝜎1 −4𝛾𝑎/𝑝 1
−𝜀1𝜎1 −𝜀1𝜎1 0 𝜀1

−𝜀2(1 − 𝛼)4𝛾𝑎/𝑝 0 0 𝜀2
−1 −1 −1 −𝜎2

 . (3)

The corresponding characteristic equation of Colpitts oscillator system (1) with
respect to 𝐸 is given by the relation

Δ1𝜆
4 + Δ2𝜆

3 + Δ3𝜆
2 + Δ4𝜆 + Δ5 = 0 (4)

where
Δ1 = 1,
Δ2 = 𝜀1𝜎1 + 𝜎1 + 𝜎2,

Δ3 =

[
16𝛼𝜀2𝛾2𝑎2 + 𝜀1𝜎1𝜎2𝑝

2 + 𝜀1𝑝
2 − 16𝜀2𝛾2𝑎2 + 𝜀2𝑝

2 + 𝜎1𝜎2𝑝
2 + 𝑝2

]
𝑝2

,

Δ4 =

[
16𝛼𝜀1𝜀2𝛾2𝜎1𝑎2 + 16𝛼𝜀2𝛾2𝜎2𝑎2 + 4𝛼𝜀2𝛾𝑎𝑝 − 16𝜀1𝜀2𝛾2𝜎1𝑎2
+𝜀1𝜀2𝜎1𝑝2 − 16𝜀2𝛾2𝜎2𝑎2 − 8𝜀2𝛾𝑎𝑝 + 𝜀2𝜎1𝑝

2

]
𝑝2

,

Δ5 =

[
16𝛼𝜀1𝜀2𝛾2𝜎1𝜎2𝑎2 + 16𝛼𝜀1𝜀2𝛾2𝑎2 − 16𝜀1𝜀2𝛾2𝜎1𝜎2𝑎2 − 16𝜀1𝜀2𝛾2𝑎2

]
𝑝2

.

Applying Routh-Hurwitz stability criterion [33] to the characteristic equation,
we conclude that the system is unstable for all values of the parameters at the
equilibrium position 𝐸 .
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From the Jacobian matrix (3), among the states 𝑥1, 𝑥2, 𝑥3 and 𝑥4, if 𝑥1 and 𝑥3
are both positive or negative or of opposite signs, it implies “Hopf bifurcation”.
This phenomenon is also known as “Poincaré–Andronov–Hopf bifurcation”. This
bifurcation leads a local birth of “chaos” nature inmodified Colpitts oscillator (1).
Interestingly, the system (1) is chaotic for the parameters

𝜀1 = 1, 𝜀2 = 20, 𝜎1 = 1.49,

𝜎2 = 0.872, 𝛾 = 1.475, 32.90, 𝛼 =
255
256

.

Lyapunov exponentsmay be considered as one of the keys to differentiate between
chaotic, hyperchaotic, stable and periodic nature of the systems.
Table 1 gives the details of the chaotic and hyperchaotic nature of the sys-

tem. For this calculation, the observation time (𝑇) is considered as 500 and the
sampling time (Δ𝑡) is taken as 0.5. For various initial conditions, the system (1)
exhibits chaotic and hyperchaotic nature.
By applying Wolf algorithm [34], the Lyapunov exponents corresponding to

the new chaotic system (1) are obtained as follows:

Table 1: LEs of system (1) for observation time (𝑇) = 500, sampling time (Δ𝑡) = 0.5,
𝜀1 = 1, 𝜀2 = 20, 𝜎1 = 1.49, 𝜎2 = 0.872, 𝛼 =

255
256
, 𝛾 = 1.475, 32.90, 32.95 with various

sampling and observation times using Wolf algorithm.

Sl.
No.

Parameter,
𝑎, 𝑝 Initial condition LEs Sign of

the LEs Nature

1
𝛾 = 1.475,
𝑎 = 1,
𝑝 = 1

0.00001, 0.00001, 0.00001, 0.00001 02.024442,−0.093200,−2.892090,−02.891145 [+,≈ 0,−,−] Chaotic

2
𝛾 = 32.90,
𝑎 = 1,
𝑝 = 1

0.00001, 0.00001, 0.00001, 0.00001 36.698109,−0.630107, +0.005158, +01.187488 [+,−,≈ 0, +] Hyperbolic

3
𝛾 = 32.90,
𝑎 = 1,
𝑝 = 2

0.00001, 0.00001, 0.00001, 0.00001 18.790350,−0.402598,−6.563959,−15.673989 [+,≈ 0,−,−] Chaotic

4
𝛾 = 32.95,
𝑎 = 1,
𝑝 = 1

0.00001, 0.00001, 0.00001, 0.00001 36.753129,−0.630701, +0.157932, +01.523079 [+,−,≈ 0, +] Hyperbolic

FromTable 1, the Lyapunov exponential dimension is calculated. The attractor
of the new system is observed to be a strange attractor with fractal dimensions.
Through numerical simulation, the chaotic attractor of the system (1) is ob-

tained as shown in Figure 3.
Figure 2 depicts the Lyapunov exponents of the modified Colpitts oscillator

and Figure 3 shows the chaotic nature of the modified Colpitts oscillator and
Poincaré Map of the modified Colpitts oscillator.
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(a) The Lyapunov exponent for Modified Col-
pitts oscillator with 𝜀1 = 1, 𝜀2 = 20, 𝜎1 = 1.49,

𝜎2 = 0.872, 𝛼 =
255
256
, 𝛾 = 1.475, 𝑎 = 1,

𝑝 = 1 with initial condition (𝑥1, 𝑥2, 𝑥3, 𝑥4) =

(0.00001, 0.00001, 0.00001, 0.00001)
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(b) The Lyapunov exponent for Modified Col-
pitts oscillator with 𝜀1 = 1, 𝜀2 = 20, 𝜎1 = 1.49,

𝜎2 = 0.872, 𝛼 =
255
256
, 𝛾 = 32.9, 𝑎 = 1,

𝑝 = 1 with initial condition (𝑥1, 𝑥2, 𝑥3, 𝑥4) =

(0.00001, 0.00001, 0.00001, 0.00001)
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(c) The Lyapunov exponent for Modified Col-
pitts oscillator with 𝜀1 = 1, 𝜀2 = 20, 𝜎1 = 1.49,

𝜎2 = 0.872, 𝛼 =
255
256
, 𝛾 = 32.9, 𝑎 = 1,

𝑝 = 2 with initial condition (𝑥1, 𝑥2, 𝑥3, 𝑥4) =

(0.00001, 0.00001, 0.00001, 0.00001)
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(d) The Lyapunov exponent for Modified Col-
pitts oscillator with 𝜀1 = 1, 𝜀2 = 20, 𝜎1 = 1.49,

𝜎2 = 0.872, 𝛼 =
255
256
, 𝛾 = 32.95, 𝑎 = 1,

𝑝 = 1 with initial condition (𝑥1, 𝑥2, 𝑥3, 𝑥4) =

(0.00001, 0.00001, 0.00001, 0.00001)

Figure 2: Lyapunov exponents of the Modified Colpitts oscillator

The study of qualitative properties is one of the utilities of this paradigm. The
stability control, limit cycle, periodicity and chaos are some notable qualitative
properties. The following theorems bring out the local stability properties of the
modified Colpitts oscillator.
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(n) Poincaré Map between 𝑥1, 𝑥2 and 𝑥3
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(p) Poincaré Map between 𝑥1, 𝑥2 and 𝑥4
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(r) Poincaré Map between 𝑥1, 𝑥3 and 𝑥4
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(t) Poincaré Map between 𝑥2, 𝑥3 and 𝑥4

Figure 3: Portrait of Colpitts

Theorem 1 The interior equilibrium point 𝐸 is locally asymptotically stable in
the positive octant.

Proof. By divergence criterion theorem, assume

𝜃 (𝑥1, 𝑥2, 𝑥3, 𝑥4) =
1

𝑥1𝑥2𝑥3𝑥4
, (5)

where 𝜃 (𝑥𝑖, 𝑖 = 1, 2, 3, 4) > 0 if 𝑥𝑖 > 0, 𝑖 = 1, 2, 3, 4.
Now consider

𝑝1 = 𝜎1(−𝑥1 − 𝑥2) + 𝑥4 − 𝛾𝜙1(𝑥3),
𝑝2 = 𝜀1𝜎1(−𝑥1 − 𝑥2) + 𝜀1𝑥4 ,

𝑝3 = 𝜀2(𝑥4 − (1 − 𝛼)𝛾𝜙2(𝑥1)),
𝑝4 = −𝑥1 − 𝑥2 − 𝑥3 − 𝜎2𝑥4 .

(6)

where 𝜙1(𝑥3) =
2𝑎
𝜋
sin−1

(
sin

(
2𝜋
𝑝
(𝑥3)

))
, 𝜙2(𝑥1) =

2𝑎
𝜋
sin−1

(
sin

(
2𝜋
𝑝
(𝑥1)

))
.
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Define

∇ =
𝜕

𝜕𝑥1
(𝑝1𝜃) +

𝜕

𝜕𝑥2
(𝑝2𝜃) +

𝜕

𝜕𝑥3
(𝑝3𝜃) +

𝜕

𝜕𝑥4
(𝑝4𝜃) . (7)

We have to determine ∇ given by Eq. (7) along with the trajectories provided
by Equations (5) and Eq. (6). We obtain

∇ = − [𝜎1] 𝑥1𝑥2𝑥3𝑥4 + [𝜎1(−𝑥1 − 𝑥2) + 𝑥4 − 𝛾𝜙1(𝑥3)] 𝑥2𝑥3𝑥4
𝑥21𝑥

2
2𝑥
2
3𝑥
2
4

− 𝜀1𝜎1𝑥1𝑥2𝑥3𝑥4 + [𝜀1𝜎1(−𝑥1 − 𝑥2) + 𝜀1𝑥4]𝑥1𝑥3𝑥4
𝑥21𝑥

2
2𝑥
2
3𝑥
2
4

− 𝜀2 [𝑥4 − (1 − 𝛼)𝛾𝜙2(𝑥1)] 𝑥1𝑥2𝑥4
𝑥21𝑥

2
2𝑥
2
3𝑥
2
4

− 𝜎2𝑥1𝑥2𝑥3𝑥4 + (−𝑥1 − 𝑥2 − 𝑥3 − 𝜎2𝑥4)𝑥1𝑥2𝑥3
𝑥21𝑥

2
2𝑥
2
3𝑥
2
4

which is less than zero.
FromBenedixon-Dulac criterion, it it clear that the first octant does not contain

any limit cycle.
Consequently, the equilibrium provided by 𝐸 is found to be locally asymptot-

ically stable.
The relation between the limit cycle and closed trajectories exhibits the local

asymptotic stability. The following theorem is concerned with the stability under
closed trajectory using Bendixson’s criteria theorem.

Theorem 2 There is no closed trajectory for the interior equilibrium point.

Proof. Define
𝛹 (𝑥𝑖, 𝑖 = 1, 2, 3, 4) =

𝜕𝑝1

𝜕𝑥1
+ . . . + 𝜕𝑝4

𝜕𝑥4
. (8)

Find𝛹 along with the trajectories associated with Eq. (8). It follows that

𝛹 = −𝜎1 − 𝜀1𝜎1 − 𝜎2 ≠ 0. (9)

Hence, by applying Bendixson’s criteria theorem to Eq. (9), it is seen that there
is no closed trajectory surrounding the point 𝐸 .
Hence, limit cycle does not exist emcompassing 𝐸 .
Therefore, the point 𝐸 is evidential to be locally asymptotically stable.
In oscillator, exhibiting stable periodic orbit and it corresponds to a special

type of solution for a oscillator. The following theorem focuses attention on the
nontrivial periodic solution.
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Theorem 3 The modified Colpitts oscillator given by Eq. (1) has a nontrivial
periodic solution.

Proof. Define

𝛷 =
d
d𝑡

(
𝑥21 + 𝑥22 + 𝑥23 + 𝑥24

2

)
= 𝑥1

d𝑥1
d𝑡

+ 𝑥2
d𝑥2
d𝑡

+ 𝑥3
d𝑥3
d𝑡

+ 𝑥4
d𝑥4
d𝑡

= 𝑥1 ¤𝑥1 + 𝑥2 ¤𝑥2 + 𝑥3 ¤𝑥3 + 𝑥4 ¤𝑥4 =
4∑︁
𝑖=1

𝑥𝑖
d𝑥𝑖
d𝑡

. (10)

Find𝛷 from Eq. (10) along the trajectories Eq. (1). We see that

𝛷 = 𝑥1 [𝜎1(−𝑥1 − 𝑥2) + 𝑥4 − 𝛾𝜙1(𝑥3)]
+ 𝑥2 [𝜀1𝜎1(−𝑥1 − 𝑥2) + 𝜀1𝑥4]
+ 𝑥3 [𝜀2(𝑥4 − (1 − 𝛼)𝛾𝜙2(𝑥1))]
+ 𝑥4 [−𝑥1 − 𝑥2 − 𝑥3 − 𝜎2𝑥4]

= −𝜎1𝑥21 − 𝜎1𝑥1𝑥2 + 𝑥1𝑥4 − 𝛾𝑥1𝜙1(𝑥3)
− 𝜀1𝜎1𝑥1𝑥2 − 𝜀1𝜎1𝑥

2
2 + 𝜀1𝑥2𝑥4

+ 𝜀2𝑥3𝑥4 − 𝜀2(1 − 𝛼)𝑥3𝛾𝜙2(𝑥1)
− 𝑥1𝑥4 − 𝑥2𝑥4 − 𝑥3𝑥4 − 𝜎2𝑥

2
4

= −(𝜎1𝑥21 + 𝜀1𝜎1𝑥
2
2 + 𝜎2𝑥

2
4) − 𝜎1𝑥1𝑥2(1 + 𝜀1) − (1 − 𝜀1)𝑥2𝑥4

− (1 − 𝜀2)𝑥3𝑥4 − 𝑥1𝛾𝜙1(𝑥3) − 𝑥3𝜀2(1 − 𝛼)𝛾𝜙2(𝑥1)
= −(∇1 + ∇2) (11)

where

∇1 = 𝜎1𝑥
2
1 + 𝜀1𝜎1𝑥

2
2 + 𝜎2𝑥

2
4

∇2 = 𝜎1𝑥1𝑥2(1 + 𝜀1) + (1 − 𝜀1)𝑥2𝑥4 + (1 − 𝜀2)𝑥3𝑥4 + 𝑥1𝛾𝜙1(𝑥3)
+ 𝑥3𝜀2(1 − 𝛼)𝛾𝜙2(𝑥1).

It is observed that ∇1 + ∇2 is positive for 𝑥21 + 𝑥22 + 𝑥23 + 𝑥24 < 𝑎 and negative for
𝑥21 + 𝑥22 + 𝑥23 + 𝑥24 > 𝑏, where 𝑎, 𝑏 are positive constants.

This implies that any solution 𝑥𝑖 (𝑡) of (1)will be in the annulus 𝑎 <

4∑︁
𝑖=1

𝑥2𝑖 < 𝑏.

Hence, by Poincaré-Bendixson theorem, there exists atleast one periodic so-
lution 𝑥𝑖 (𝑡), 𝑖 = 1, 2, 3, 4 of Eq. (1) lying in this annulus.
Hence, the modified Colpitts oscillator Eq. (1) has a nontrivial periodic solu-

tion.
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The study of control refers to the process of influencing the behaviour of an
oscillator to achieve a desired goal, primarily through the use of feedback control.
The following section describes the backstepping control when the parameter
values are unknown.

3. Adaptive backstepping control of the modified Colpitts oscillator
with unknown parameters

3.1. Proposed system

The modified Colpitts oscillator system is given by the dynamics with con-
trollers

¤𝑥1 = 𝜎1 (−𝑥1 − 𝑥2) + 𝑥4 − 𝛾𝜙1 (𝑥3) + 𝑢1 ,

¤𝑥2 = 𝜀1𝜎1 (−𝑥1 − 𝑥2) + 𝜀1𝑥4 + 𝑢2 ,

¤𝑥3 = 𝜀2 (𝑥4 − (1 − 𝛼)𝛾𝜙2(𝑥1)) + 𝑢3 ,

¤𝑥4 = −𝑥1 − 𝑥2 − 𝑥3 − 𝜎2𝑥4 + 𝑢4 ,

(12)

where 𝜙1(𝑥3) =
2𝑎
𝜋
sin−1

(
sin

(
2𝜋
𝑝
(𝑥3)

))
, 𝜙2 (𝑥1) =

2𝑎
𝜋
sin−1

(
sin

(
2𝜋
𝑝
(𝑥1)

))
.

In system (12), 𝑥1, 𝑥2, 𝑥3 and 𝑥4 are state variables and 𝑢1, 𝑢2, 𝑢3 and 𝑢4 are
adaptive controllers.
The synchronization error is defined as 𝑒𝑖 = 𝑦𝑖 − 𝑥𝑖, 𝑖 = 1, 2, 3, 4.
The unknown parameters are updated by

𝑒𝜎1 = 𝜎1 − �̂�1(𝑡), 𝑒𝜎2 = 𝜎2 − �̂�2(𝑡),
𝑒𝜀1 = 𝜀1 − �̂�1(𝑡), 𝑒𝜀2 = 𝜀2 − �̂�2(𝑡),
𝑒𝛼 = 𝛼 − �̂�(𝑡), 𝑒𝛾 = 𝛾 − �̂�(𝑡).

(13)

By differentiating (13) with respect to ‘𝑡’, one obtains

¤𝑒𝜎1 = − ¤̂𝜎1(𝑡), ¤𝑒𝜎2 = − ¤̂𝜎2(𝑡),
¤𝑒𝜀1 = −¤̂𝜀1(𝑡), ¤𝑒𝜀2 = −¤̂𝜀2(𝑡),
¤𝑒𝛼 = − ¤̂𝛼(𝑡), ¤𝑒𝛾 = − ¤̂𝛾(𝑡).

At this stage, the state of the system is considered as

¤𝑥1 = 𝜎1 (−𝑥1 − 𝑥2) + 𝑥4 − 𝛾𝜙1 (𝑥3) + 𝑢1 , (14)

where 𝑥2 is regarded as virtual controller.
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In order to stabilize the system, the suitable Lyapunov function is defined as

𝑉1 (𝑥1) =
1
2
𝑥21 +

1
2
𝑒2𝜎1 +

1
2
𝑒2𝛾 .

By differentiating 𝑉1 with respect to 𝑡,

¤𝑉1 = 𝑥1 ¤𝑥1 + 𝑒𝜎1 ¤𝑒𝜎1 + 𝑒𝛾 ¤𝑒𝛾
= 𝑥1 [𝜎1 (−𝑥1 − 𝑥2) + 𝑥4 − 𝛾𝜙1 (𝑥3) + 𝑢1] + 𝑒𝜎1

(
− ¤̂𝜎1

)
+ 𝑒𝛾

(
− ¤̂𝛾

)
, (15)

where 𝑥2 is regarded as virtual controller and is defined as

𝑥2 = 𝛽1 (𝑥1) and 𝛽1 (𝑥1) = 0.

The controller 𝑢1 is assumed as

𝑢1 = −𝑥1 + �̂�1𝑥1 − 𝑥4 + �̂�𝜙1 (𝑥3) (16)

and the unknown parameters �̂�1 and �̂� are updated by

¤̂𝜎1 = −𝑥21 + 𝑒𝜎1 ,

¤̂𝛾 = −𝑥1𝜙1 (𝑥3) + 𝑒𝛾 .
(17)

On substitution of (16) and (17) into (15), we get

¤𝑉1 = −𝑥21 − 𝑒2𝜎1 − 𝑒2𝛾

which is found to be a negative definite function.
Hence by Lyapunov stability theory, the system is globally asymptotically

stable.
Now define the relation between 𝛽1 and 𝑥2 by

𝜔2 = 𝑥2 − 𝛽1 .

Consider the subsystem (𝑥1, 𝜔2). We have

¤𝑥1 = −𝑒𝜎1𝑥1 − 𝜎1𝜔2 − 𝑒𝛾𝜙1 (𝑥3) − 𝑥1 ,

¤𝜔2 = −𝜀1𝜎1𝑥1 − 𝜀1𝜎1𝜔2 + 𝜀1𝑥4 + 𝑢2 .

Define 𝑉2 by the Lyapunov function as

𝑉2 = 𝑉1 +
1
2
𝜔22 +

1
2
𝑒2𝜀1 .
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On differentiating 𝑉2 with respect to 𝑡, we get

¤𝑉2 = 𝑥1 ¤𝑥1 + 𝑒𝜎1

(
− ¤̂𝜎1

)
+ 𝑒𝛾

(
− ¤̂𝛾

)
+ 𝑒𝜀1

(
−¤̂𝜀1

)
+ 𝜔2 ¤𝜔2. (18)

The controller 𝑢2 is assumed as

𝑢2 = 𝜎1𝑥1 + �̂�1 (𝜎1𝑥1 + 𝜎1𝜔2 − 𝑥4) + 𝑥3 − 𝜔2 . (19)

Let 𝑥3 be the virtual controller. It is defined as 𝑥3 = 𝛽2(𝑥1, 𝜔2)with the assumption
that 𝛽2(𝑥1, 𝜔2) = 0.

The parameter 𝜀1 is estimated as ¤̂𝜀1 = −𝜔2 (𝜎1𝑥1 + 𝜎1𝜔2 − 𝑥4) + 𝑒𝜀1 . (20)

Substituting (19) and (20) into (18), we get

¤𝑉2 = −𝑥21 − 𝑒2𝜎1 − 𝑒2𝛾 − 𝑤22 − 𝑒2𝜀1

which is a negative definite function.
Hence by Lyapunov stability theory, the system is globally asymptotically

stable.
The relation between 𝑥3 and 𝛽2 is defined by

𝜔3 = 𝑥3 − 𝛽2 .

Consider the subsystem (𝑥1, 𝜔2, 𝜔3). We have

¤𝑥1 = −𝑒𝜎1𝑥1 − 𝜎1𝜔2 − 𝑒𝛾𝜙1 (𝑥3) − 𝑥1 ,

¤𝜔2 = −𝑒𝜀1 (𝜎1𝑥1 + 𝜎1𝜔2 − 𝑥4) − 𝜔2 + 𝜎1𝑥1 + 𝜔3 ,

¤𝜔3 = 𝜀2 (𝑥4 − (1 − 𝛼)𝛾𝜙2 (𝑥1)) + 𝑢3 .

Now consider the Lyapunov function

𝑉3 = 𝑉2 +
1
2
𝜔23 +

1
2
𝑒2𝜀2 +

1
2
𝑒2𝛼 .

The derivative of 𝑉3 with respect to 𝑡 is obtained as

¤𝑉3 = ¤𝑉2 + 𝜔3 ¤𝜔3 + 𝑒𝜀2 ¤𝑒𝜀2 + 𝑒𝛼 ¤𝑒𝛼 , (21)

where 𝑢3 = −𝜔2 − 𝜔3 + �̂�2𝛾𝜙2 (𝑥1) − 𝜀2�̂�𝛾𝜙2 (𝑥1) . (22)

Let us denote the virtual controller by 𝑥4. It is defined as 𝑥4 = 𝛽3 (𝑥1, 𝜔2, 𝜔3) and
we assume that 𝛽3 (𝑥1, 𝜔2, 𝜔3) = 0.
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The parameters are estimated as

¤̂𝜀2 = −𝜔3𝛾𝜙2 (𝑥1) + 𝑒𝜀2 ,

¤̂𝛼 = 𝜔3𝜀2𝛾𝜙2 (𝑥1) + 𝑒𝛼 .
(23)

Substitute (22) and (23) into (21). Then we get

¤𝑉3 = −𝑥21 − 𝑒2𝜎1 − 𝑒2𝛾 − 𝑤22 − 𝑒2𝜀1 − 𝑤23 − 𝑒2𝜀2 − 𝑒2𝛼

which is a negative definite function.
Hence by the theory of Lyapunov, it follows that the system provided by

Eq. (12) is stable.
Now the relation between 𝑥4 and 𝛽3 is defined by

𝜔4 = 𝑥4 − 𝛽3 .

Consider the subsystem (𝑥1, 𝜔2, 𝜔3, 𝜔4) provided by

¤𝑥1 = −𝑒𝜎1𝑥1 − 𝜎1𝜔2 − 𝑒𝛾𝜙1 (𝑥3) − 𝑥1 ,

¤𝜔2 = −𝑒𝜀1 (𝜎1𝑥1 + 𝜎1𝜔2 − 𝑥4) − 𝜔2 + 𝜔3 + 𝜎1𝑥1 ,

¤𝜔3 = 𝜀2𝜔4 − 𝑒𝜀2𝛾𝜙2 (𝑥1) + 𝑒𝛼𝜀2𝛾𝜙2 (𝑥1) − 𝜔2 − 𝜔3 ,

¤𝜔4 = −𝑥1 − 𝑥2 − 𝑥3 − 𝜎2𝜔4 + 𝑢4 .

Now consider the Lyapunov function

𝑉4 = 𝑉3 +
1
2
𝜔24 +

1
2
𝑒2𝜎2 .

The derivative of 𝑉4 with respect to 𝑡 is obtained as

¤𝑉4 = ¤𝑉3 + 𝜔4 ¤𝜔4 + 𝑒𝜎2 ¤𝑒𝜎2 , (24)

where 𝑢4 = −𝜀2𝜔3 + 𝑥1 + 𝑥2 + 𝑥3 + �̂�2𝜔4 − 𝜔4 , (25)

By working backward, the parameter is estimated as

¤̂𝜎2 = 𝑒𝜎2 − 𝑤24 . (26)

Substitute (25) and (26) into (24). Then we are led to

¤𝑉4 = −𝑥21 − 𝑒2𝜎1 − 𝑒2𝛾 − 𝑤22 − 𝑒2𝜀1 − 𝑤23 − 𝑒2𝜀2 − 𝑒2𝛼 − 𝑤24 − 𝑒2𝜎2

which is a negative definite function.
By the stability theory due to Lyapunov, it is seen that the Colpitts oscillator

provided by Eq. (1) is asymptotically stable.



40
R. SURESH, K. SATHISH KUMAR, M. REGAN, K.A. NIRANJAN KUMAR,

R. NARMADA DEVI, A.J. OBAID

3.2. Numerical simulation

For the numerical simulation, the initial conditions of the parameters are
taken as

�̂�1(0) = 10.9546, �̂�2(0) = 5.9353,
�̂�(0) = 3.8765, �̂�(0) = 2.1654,
�̂�1(0) = 7.8762, �̂�2(0) = 9.9876

with the initial conditions for the modified Colpitts oscillator 𝑥1(0) = 1.9124,
𝑥2(0) = 1.3942, 𝑥3(0) = 1.3125 and 𝑥4(0) = 1.9873.
Figure 4 depicts the parameter estimation of the modified Colpitts oscillator.
Figure 5 depicts the stability of the modified Colpitts oscillator.

Figure 4: The parameter estimation of the
modified Colpitts oscillator
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Figure 5: The stability of the modified Col-
pitts oscillator

4. Synchronization of modified chaotic Colpitts oscillator

The synchronization of a chaotic system is another way of explaining the
sensitivity based on the initial conditions. One has to design master-slave or
drive-response coupling between the two chaotic systems such that the time
evolution becomes ideal.
In general, the two dynamic systems involved in the synchronization are called

the master and slave systems, respectively. A well-designed controller will make
the trajectory of the slave system track and trajectory of the master system, that
is, the two systems will be synchronous.
The following sub-section contains the detailed explanation of the synchro-

nization process for the modified Colpitts oscillator using non-linear control.
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4.1. Synchronization of modified chaotic Colpitts oscillator
using Non-linear Feedback method

The synchronization of modified Colpitts oscillator is now taken up. The
drive-response formalism is utilized. The identical synchronization is elaborated
between the modified Colpitts oscillators.
The chaos synchronization basically requires the global asymptotic stability

of the error dynamics

i.e., lim
𝑡→∞

‖𝑒(𝑡)‖ = 0.

The modified Colpitts oscillator is taken as drive system, which is described by

¤𝑥1 = 𝜎1 (−𝑥1 − 𝑥2) + 𝑥4 − 𝛾𝜙1 (𝑥3) ,
¤𝑥2 = −𝜀1𝜎1𝑥1 − 𝜀1𝜎1𝑥2 + 𝜀1𝑥4 ,

¤𝑥3 = 𝜀2𝑥4 − 𝜀2 (1 − 𝛼) 𝛾𝜙2(𝑥1),
¤𝑥4 = −𝑥1 − 𝑥2 − 𝑥3 − 𝜎2𝑥4 ,

(27)

where 𝑥1, 𝑥2, 𝑥3 and 𝑥4 are state variables, 𝜎1, 𝜎2, 𝜀1, 𝜀2, 𝛾, 𝛼 are positive param-

eters, 𝜙1(𝑥3) =
2𝑎
𝜋
sin−1

(
sin

(
2𝜋
𝑝
(𝑥3)

))
and 𝜙2(𝑥1) =

2𝑎
𝜋
sin−1

(
sin

(
2𝜋
𝑝
(𝑥1)

))
.

The modified Colpitts oscillator is also taken as the response system which is
described by

¤𝑦1 = 𝜎1 (−𝑦1 − 𝑦2) + 𝑦4 − 𝛾𝜙1 (𝑦3) + 𝑢1 ,

¤𝑦2 = −𝜀1𝜎1𝑦1 − 𝜀1𝜎1𝑦2 + 𝜀1𝑦4 + 𝑢2 ,

¤𝑦3 = 𝜀2𝑦4 − 𝜀2 (1 − 𝛼) 𝛾𝜙2 (𝑦1) + 𝑢3 ,

¤𝑦4 = −𝑦1 − 𝑦2 − 𝑦3 − 𝜎2𝑦4 + 𝑢4 ,

(28)

where 𝜙1(𝑦3) =
2𝑎
𝜋
sin−1

(
sin

(
2𝜋
𝑝
(𝑦3)

))
, 𝜙2(𝑦1) =

2𝑎
𝜋
sin−1

(
sin

(
2𝜋
𝑝
(𝑦1)

))
.

The synchronization error occurring in the system is defined by

𝑒𝑖 = 𝑦𝑖 − 𝑥𝑖, 𝑖 = 1, 2, 3, 4. (29)

The resulting error dynamics of the system is governed by the set of equations

¤𝑒1 = −𝜎1𝑒1 − 𝜎1𝑒2 + 𝑒4 − 𝛾𝜙1 (𝑦3) + 𝛾𝜙1 (𝑥3) + 𝑢1 ,

¤𝑒2 = −𝜀1𝜎1𝑒1 − 𝜀1𝜎1𝑒2 + 𝜀1𝑒4 + 𝑢2 ,

¤𝑒3 = 𝜀2𝑒4 − 𝜀2(1 − 𝛼)𝛾 (𝜙2(𝑦1) − 𝜙2(𝑥1)) + 𝑢3 ,

¤𝑒4 = −𝑒1 − 𝑒2 − 𝑒3 − 𝜎2𝑒4 + 𝑢4 ,

(30)



42
R. SURESH, K. SATHISH KUMAR, M. REGAN, K.A. NIRANJAN KUMAR,

R. NARMADA DEVI, A.J. OBAID

where 𝑢 = (𝑢1, 𝑢2, 𝑢3, 𝑢4)𝑇 is the non-linear controller to be designed so as to
synchronize the states of identically modified Colpitts oscillator.
Now the objective is to find the control law 𝑢𝑖, 𝑖 = 1, 2, 3, 4 for stabilizing the

error variable of the system (30) at the origin.
Let the energy source function Lyapunov be chosen as

𝑉 =
1
2

4∑︁
𝑖=1

𝑒2𝑖 . (31)

The derivative of (31) with respect to 𝑡 is provided by

¤𝑉 =

4∑︁
𝑖=1

𝑒𝑖 ¤𝑒𝑖 . (32)

Substituting (29) and (30) into (32) we are led to the relation

¤𝑉 = 𝑒1 (−𝜎1𝑒1 − 𝜎1𝑒2 + 𝑒4 − 𝛾𝜙1 (𝑦3) + 𝛾𝜙1 (𝑥3) + 𝑢1)
+ 𝑒2 (−𝜀1𝜎1𝑒1 − 𝜀1𝜎1𝑒2 + 𝜀1𝑒4 + 𝑢2)
+ 𝑒3 (𝜀2𝑒4 − 𝜀2(1 − 𝛼)𝛾 (𝜙2(𝑦1) − 𝜙2(𝑥1)) + 𝑢3)
+ 𝑒4 (−𝑒1 − 𝑒2 − 𝑒3 − 𝜎2𝑒4 + 𝑢4) .

The controllers are defined by

𝑢1 = 𝜎1𝑒2 − 𝑒4 + 𝛾 (𝜙1 (𝑦3) − 𝜙1 (𝑥3)) ,
𝑢2 = 𝜀1𝜎1𝑒1 − 𝜀1𝑒4 ,

𝑢3 = 𝜀2(1 − 𝛼)𝛾 (𝜙2 (𝑦1) − 𝜙2 (𝑥1)) − 𝜀2𝑒4 − 𝑒3 ,

𝑢4 = 𝑒1 + 𝑒2 + 𝑒3 .

Therefore the relation (32) becomes

¤𝑉 = −𝜎1𝑒21 − 𝜀1𝜎1𝑒
2
2 − 𝑒23 − 𝜎2𝑒

2
4

which is a negative definite function.
Thus, by Lyapunov stability theory, the error dynamics provided by (30) is

found to be globally asymptotically stable for all initial conditions 𝑒(0) ∈ 𝑅4.
Thus, the states of the drive and response system synchronize globally and

asymptotically.

4.2. Numerical simulation

For numerical simulation, the initial conditions of the drive system are chosen
as 0.09124, 0.3942, 0.0125, 0.9823 and the initial conditions for the response
system are taken as 0.9546, 0.9353, 0.8765, 0.1654.
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(d) Synchronization between 𝑥4 and 𝑦4

Figure 6: Synchronization of the Modified Colpitts oscillator
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Figure 7: Error Dynamics of Chaotic Colspitts oscillator
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5. The synchronization of Colpitts oscillator via Backstepping Control

The backstepping technique is a cyclic procedure through a suitable Lyapunov
function along with a feedback controller. It leads to the global stability synchro-
nization of the strict feedback chaotic systems. In this section, the backward
backstepping method is employed for the proposed system.

5.1. Analysis of the error dynamics

The error dynamics system is taken as

¤𝑒4 = −𝑒1 − 𝑒2 − 𝑒3 − 𝜎2𝑒4 + 𝑢1 ,

¤𝑒3 = 𝜀2𝑒4 − 𝜀2(1 − 𝛼)𝛾 (𝜙2 (𝑦1) − 𝜙2 (𝑥1)) + 𝑢2 ,

¤𝑒2 = −𝜀1𝜎1𝑒1 − 𝜀1𝜎1𝑒2 + 𝜀1𝑒4 + 𝑢3 ,

¤𝑒1 = −𝜎1𝑒1 − 𝜎1𝑒2 + 𝑒4 − 𝛾 (𝜙1 (𝑦3) − 𝜙1 (𝑥3)) + 𝑢4 .

(33)

Now the objective is to find the control laws 𝑢𝑖 (𝑖 = 1, 2, 3, 4) for stabilizing the
error variables of the system (33) at the origin.
First consider the stability of the system

¤𝑒4 = −𝑒1 − 𝑒2 − 𝑒3 − 𝜎2𝑒4 + 𝑢1 , (34)

where 𝑒3 is considered as virtual controller provided by

𝑒3 = 𝛽1 (𝑒4) and 𝛽1 (𝑒4) = 0.

The Lyapunov function is defined as

𝑉1 =
1
2
𝑒24 . (35)

The derivative of 𝑉1 with respect to 𝑡 is obtained as

¤𝑉1 = 𝑒4 ¤𝑒4 . (36)

If 𝛽1 = 0 and 𝑢1 = 𝑒1 + 𝑒2, then we obtain

¤𝑉1 = −𝜎2𝑒24 (37)

which is a negative definite function.
Hence the system (34) is globally asymptotically stable.
The function 𝛽1(𝑒4) is an estimator when 𝑒3 is considered as virtual controller.
The relation between 𝑒3 and 𝛽1 is defined by

𝜔2 = 𝑒3 − 𝛽1 = 𝑒3 .
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Consider the subsystem (𝑒4, 𝜔2) given by

¤𝑒4 = −𝜔2 − 𝜎2𝑒4 ,

¤𝜔2 = 𝜀2𝑒4 − 𝜀2(1 − 𝛼)𝛾 (𝜙2 (𝑦1) − 𝜙2 (𝑥1)) + 𝑢2 .
(38)

Let 𝑒2 be a virtual controller in system (38).
Assume that when 𝑒2 = 𝛽2 (𝑒4, 𝜔2), the system (38) is rendered globally

asymptotically stable.
Consider the Lyapunov function defined by

𝑉2 = 𝑉1 +
1
2
𝜔22 .

The derivative of 𝑉2 with respect to 𝑡 is

¤𝑉2 = 𝑒4 ¤𝑒4 + 𝜔2 ¤𝜔2 .

If 𝛽2 = 0 and 𝑢2 = −(𝜀2 − 1)𝑒4 + 𝜀2(1 − 𝛼)𝛾 (𝜙2(𝑦1) − 𝜙2(𝑥1)) + 𝑒2 − 𝜔2, then
we obtain

¤𝑉2 = −𝜎2𝑒24 − 𝜔22

which is a negative definite function.
Hence by Lyapunov stability theory, the system is stable.
Let us consider the relation between 𝑒2 and 𝛽2 defined by

𝜔3 = 𝑒2 − 𝛽2 = 𝑒2 .

Now the subsystem (𝑒4, 𝜔2, 𝜔3) is considered as

¤𝑒4 = −𝜔2 − 𝜎2𝑒4 ,

¤𝜔2 = 𝑒4 + 𝜔3 − 𝜔2 ,

¤𝜔3 = −𝜀1𝜎1𝑒1 − 𝜀1𝜎1𝜔3 + 𝜀1𝑒4 + 𝑢3 .

(39)

Consider the function 𝑉3 due to Lyapunov function defined by

𝑉3 = 𝑉2 +
1
2
𝜔23 .

On differentiating 𝑉3 with respect to 𝑡, we get

¤𝑉3 = 𝑒4 ¤𝑒4 + 𝜔2 ¤𝜔2 + 𝜔3 ¤𝜔3 .

If 𝛽3 = 0 and 𝑢3 = −𝜔2 − 𝜀1𝑒4, then we obtain

¤𝑉3 = −𝜎2𝑒24 − 𝜔22 − 𝜀1𝜎1𝜔
2
3

which is a negative definite function.
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Now the relation between 𝑒1 and 𝛽3 is defined as

𝜔4 = 𝑒1 − 𝛽3 = 𝑒1 .

Let us consider the subsystem (𝑒4, 𝜔2, 𝜔3, 𝜔4) provided by

¤𝑒4 = −𝜔2 − 𝜎2𝑒4 ,

¤𝜔2 = 𝑒4 + 𝜔3 − 𝜔2 ,

¤𝜔3 = −𝜀1𝜎1𝜔4 − 𝜀1𝜎1𝜔3 − 𝜔2 ,

¤𝜔4 = −𝜎1𝜔4 − 𝜎1𝜔3 + 𝑒4 − 𝛾 (𝜙1(𝑦3) − 𝜙1(𝑥3)) + 𝑢4 .

(40)

Consider the Lyapunov function

𝑉4 = 𝑉3 +
1
2
𝜔24 .

The derivative of 𝑉4 with respect to 𝑡 is

¤𝑉4 = 𝑒4 ¤𝑒4 + 𝜔2 ¤𝜔2 + 𝜔3 ¤𝜔3 + 𝜔4 ¤𝜔4 .

If 𝛽4 = 0 and 𝑢4 = 𝜀1𝜎1𝜔3 + 𝜎1𝜔3 − 𝑒4 + 𝛾 (𝜙1(𝑦3) − 𝜙1(𝑥3)), then we obtain

¤𝑉4 = −𝜎2𝑒24 − 𝜔22 − 𝜀1𝜎1𝜔
2
3 − 𝜎1𝜔

2
4

which is a negative definite function.
Hence by Lyapunov stability theory, the system is stable.

5.2. Numerical simulation

For solving the system of differential equations (33) with the backstepping
controls 𝑢1, 𝑢2, 𝑢3 and 𝑢4, the fourth-order Runge–Kutta method is used and
numerical simulation is carried out. We have

𝑢1 = 𝑒1 + 𝑒2 ,

𝑢2 = −(𝜀2 − 1)𝑒4 + 𝜀2(1 − 𝛼)𝛾 (𝜙2(𝑦1) − 𝜙2(𝑥1)) + 𝑒2 − 𝜔2 ,

𝑢3 = −𝜔2 − 𝜀1𝑒4 ,

and 𝑢4 = 𝜀1𝜎1𝜔3 + 𝜎1𝜔3 − 𝑒4 + 𝛾 (𝜙1(𝑦3) − 𝜙1(𝑥3)) .

The initial values of the drive system (27) are chosen as 𝑥1(0) = 0.09124,
𝑥2(0) = 0.3942, 𝑥3(0) = 0.0125, 𝑥4(0) = 0.9873. The initial values of the
response system (28) are taken as 𝑦1(0) = 0.9546, 𝑦2(0) = 0.9353, 𝑦3(0) =

0.8765, 𝑦4(0) = 0.1654.
Figure 8 portrays the chaos synchronization of identical drive and response

systems provided by Equations (27) and (28), respectively.
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(b) Synchronization between 𝑥2 and 𝑦2
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(c) Synchronization between 𝑥3 and 𝑦3
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(d) Synchronization between 𝑥4 and 𝑦4
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(e) Error Dynamics of modified Colpitts oscillator

Figure 8: Synchronization of identical modified Colpitts oscillator, error plot for identical
modified Colpitts oscillator
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6. Circuit Implementation

In order to verify the dynamical properties of the modified Colpitts oscilla-
tor, an operational amplifier circuit is designed in accordance with the equation
(1). The circuit is designed by linear resistance and linear capacitors. The allow-
able voltage range of operational amplifiers leads to the appropriate variables
proportional compression transformation to the state variables of the system.
According to the circuit diagrams, the corresponding oscillation circuit equa-

tion is described as follows

¤𝑥1 = 𝜎1(−𝑥1 − 𝑥2) + 𝑥4 − 𝛾𝜙1(𝑥3),
¤𝑥2 = 𝜀1𝜎1(−𝑥1 − 𝑥2) + 𝜀1𝑥4 ,

¤𝑥3 = 𝜀2(𝑥4 − (1 − 𝛼)𝛾𝜙2(𝑥1)),
¤𝑥4 = −𝑥1 − 𝑥2 − 𝑥3 − 𝜎2𝑥4 ,

where 𝜙1(𝑥3) =
2𝑎
𝜋
sin−1

(
sin

(
2𝜋
𝑝
(𝑥3)

))
, 𝜙2(𝑥1) =

2𝑎
𝜋
sin−1

(
sin

(
2𝜋
𝑝
(𝑥1)

))
and

the parameter values are

𝜎1 =
𝑅2 (𝑅5 + 𝑅8)

𝑅5𝑅1𝐶1𝑅3 (𝑅6 + 𝑅7)
=

𝑅36 (𝑅31 + 𝑅32)
𝑅37𝑅31 (𝑅34 + 𝑅35)

, 𝜎2 =
𝑅64𝑅76𝑅78

𝑅63𝐶4𝑅65𝑅75𝑅77
,

𝜀1 =
𝑅28𝑅37

𝑅27𝐶2𝑅29𝑅36
, 𝜀2 =

𝑅42𝑅46

𝑅41𝐶3𝑅43𝑅45
,

𝛾 =
𝑅2𝑅20

𝑅1𝐶1𝑅3𝑅17
=

𝑅58

𝑅55
, 𝛼 =

𝑅46 − 𝑅45

𝑅46
.
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Figure 9: Op Amp Circuit diagram of chaotic variable 𝑥1
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7. Conclusion

In this paper, the Colpitts oscillator with triangular wave non-linearity in ana-
lyzed. The qualitative properties of the modified Colpitts oscillator is analyzed in
this study. It exhibits the chaotic and hyperchaotic nature for some specified initial
conditions and parameters. By Wolf method, the Lyapunov exponent’s is calcu-
lated. For some initial conditions, it exhibits the dissipative nature. The adaptive
backstepping control technique is used to control the system. Synchronization, the
non-linear and backstepping control are utilized. Numerical simulations support
the results. MATLAB is used for numerical simulation.
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