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Practical Mittag-Leffler stability of quasi-one-sided
Lipschitz fractional order systems

Imed BASDOURI, Souad KASMI and Jean LERBET

This paper focuses on the global practical Mittag-Leffler feedback stabilization problem
for a class of uncertain fractional-order systems. This class of systems is a larger class of
nonlinearities than the Lipschitz ones. Based on the quasi-one-sided Lipschitz condition, firstly,
we provide sufficient conditions for the practical observer design. Then, we exhibit that practical
Mittag-Leffler stability of the closed loop system with a linear, state feedback is attained. Finally,
a separation principle is established and we prove that the closed loop system is practical
Mittag-Leffler stable.

Key words: fractional-order systems, Caputo derivative, quasi-one-sided Lipschitz condi-
tion, nonlinear systems, observer design, output feedback stabilization, separation principle

1. Introduction

Fractional calculus is a classic mathematical concept with a long history and
is a generalization of ordinary and integral calculus with an arbitrary system.
However, since there is no real background to the applications, the application
of partial calculus has received little research attention for a long time. With the
development of natural sciences and complex engineering applications, partial
calculus and fractional differential equation theory and their applications began to
attract increasing attention from physicists to engineers and became the focus of
researchers’ interests and its applications expanded, such as electrochemistry [15],
electrode polarization [20], viscous damping [12, 19], viscoelastic regimes [3],
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electric fractal networks [6], and electromagnetic waves [11]. Moreover, it has
been emphasized that fractional-order differential state equations can characterize
physical systems in the real world. The in-depth study of these fractional order
systems from different perspectives such as partial order control techniques is
increasing significantly [9, 21, 25, 26].
The Lipschitzian nonlinear system is an important class of nonlinear systems

and has drawn considerable attention in the past few decades. In fact, a major class
of nonlinear systems do satisfy the Lipschitz condition either globally or locally.
Moreover, incorporation of the Lipschitz condition into a linear matrix inequality
offers a tractable formulation for an efficient solution of the observer design.
Thus, many strategies concerning observer design have been developed for such
systems [1, 22, 27]. In addition, the one-sided Lipschitz nonlinearity has been
recently introduced by Hu [13, 14] to the nonlinear observer design framework.
After Hu (2006), many researchers have tackled the one-sided Lipschitz class of
systems. Abbazadeh and Marquez [2] have proposed a systematic approach to
the design of one-sided Lipschitz observers. More recently, various schemes of
observers have been proposed: in [17], an adaptive observer approach is given,
in [4] an exponential observer is developed for stochastic one-sided Lipschitz
systems and in [28] an unknown input observer is considered. Furthermore, a
more relaxed condition, namely the quasi-one-sided Lipschitz condition, was
further proposed, soon afterwards, to replace the one-sided Lipschitz condition
for observer design. Due to the fact that it involves much more useful information
of the nonlinear part, the quasi-one-sided Lipschitz condition is shown to be an
extension of the one-sided Lipschitz condition and the Lipschitz condition and is
less conservative than those two kinds of conditions.
In [16], the observer design problem for integer-order systems is investigated

and the conditions that ensure the global Mittag-Leffler stability of the controlled
system are introduced. When the nonlinear part is not perfectly known, as in [23],
it is not possible to build an exact observer, which explains why these authors
introduced the notion of a practical observer for the fractional order case. The
problem of global practical Mittag-Leffler stabilization for a class of nonlinear
fractional order systems is described in [23] based on the Lyapunov method and
derived a linear matrix inequality.
Now, for nonlinear fractional-order systems with unknown disturbances, an

interesting question naturally arises: is it possible to apply control to achieve
global Mittag-Leffler stabilization when the uncertain is unknown but bounded?
In our opinion, thismatter still remainder unresolved. For such a problem, themain
difficulty stems from the uncertainties which cannot be linearly parameterized.
By combining the fractional calculus and techniques of control and using a
Lyapunov function, this paper resolves the abovementioned problemand proposes
a observer-based output feedback controller for a class of uncertain nonlinear
fractional-order systems. More specifically, compared with the closely related
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works [16] and [23], the main contribution of the paper is the less conservative
and more convenient sufficient condition which guarantees the practical Mittag-
Leffler stability.
More precisely, the main result of this paper is to generalize the idea investi-

gated in [23] for the purpose of establishing the design of observer. We introduce
the notion of practical Mittag-Leffler stability of nonlinear fractional-order sys-
tems and so, the paper deals with a large class of nonlinear fractional-order
systems whose the nonlinear function is not necessarily Lipschitz. The nonlinear
parts satisfy the quasi-one-sided Lipschitz condition, which is less conservative
than the one-sided Lipschitz condition, while the uncertain part is bounded. Using
Lyapunov theory, we study the problem of designing an observer-based output
feedback controller in order to practically Mittag-Leffler stabilize the closed-loop
system. Uncertain delimited and sufficient conditions are given to insure the
practical Mittag-Leffler stability of the proposed observer. Finally, a separation
principle is established, so that we implement the control law with estimates
states given by the practical observer and we prove that the closed loop system is
practical Mittag-Leffler stable.
The paper is organized as follows: In Section 2, basic definitions are pro-

vided and the system description is given. The design of the proposed observer
by constructing Lyapunov functions is presented in Section 3. Moreover, the re-
quired assumptions and the statement of the main results are provided. Section 5
illustrates the validity of our design method in the selected numerical example.
Conclusions are drawn in Section 6.

2. System description and preliminary

In this section, some definitions and results related to the fractional calcu-
lus are presented. The literature contains different definitions of the fractional
derivative [18, 24]. In this paper, the Caputo definition is adopted
Definition 1 [7] Given an interval [𝑎, 𝑏] of R, the Riemann-Liouville fractional
integral of a function 𝑥 ∈ 𝐿1( [𝑎, 𝑏]) of order 𝛼 > 0 is defined by

𝐼𝛼𝑎 𝑥(𝑡) =
1

Γ(𝛼)

𝑡∫
𝑎

(𝑡 − 𝜏)𝛼−1𝑥(𝜏)d𝜏, 𝑡 ∈ [𝑎, 𝑏],

where Γ is the Gamma function. For 𝛼 = 0, 𝐼0𝑎 := 𝐼, the identity operator.

Definition 2 [7] Given an interval [𝑎, 𝑏] of 𝑅, the Caputo fractional derivative
of a function 𝑥 of order 𝛼 > 0 is defined by

𝐶𝐷𝛼
𝑎𝑥(𝑡) = 𝐼𝑚−𝛼𝑎 𝑥 (𝑚) (𝑡), 𝑡 ∈ [𝑎, 𝑏],
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where 0 < 𝑚−1 < 𝛼 ¬ 𝑚. When 0 < 𝛼 < 1, then the Caputo fractional derivative
of order 𝛼 of an absolutely continuous function 𝑥 on [𝑎, 𝑏] reduces to

𝐶𝐷𝛼
𝑡0
𝑥(𝑡) = 1

Γ(1 − 𝛼)

∫ 𝑡

𝑡0

(𝑡 − 𝜏)−𝛼𝑥′(𝜏)𝑑𝜏, 𝑡 ∈ [𝑎, 𝑏] . (1)

The Mittag-Leffler function plays the role of exponential function in the
fractional calculus and arises naturally in the expression of solution of fractional
order differential equations.

Definition 3 The Mittag-leffler function 𝐸𝛼 (𝑧) and the generalized Mittag-leffler
function 𝐸𝛼,𝛽 (𝑧) are defined as:

𝐸𝛼 (𝑧) =
∞∑︁
𝑘=0

𝑧𝑘

Γ(𝛼𝑘 + 1) , 𝛼 > 0.

For 𝛼 = 1, we have the exponential series. Similarly,

𝐸𝛼,𝛽 (𝑧) =
∞∑︁
𝑘=0

𝑧𝑘

Γ(𝛼𝑘 + 𝛽) , 𝛼, 𝛽 > 0.

Definition 4 The system {
𝐶𝐷𝛼

𝑡0
𝑥(𝑡) = 𝑔(𝑡, 𝑥), 𝑡  𝑡0,

𝑥(𝑡0) = 𝑥0,
(2)

is said to be globally uniformly practically Mittag-Leffler stable if there exist
positive scalars 𝑏, 𝜆 and 𝑟 such that the trajectory passing through any initial
state 𝑥0 at any initial time 𝑡0 evaluated at time 𝑡 satisfies:

‖𝑥(𝑡)‖ ¬
[
𝑚(𝑥0)𝐸𝛼 (−𝜆(𝑡 − 𝑡0)𝛼)

]𝑏
+ 𝑟 , ∀𝑡  𝑡0, (3)

with 𝑚(0) = 0, 𝑚(𝑥)  0 and 𝑚 is locally Lipschitz.

Lemma 1 [5] Suppose that:

𝐶𝐷𝛼
𝑡0
𝑚(𝑡) ¬ 𝜆𝑚(𝑡) + 𝑑, 𝑚(𝑡0) = 𝑚0, 𝑡  𝑡0  0,

where 𝜆, 𝑑 ∈ R. Then one has

𝑚(𝑡) ¬ 𝑚(𝑡0)𝐸𝛼 (𝜆(𝑡 − 𝑡0)𝛼) + 𝑑 (𝑡 − 𝑡0)𝛼𝐸𝛼,𝛼+1
(
𝜆(𝑡 − 𝑡0)𝛼

)
, ∀𝑡  𝑡0  0.
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Moreover, if 𝜆 < 0, then
𝑚(𝑡) ¬ 𝑚(𝑡0)𝐸𝛼

(
𝜆(𝑡 − 𝑡0)𝛼

)
+ 𝑑𝑀, ∀𝑡  𝑡0  0,

where 𝑀 = sup
𝑠0

(
𝑠𝛼𝐸𝛼,𝛼+1(𝜆𝑠𝛼)

)
.

Lemma 2 [8] Let 𝑥 be a vector of differentiable functions. Then, for any time
instant 𝑡  𝑡0 and for any scalar 𝛼 ∈ (0, 1), the following relation holds:

1
2
𝐶𝐷𝛼

𝑡0
(𝑥𝑇 (𝑡)𝑃𝑥(𝑡)) ¬ 𝑥𝑇 (𝑡)𝑃𝐶𝐷𝛼

𝑡0
𝑥(𝑡), (4)

where 𝑃 ∈ R𝑛×𝑛 is a constant square symmetric positive definite matrix.

Notation 1 Throughout the paper, 𝐴𝑇 means the transpose of 𝐴. 𝜆max(𝐴)
and 𝜆min(𝐴) denote the maximal and minimal real eigenvalues of a matrix 𝐴
respectively. 𝑃 > 0 means that the matrix 𝑃 is symmetric positive definite matrix.
𝐼 is an appropriately dimensioned identity matrix. 〈., .〉 is the inner product in
R𝑛, i.e., given 𝑥, 𝑦 ∈ R𝑛, then 〈𝑥, 𝑦〉 = 𝑥𝑇 𝑦 and ‖ ‖ being the Euclidean-norm in
R𝑛 defined by ‖𝑥‖ =

√︁
〈𝑥, 𝑥〉.

In this paper, we consider the following nonlinear fractional order system, for
all 𝑡  𝑡0 {

𝐶𝐷𝛼
𝑡0
𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝑓 (𝑡, 𝑥(𝑡)) + 𝐵𝜀(𝑡),

𝑦(𝑡) = 𝐶𝑥(𝑡), (5)

where 𝑡 ∈ R+, 𝑥 ∈ R𝑛 is the state, 𝑢 ∈ R𝑚 is the input, 𝑦 ∈ R𝑝 is the output,
𝜀 : R+ → R𝑝 is an unknown disturbance, 𝑓 (𝑡, 𝑥(𝑡)) represents the nonlinear
dynamics associated with the state vector with 𝑓 (𝑡, 0) = 0, and 𝐴, 𝐵 and 𝐶
correspond to the linear constant matrices of a system of appropriate dimensions.

Definition 5 [13] The function 𝑓 (𝑡, 𝑥) is quasi-one-sided Lipschitz in R𝑛 with a
one-sided Lipschitz constant matrix, that is,

〈𝑃 𝑓 (𝑡, 𝑥) − 𝑃 𝑓 (𝑡, 𝑥), 𝑥 − 𝑥〉 ¬ (𝑥 − 𝑥)𝑇𝑁 (𝑥 − 𝑥),∀𝑥, 𝑥 ∈ R𝑛, 𝑡 ∈ R, (6)
where 𝑃 is a symmetric positive-definite matrix and 𝑁 is a real symmetric matrix.

Remark 1 Note that when 𝑁 = 𝜌𝐼𝑛 with 𝜌 is a constant, the condition (6)
becomes the one-sided Lipschitz condition. It is then an extension of the one-
sided Lipschitz. Moreover, it is clear that a Lipschitz function with Lipschitz
constant 𝐿 is also a quasi one-sided Lipschitz function for any matrix 𝑃 > 0 with
one-sided constant matrix 𝑁 = 𝐿𝜆𝑚𝑎𝑥(𝑃) 𝐼𝑛.

Remark 2 The matrix 𝑁 in the quasi one-sided Lipschitz condition (6) is not
necessary to be a positive or negative definite matrix. The inequality (6) only
requires that the matrix 𝑁 is symmetric.
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3. Separation principle

The following assumption is introduced to design the proposed observer:

Assumption 1 The unknown disturbance 𝜀 is an essentially bounded func-
tion, i.e.

∃𝛿𝜀 > 0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ‖𝜀‖ , 𝑒𝑠𝑠 sup
𝑡0

‖𝜀(𝑡)‖ ¬ 𝛿𝜀 . (7)

Assumption 2 The pairs (𝐴,𝐶) is observable.

Assumption 3 The pairs (𝐴, 𝐵) is stabilizable.

Remark 3 Since (𝐴,𝐶) is observable, then there exists a gain matrix 𝐿 such
that for all positive definite symmetric matrix 𝑄, there exists a positive definite
symmetric matrix 𝑃 which is solution of the Lyapunov equation

(𝐴 − 𝐿𝐶)𝑇𝑃 + 𝑃(𝐴 − 𝐿𝐶) = −𝑄. (8)

3.1. Observer design

In this paragraph, we study the designing of an observer in order to have
the states of the uncertain nonlinear system. In practice, we cannot do the direct
measurement of all states of the system. In what follows, we try to build an
observer in order to ensure the stability of the system. We propose the following
stat observer:{

𝐶𝐷𝛼
𝑡0
𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝑓 (𝑡, 𝑥(𝑡)) + 𝐿 (𝑦(𝑡) − 𝐶𝑥(𝑡)),

�̂�(𝑡) = 𝐶𝑥(𝑡), (9)

where 𝐿 = [𝑙1, . . . , 𝑙𝑛]𝑇 a gain matrix such that 𝐴𝐿 := 𝐴− 𝐿𝐶 is Hurwitz and the
nonlinear function 𝑓 (𝑡, 𝑥(𝑡)) satisfying the condition (6).

Theorem 1 Consider the nonlinear system (5)with the quasi-one-sided Lipschitz
condition (6), under Assumption 1 and Assumption 2. If

𝜆min(𝑄) − 2𝜆max(𝑁) − 1 > 0, (10)

then the error dynamic 𝑒 = 𝑥 − 𝑥 is globally uniformly practically Mittag-Leffler
stable.

Proof. Let us consider the following Lyapunov function candidate:

𝑉 (𝑒(𝑡)) = 𝑒𝑇 (𝑡)𝑃𝑒(𝑡). (11)



PRACTICAL MITTAG-LEFFLER STABILITY OF QUASI-ONE-SIDED
LIPSCHITZ FRACTIONAL ORDER SYSTEMS 61

The dynamics of the observer error is expressed as follows:

𝐶𝐷𝛼
𝑡0
𝑒(𝑡) = (𝐴 − 𝐿𝐶)𝑒(𝑡) + 𝑓 (𝑡, 𝑥(𝑡)) − 𝑓 (𝑡, 𝑥(𝑡)) − 𝐵𝜀(𝑡). (12)

So
𝐶𝐷𝛼

𝑡0
𝑉 (𝑒(𝑡)) ¬ 𝑒𝑇 (𝑡)

(
𝐴𝑇𝐿𝑃 + 𝑃𝐴𝐿

)
𝑒(𝑡) + 2𝑒𝑇 (𝑡)𝑃

(
𝑓 (𝑡, 𝑥(𝑡)) − 𝑓 (𝑡, 𝑥(𝑡))

)
− 2𝑒𝑇 (𝑡)𝑃𝐵𝜀(𝑡)

¬ −𝑒𝑇 (𝑡)𝑄𝑒(𝑡) + 2𝑒𝑇 (𝑡)𝑃
(
𝑓 (𝑡, 𝑥(𝑡)) − 𝑓 (𝑡, 𝑥(𝑡))

)
− 2𝑒𝑇 (𝑡)𝑃𝐵𝜀(𝑡).

Then using (6), one can have

𝐶𝐷𝛼
𝑡0
𝑉 (𝑒(𝑡)) ¬ −𝑒𝑇 (𝑡)𝑄𝑒(𝑡) + 2𝑒𝑇 (𝑡)𝑁𝑒(𝑡) − 2𝑒𝑇 (𝑡)𝑃𝐵𝜀(𝑡)

¬ −(𝜆min (𝑄) − 2𝜆max(𝑁))‖𝑒(𝑡)‖2 − 2𝑒𝑇 (𝑡)𝑃𝐵𝜀(𝑡)
¬ −(𝜆min (𝑄) − 2𝜆max(𝑁))‖𝑒(𝑡)‖2 + 2‖𝑃‖‖𝐵‖‖𝜀(𝑡)‖‖𝑒(𝑡)‖
¬ −(𝜆min (𝑄) − 2𝜆max(𝑁))‖𝑒(𝑡)‖2 + 2𝛿𝜀‖𝑃‖‖𝐵‖‖𝑒(𝑡)‖. (13)

Let 𝜇 = 𝛿𝜀‖𝑃‖‖𝐵‖. Using the fact that

2𝜇‖𝑒(𝑡)‖ ¬ 𝜇2 + ‖𝑒(𝑡)‖2. (14)

By Equation (13) and (14), we obtain,

𝐶𝐷𝛼
𝑡0
𝑉 (𝑒(𝑡)) ¬ −

(
𝜆min (𝑄) − 2𝜆max(𝑁) − 1

)
‖𝑒(𝑡)‖2 + 𝜇2. (15)

Since 𝑃 is symmetric positive definite then, for all 𝑒 ∈ R𝑛,

𝜆min(𝑃)‖𝑒(𝑡)‖2 ¬ 𝑉 (𝑒(𝑡)) ¬ 𝜆max(𝑃)‖𝑒(𝑡)‖2. (16)

Using (15) and (16), we can obtain,

𝐶𝐷𝛼
𝑡0
𝑉 (𝑒(𝑡)) ¬ −𝜆𝑉 (𝑒(𝑡)) + 𝑟

with 𝜆 =
𝜆min(𝑄) − 2𝜆max(𝑁) − 1

𝜆max(𝑃)
and 𝑟 = 𝜇2.

Then, it follows from Lemma 1 that

𝑉 (𝑒(𝑡)) ¬ 𝑉 (𝑒0)𝐸𝛼
(
− 𝜆(𝑡 − 𝑡0)𝛼

)
+ 𝑟𝑀, ∀𝑡  𝑡0  0, (17)

where 𝑀 = sup
𝑠0

(𝑠𝛼𝐸𝛼,𝛼+1(−𝜆𝑠𝛼)).

(16) implies that on the one hand,

𝜆min(𝑃)‖𝑒(𝑡)‖2 ¬ 𝑉 (𝑒(𝑡)) (18)
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and on the other hand,
𝑉 (𝑒0) ¬ 𝜆max(𝑃)‖𝑒0‖2. (19)

So, from (17), (18) and (19), it follows that

𝜆min(𝑃)‖𝑒(𝑡)‖2 ¬ 𝜆max(𝑃)‖𝑒0‖2𝐸𝛼 (−𝜆(𝑡 − 𝑡0)𝛼) + 𝑟𝑀, ∀𝑡  𝑡0,

finally

‖𝑒(𝑡)‖ ¬
[
𝜆max(𝑃)
𝜆min(𝑃)

‖𝑒0‖2𝐸𝛼 (−𝜆(𝑡 − 𝑡0)𝛼)
] 1
2

+ 𝜇

√︄
𝑀

𝜆min(𝑃)
, ∀𝑡  𝑡0.

The last inequality is in the form of (3), so the error dynamic (12) is globally
uniformly practically Mittag-Leffler stable. 2

3.2. Global stabilization by state feedback

In this subsection, we establish a condition for the globally uniformly prac-
tically Mittag-Leffler stability of the nonlinear system (5). The state feedback
controller is given by

𝑢 = 𝐾𝑥, (20)

where 𝐾 = [𝑘1, . . . , 𝑘𝑛] such that 𝐴𝐾 := 𝐴 + 𝐵𝐾 is Hurwitz. Let 𝑆 be the
symmetric positive definite solution of the Lyapunov equation:

𝐴𝑇𝐾𝑆 + 𝑆𝐴𝐾 = −𝑄1, (21)

for all positive definite symmetric matrix 𝑄1. We suppose that the nonlinear
function 𝑓 (𝑡, 𝑥(𝑡)) satisfies the following condition:

〈𝑆 𝑓 (𝑡, 𝑥) − 𝑆 𝑓 (𝑡, 𝑥), 𝑥 − 𝑥〉 ¬ (𝑥 − 𝑥)𝑇𝑁1(𝑥 − 𝑥),∀𝑥, 𝑥 ∈ R𝑛, 𝑡 ∈ R, (22)

where 𝑁1 is a real symmetric matrix.

Theorem 2 Consider the nonlinear system (5)with the quasi-one-sided Lipschitz
condition (22), under Assumption 1 and Assumption 3. If

𝜆min (𝑄1) − 2𝜆max(𝑁1) − 1 > 0, (23)

then the origin of the closed loop system (5) by the feedback (20) is globally
uniformly practically Mittag-Leffler stable.

Proof. The closed loop system is given by

𝐶𝐷𝛼
𝑡0
𝑥(𝑡) = (𝐴 + 𝐵𝐾)𝑥(𝑡) + 𝑓 (𝑡, 𝑥(𝑡)) + 𝐵𝜀(𝑡). (24)
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Let us choose a Lyapunov functional candidate as follows

𝑊 (𝑥) = 𝑥𝑇𝑆𝑥. (25)

The 𝛼 derivative of𝑊 along the trajectories of (24) is given by
𝐶𝐷𝛼

𝑡0
𝑊 (𝑥(𝑡)) ¬ 𝑥𝑇 (𝑡) (𝐴𝑇𝐾𝑆 + 𝑆𝐴𝐾)𝑥(𝑡) + 2𝑥𝑇 (𝑡)𝑆 𝑓 (𝑡, 𝑥(𝑡)) + 2𝑥𝑇 (𝑡)𝑆𝐵𝜀(𝑡)

¬ −𝑥𝑇 (𝑡)𝑄1𝑥(𝑡) + 2𝑥𝑇 (𝑡)𝑆 𝑓 (𝑡, 𝑥(𝑡)) + 2𝑥𝑇 (𝑡)𝑆𝐵𝜀(𝑡),

Since 𝑓 (𝑡, 0) = 0, then using (22), one can have:
𝐶𝐷𝛼

𝑡0
𝑊 (𝑥(𝑡)) ¬ −𝑥𝑇 (𝑡)𝑄1𝑥(𝑡) + 2𝑥𝑇 (𝑡)𝑁1𝑥(𝑡) − 2𝑥𝑇 (𝑡)𝑆𝐵𝜀(𝑡)

¬ −(𝜆min (𝑄1) − 2𝜆max(𝑁1))‖𝑥(𝑡)‖2 − 2𝑥𝑇 (𝑡)𝑆𝐵𝜀(𝑡)
¬ −(𝜆min (𝑄1) − 2𝜆max(𝑁1))‖𝑥(𝑡)‖2 + 2‖𝑆‖‖𝐵‖‖𝜀(𝑡)‖‖𝑥(𝑡)‖
¬ −(𝜆min (𝑄1) − 2𝜆max(𝑁1))‖𝑥(𝑡)‖2 + 2𝛿𝜀‖𝑆‖‖𝐵‖‖𝑥(𝑡)‖. (26)

Let 𝜇1 = 𝛿𝜀‖𝑆‖‖𝐵‖. Using the fact that

2𝜇1‖𝑥(𝑡)‖ ¬ 𝜇21 + ‖𝑥(𝑡)‖2. (27)

By Equation (26) and (27), we obtain,
𝐶𝐷𝛼

𝑡0
𝑊 (𝑥(𝑡)) ¬ −(𝜆min (𝑄1) − 2𝜆max(𝑁1) − 1)‖𝑥(𝑡)‖2 + 𝜇21.

Since
𝜆min(𝑆)‖𝑥(𝑡)‖2 ¬ 𝑊 (𝑥(𝑡)) ¬ 𝜆max(𝑆)‖𝑥(𝑡)‖2.

As in the proof of Theorem 1, we have,
𝐶𝐷𝛼

𝑡0
𝑊 (𝑥(𝑡)) ¬ −𝜆𝑊 (𝑥(𝑡)) + 𝑟,

with 𝜆1 = 𝜆min (𝑄1)−2𝜆max (𝑁1)−1
𝜆max (𝑆) and 𝑟1 = 𝜇21. By the same way we obtain:

‖𝑥(𝑡)‖ ¬
[
𝜆max(𝑆)
𝜆min(𝑆)

‖𝑥(𝑡0)‖2𝐸𝛼 (−𝜆(𝑡 − 𝑡0)𝛼)
] 1
2

+ 𝜇1

√︄
𝑀

𝜆min(𝑆)
, , ∀𝑡  𝑡0.

So, the closed loop system (5) by the feedback (20) is globally uniformly practi-
cally Mittag-Leffler stable. 2

Remark 4 For the same class of systems (5) with 𝛼 = 1, the control problem of
quasi-one-sided Lipschitz nonlinear systems are studied in [10]. However, those
state feedback controllers cannot be immediately applied to systems considered
in this paper, whereas the converse is true.
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4. Observer-based control stabilization

The design of the observer-based controller is established in the subsection.
We implement the control law with estimate states. The observer-based controller
is given by:

𝑢 = 𝐾𝑥, (28)
where 𝑥 is provided by the observer (9).

Theorem 3 Suppose that conditions (6) and (22) and Assumption 1 to Assump-
tion 3 are satisfied. Moreover the conditions (10) and (23) hold. Then the origin
of the closed loop system (5) by the feedback (28) is globally uniformly practically
Mittag-Leffler stable.

Proof. The closed loop system in the (𝑒(𝑡), 𝑥(𝑡)) coordinates can be repre-
sented by:

𝐶𝐷𝛼
𝑡0
𝑥(𝑡) = 𝐴𝐾𝑥(𝑡) + 𝐵𝐾𝑒(𝑡) + 𝑓 (𝑡, 𝑥(𝑡)) + 𝐵𝜀(𝑡),

𝐶𝐷𝛼
𝑡0
𝑒(𝑡) = 𝐴𝐿𝑒(𝑡) + 𝑓 (𝑡, 𝑥(𝑡)) − 𝑓 (𝑡, 𝑥(𝑡)) − 𝐵𝜀(𝑡).

(29)

Let
𝑈 (𝑒, 𝑥) = 𝜃𝑉 (𝑒) +𝑊 (𝑥),

where 𝑉 and 𝑊 are given by (11) and (25) respectively and 𝜃 > 0 is to be
determined. Using the above results, we get

𝐶𝐷𝛼
𝑡0
𝑈 (𝑒(𝑡), 𝑥(𝑡)) ¬ −𝜃 (𝜆min(𝑄) − 2𝜆max(𝑁) − 1)‖𝑒(𝑡)‖2 + 𝜃𝜇2

−(𝜆min (𝑄1) − 2𝜆max(𝑁1) − 1)‖𝑥(𝑡)‖2 + 𝜇21
+2| |𝑆 | | | |𝐾 | | | |𝐵 | | | |𝑒(𝑡) | | | |𝑥(𝑡) | |.

Now using the fact that for all 𝜃1 > 0, we have

2| |𝑥(𝑡) | | | |𝑒(𝑡) | | ¬ 𝜃1 | |𝑥(𝑡) | |2 +
1
𝜃1

| |𝑒(𝑡) | |2,

we deduce that
𝐶𝐷𝛼

𝑡0
𝑈 (𝑒(𝑡), 𝑥(𝑡)) − 𝜃𝜇2 − 𝜇21 ¬ −𝜃𝜈(𝑄, 𝑁)‖𝑒(𝑡)‖2 − 𝜈(𝑄1, 𝑁1) | |𝑥(𝑡) | |2

+ 𝜃1 | |𝑆 | | | |𝐾 | | | |𝐵 | | | |𝑥(𝑡) | |2 +
1
𝜃1

| |𝑆 | | | |𝐾 | | | |𝐵 | | | |𝑒(𝑡) | |2,

where {
𝜈(𝑄, 𝑁) = 𝜆min(𝑄) − 2𝜆max(𝑁) − 1,

𝜈(𝑄1, 𝑁1) = 𝜆min(𝑄1) − 2𝜆max(𝑁1) − 1.
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Now, select 𝜃1 =
𝜈(𝑄1, 𝑁1)
2| |𝑆 | | | |𝐾 | | | |𝐵| | , we obtain

𝐶𝐷𝛼
𝑡0
𝑈 (𝑒(𝑡), 𝑥(𝑡)) ¬ −

{
𝜃𝜈(𝑄, 𝑁) − 2| |𝑆 | |

2 | |𝐾 | |2 | |𝐵 | |2
𝜈(𝑄1, 𝑁1)

}
‖𝑒(𝑡)‖2

− 𝜈(𝑄1, 𝑁1)
2

| |𝑥(𝑡) | |2 + 𝜃𝜇2 + 𝜇21

¬ −
{
𝜃𝜈(𝑄, 𝑁) − 2| |𝑆 | |

2 | |𝐾 | |2 | |𝐵 | |2
𝜈(𝑄1, 𝑁1)

}
‖𝑒(𝑡)‖2 + 𝜃𝜇2 + 𝜇21.

Finally we select 𝜃 such that

𝜃𝜈(𝑄, 𝑁) − 2| |𝑆 | |
2 | |𝐾 | |2 | |𝐵 | |2
𝜈(𝑄1, 𝑁1)

> 0,

So, there exists 𝜆 > 0 such that
𝐶𝐷𝛼

𝑡0
𝑈 (𝑒(𝑡), 𝑥(𝑡)) ¬ −𝜆𝑈 (𝑒(𝑡), 𝑥(𝑡)) + 𝑟2,

with 𝑟2 = 𝜃𝜇2 + 𝜇21.
As in the proofs of Theorem 1 and Theorem 2, we deduce that the origin of

the closed loop system (5) by the feedback (28) is globally uniformly practically
Mittag-Leffler stable. 2

Remark 5 In [16,23] the authors consider a class of nonlinear systems by means
of quasi-one-sided Lipschitz condition. This paper is the extension of that one
proposed by [16, 23] to a class of uncertain systems. We derived a separation
principle for the class of systems given by (5). Compare with [23], the system (5)
is more general, and the sufficient conditions in Theorem 3 are less restrictive to
ensure the global uniformly practically Mittag-Leffler stability.

5. Numerical example

Let us consider the system (5), where

𝐴 =


1.4 −1 0
2.6 2.5 0
0 0 −2

 , 𝐵 =

[
0 1 0
0 0 1

]T
, 𝐶 =

[
0 0 1
1 0 0

]
,

𝑓 (𝑡, 𝑥) =
[
0 0 −𝑥1/33

]T
and 𝜀(𝑡) =

[
1.2 sin 10𝑡 0

]𝑇
.
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By a similar argument as that in Example 4.2 in [29], it is easy to check that
𝑓 (𝑡, 𝑥) is not a Lipschitz function. Select

𝐾 =

[
−42.44 −13.1 0
0 0 −1

]
and 𝐿 =

[
0 0 −1
12.9 −42.25 0

]𝑇
,

𝐴𝐿 and 𝐴𝐾 are Hurwitz. We also choose the matrices

𝑄 =

[2 0 0
0 4 0
0 0 3

]
, 𝑄1 =

[2 0 0
0 2 0
0 0 2

]
.

The solutions of the Lyapunov equations (8) and (21) are given by

𝑃 =


0.5203 1.7284 0
1.7284 7.5328 0
0 0 0.5000

 , 𝑆 =


0.1611 −0.8532 0
−0.8532 7.5328 0
0 0 1.000

 .
Let us now check the quasi-one-sided Lipschitz condition (6) and (22).
For any 𝑥 =

[
𝑥1 𝑥2 𝑥3

]T and 𝑥 = [
𝑥1 𝑥2 𝑥3

]T with 𝑥3 ≠ 𝑥3, the mean-value
theorem yields a nonzero. Let 𝜉 ∈ (min {𝑥3, 𝑥3} ,max {𝑥3, 𝑥3}), such that

〈𝑃 𝑓 (𝑡, 𝑥) − 𝑃 𝑓 (𝑡, 𝑥), 𝑥 − 𝑥〉 = 1
2

[
−𝑥1/33 −

(
−𝑥1/33

)]
(𝑥3 − 𝑥3)

= −1
6
𝜉−2/3 |𝑥3 − 𝑥3 |2 ¬ 0

and

〈𝑆 𝑓 (𝑡, 𝑥) − 𝑆 𝑓 (𝑡, 𝑥), 𝑥 − 𝑥〉 =
[
−𝑥1/33 −

(
−𝑥1/33

)]
(𝑥3 − 𝑥3)

= −1
3
𝜉−2/3 |𝑥3 − 𝑥3 |2 6 0.

Then, 𝑓 (𝑡, 𝑥) obeys the quasi-one-sided Lipschitz condition (6) and (22) by taking
𝑁 = 0 and 𝑁1 = 0.
We plot, in Figure 1, the simulation results of the output feedback control

with the initial condition 𝑥(0) =
[
0.5 −0.6 1

]T, 𝑥(0) = [
0.7 −0.4 1, 1

]T and
𝛼 = 0.9. From Figure 1, we can see that all of the real states, the estimate and the
estimation errors are globally uniformly practically Mittag-Leffler stable.
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Figure 1: The simulation results via output feedback control

6. Conclusions

In this paper, we have proposed a separation principle for a class of fractional-
order systems. The nonlinearities of this class of systems satisfy the quasi-one-
sided Lipschitz condition while the uncertain term is bounded. Since the origin
is not supposed to be an equilibrium point, we proposed a practical observer, a
state feedback, and we proved that the observer based controller asserts practical
Mittag-Leffler stability of the closed loop system. Nevertheless, conditions are
less restrictive which makes the design process simple and tractable. Finally, as
example, we applied the present results to a nonlinear fractional-order system
with a disturbance.



68 I. BASDOURI, S. KASMI, J. LERBET

References

[1] M. Abbaszadeh and H.J. Marquez: Robust 𝐻∞ observer design for
sampled-data Lipschitz nonlinear systems with exact and Euler approximate
models. Automatica, 44(3), (2008), 799–806. DOI: 10.1016/j.automatica.
2007.07.021.

[2] M. Abbaszadeh rm and H.J. Marquez: Nonlinear observer design for
one-sided Lipschitz systems. In American Control Conference, Baltimore,
USA, (2010), 5284–5289. DOI: 10.1109/ACC.2010.5530715.

[3] R.L. Bagley and R.A. Calico: Fractional order state equations for the
control of viscoelastically damped structures. Journal of Guidance, Control,
and Dynamics, 14(2), (1991), 304–311. DOI: 10.2514/3.20641.

[4] A. Barbata, M. Zasadzinski, H.S. Ali, and H. Messaoud: Exponential
observer for a class of one-sided Lipschitz stochastic nonlinear systems.
IEEE Transactions on Automatic Control, 60(1), (2015), 259–264. DOI:
10.1109/TAC.2014.2325391.

[5] S.K. Choi, K.B. Kang, and N. Koo: Stability for Caputo fractional dif-
ferential systems. Abstract and Applied Analysis, 2014 (2014), 1–6. DOI:
10.1155/2014/631419.

[6] J.P. Clerc, A.M.S. Tremblay, G. Albinet, and C. Mitescu: AC response
of fractal networks. Journal de Physique Letters, 45(19), (1984), 913–924.
DOI: 10.1051/jphyslet:019840045019091300.

[7] K. Diethelm: The Analysis of Fractional Differential Equations, an Appli-
cation Oriented, Exposition Using Differential Operators of Caputo Type.
Lecture Notes in Mathematics no. 2004, Springer, Heidelbereg, 2010.

[8] M.A. Duarte-Mermoud, N. Aguila-Camacho, J.A. Gallegos, and
R. Castro-Linares: Using general quadratic Lyapunov functions to prove
Lyapunov uniform stability for fractional order systems. Communications
in Nonlinear Science and Numerical Simulation, 22(1-3), (2015), 650–659.
DOI: 10.1016/j.cnsns.2014.10.008.

[9] T. Fajraoui, B. Ghanmi, F.Mabrouk, and F. Omri: Mittag-Leffler stability
analysis of a class of homogeneous fractional systems. Arcvives of Control
Sciences, 31(2), (2021), 401–415. DOI: 10.24425/acs.2021.137424.

[10] F. Fu, M. Hou, and G. Duan: Stabilization of quasi-one-sided Lipschitz
nonlinear systems. IMA Journal of Mathematical Control and Information,
30, (2013), 169–184. DOI: 10.1093/imamci/dns023.

https://doi.org/10.1016/j.automatica.2007.07.021
https://doi.org/10.1016/j.automatica.2007.07.021
https://doi.org/10.1109/ACC.2010.5530715
https://doi.org/10.2514/3.20641
https://doi.org/10.1109/TAC.2014.2325391
https://doi.org/10.1155/2014/631419
https://doi.org/10.1051/jphyslet:019840045019091300
https://doi.org/10.1016/j.cnsns.2014.10.008
https://doi.org/10.24425/acs.2021.137424
https://doi.org/10.1093/imamci/dns023


PRACTICAL MITTAG-LEFFLER STABILITY OF QUASI-ONE-SIDED
LIPSCHITZ FRACTIONAL ORDER SYSTEMS 69

[11] X. Gao and J.B. Yu: Synchronization of two coupled fractional-order
chaotic oscillators. Chaos, Solitons & Fractals, 26(1), (2005), 141–145.
DOI: 10.1016/j.chaos.2004.12.030.

[12] L.Gaul, P.Klein, andS.Kemple: Damping description involving fractional
operators.Mechanical Systems and Signal Processing, 5(2), (1991), 81–88.
DOI: 10.1016/0888-3270(91)90016-X.

[13] Guang-Da Hu: A note on observer for one-sided Lipschitz non-linear sys-
tems. IMA Journal of Mathematical Control and Information, 25(3), (2008),
297–303. DOI: 10.1093/imamci/dnm024.

[14] Guang-Da Hu: Observers for one-sided Lipschitz nonlinear systems. IMA
Journal of Mathematical Control and Information, 23(4), (2006), 395–401.
DOI: 10.1093/imamci/dni068.

[15] M. Ichise, Y. Nagayanagi and T. Kojima: An analog simulation of non-
integer order transfer functions for analysis of electrode processes. Jour-
nal of Electroanalytical Chemistry and Interfacial Electrochemistry, 33(2),
(1971), 253–265. DOI: 10.1016/S0022-0728(71)80115-8.

[16] A. Jmal, O. Naifar, A. Ben Makhlouf, N. Derbel, andM.A. Hammami:
On observer design for nonlinear Caputo fractional-order systems. Asian
Journal of Control, 20(5), (2018), 1–8. DOI: 10.1002/asjc.1645.

[17] M. Karkhane andM. Pourgholi: Adaptive observer design for one sided
Lipschitz class of nonlinear systems. Modares Journal of Electrical Engi-
neering, 11(4), (2015), 45–51.

[18] A.A.Kilbas,H.M. Srivastava, and J.J. Trujillo:Theory and Applications
of Fractional Differential Equations. North-Holland Mathematics Studies,
204 Elsevier Science B.V., Amsterdam, 2006.

[19] N.Makris andM.C. Constantinou: Fractional-derivative Maxwell model
for viscous dampers. Journal of Structural Engineering, 117(9), (1991),
2708–2724. DOI: 10.1061/(ASCE)0733-9445(1991)117:9(2708).

[20] T.E. McAdams, A. Lackermeier, J.A. McLaughlin, D. Macken, and
J. Jossinet: The linear and non-linear electrical properties of the electrode-
electrolyte interface.Biosensors and Bioelectronics, 10(1-2), (1995), 67–74.
DOI: 10.1016/0956-5663(95)96795-Z.

[21] Muhafzan, A. Nazra, L. Yulianti, Zulakmal, and R. Revina: On
LQ optimization problem subject to fractional order irregular singular
systems. Archives of Control Sciences, 30(4), (2020), 745–756. DOI:
10.24425/acs.2020.135850.

https://doi.org/10.1016/j.chaos.2004.12.030
https://doi.org/10.1016/0888-3270(91)90016-X
https://doi.org/10.1093/imamci/dnm024
https://doi.org/10.1093/imamci/dni068
https://doi.org/10.1016/S0022-0728(71)80115-8
https://doi.org/10.1002/asjc.1645
https://doi.org/10.1061/(ASCE)0733-9445(1991)117:9(2708)
https://doi.org/0.1016/0956-5663(95)96795-Z
https://doi.org/10.24425/acs.2020.135850


70 I. BASDOURI, S. KASMI, J. LERBET

[22] O.Naifar,A. BenMakhlouf, andM.A.Hammami: On observer design for
a class of nonlinear systems including unknown time-delay.Mediterranean
Journal of Mathematics, 13(5), (2016), 2841–2851. DOI: 10.1007/S00009-
015-0659-3.

[23] O. Naifar, A. BenMakhlouf,M.A. Hammami, andL. Chen: Global prac-
tical Mittag Leffler stabilization by output feedback for a class of nonlinear
fractional-order systems.Asian Journal of Control, 20(3), (2018), 1–9. DOI:
10.1002/asjc.1576.

[24] I. Podlubny: Fractional Differential Equations. Academic Press, San
Diego, 1999.

[25] C. Yin, X. Huang, S. Dadras, Y-H Cheng, J. Cao, H. Malek, and
J. Mei: Design of optimal lighting control strategy based on multi-variable
fractional-order extremum seeking method. Information Sciences, 465
(2018), 38–60. DOI: 10.1016/j.ins.2018.06.059.

[26] C. Yin, Y.Q. Chen and M. Zhong: Fractional-order sliding mode based
extremum seeking control of a class of nonlinear systems. Automatica, bf
50(12), (2014), 3173–3181. DOI: 10.1016/j.automatica.2014.10.027.

[27] A. Zemouche and M. Boutayeb: Observer synthesis method for Lips-
chitz nonlinear discrete-time systems with time-delay: An LMI approach.
Applied Mathematics and Computation, 218(2), (2011), 419–429. DOI:
10.1016/j.amc.2011.05.081.

[28] W. Zhang, H. Su, F. Zhu and G. Azar: Unknown input observer design for
one-sided Lipschitz nonlinear systems. Nonlinear Dynamics, 79(2), (2015),
1469–79. DOI: 10.1007/s11071-014-1754-x.

[29] Y. Zhao, J. Tao and N.Z. Shi: A note on observer design for one-sided
Lipschitz nonlinear systems. Systems & Control Letters, 59(1), (2010), 66–
71. DOI: 10.1016/j.sysconle.2009.11.009.

https://doi.org/10.1007/S00009-015-0659-3
https://doi.org/10.1007/S00009-015-0659-3
https://doi.org/10.1002/asjc.1576
https://doi.org/10.1016/j.ins.2018.06.059
https://doi.org/10.1016/j.automatica.2014.10.027
https://doi.org/10.1016/j.amc.2011.05.081
https://doi.org/10.1007/s11071-014-1754-x
https://doi.org/10.1016/j.sysconle.2009.11.009

	I. Basdouri, S. Kasmi, J. Lerbet: Practical Mittag-Leffler stability of quasi-one-sided Lipschitz fractional order systems

