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Mass Spring Systems (MSS) are often used to simulate the behavior of deformable
objects, for example in computer graphics (modeling clothes for virtual characters) or
in medicine (surgical simulators that facilitate the planning of surgical operations) due
to their simplicity and speed of calculation. This paper presents a new, two-parameter
method (TP MSS) of determining the values of spring coefficients for this model.
This approach can be distinguished by a constant parameter which is calculated once
at the beginning of the simulation, and a variable parameter that must be updated
at each simulation step. The value of this variable parameter depends on the shape
changes of the elements forming the mesh of the simulated object. The considered
mesh is built of elements in the shape of acute-angled triangles. The results obtained
using the new model were compared to FEM simulations and the Van Gelder model.
The simulation results for the new model were also compared with the results of the
bubble inflation test.

1. Introduction

Numerical simulations based on the MSS (Mass Spring System) method are
successfully used in computer graphics. It owes its success to simplicity and ease of
implementation and the calculation speed makes it suitable for real-time simulation.
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Two approaches to MSS type simulation are known. The first approach is referred
to as position-based [1] and it focuses on the speed of calculations at the expense
of lower accuracy. It is mainly used for simulations where visual effects are the
most important, for example for modeling clothes [2–4]. The second approach is
referred to as physically-based and it provides a greater accuracy.

The physically-based approaches to simulate deformable objects used con-
tinuum mechanical formulations where the governing equations were discretized
and solved using numerical integration. An overview of physically-based (not just
MSS) methods can be found in [5]. The MSS method has also found its applications
in medicine. Based on this method, surgical simulators are created for planning
and reviewing the effects of surgical operations, since simulation speed is highly
desirable for this kind of simulations. A non-linear mass-spring model was also
developed [6] in order to increase the accuracy of the simulation of soft tissue
behavior and thus their realism.

In [7], an improved realistic mass-spring model is presented, which is mainly
based on the three-dimensional theory of non-linear anisotropic elasticity of finite
strains, used to simulate surgical operations based on virtual reality. In [8], a
virtual pneumoperitoneum method was proposed that simulates the movement
of the abdominal wall and viscera through a pneumoperitoneum based on mass-
spring-damper (MSDM) models for planning laparoscopic surgeries. The paper [9]
presents the development of a biomechanical model of large soft organs to simulate
the interaction of the surgical gripper and the spleen in real time. In [10], a physical
model with a new multi-component conical spring was proposed, which replaces
the cylindrical spring of the traditional mass-spring model for simulating soft tissue
virtual surgery. Paper [11] presents a virtual soft tissue cutting simulation system
based on the mass-spring model for virtual surgery.

The scope of applicability of the MSS method is not limited to computer
graphics and medical applications. In [12, 13] one can find examples of using this
method to simulate the operation of airbags numerically.

The key issue in the simulation of real objects is the translation of their
physical parameters, such as Young’s modulus, into the parameters of the cre-
ated MSS model (stiffness of the edges of the elements forming the mesh). One
of the popular formulas used for this purpose is the formula proposed by Van
Gelder [14], but the results obtained with it differ slightly from those obtained with
the help of FEM. For example, in [15], aortic valve modeling was compared using
MSS (thin flexible membrane based of Van Gelder formula) with FEM methods.
Although the FEM method proved to be somewhat more accurate, the MSS cal-
culations were significantly accelerated. In this work, the authors show that the
newly proposed formula, at the expense of a certain complication of the model,
gives results closer to those obtained with the help of both FEM and through the
experiment.
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2. Related work

In order to carry out a numerical simulation based on the MSS model, the
physical parameters such as stiffness and a damping factor of the tested material
must be replaced by the parameters appropriate for the model. There are two main
methods for obtaining parameters of the MSS model (stiffness) from the physical
properties of a material. The first one involves the use of experimental data, often
in the form of video films showing the behavior of the test sample and such an
adaptation of the spring coefficients as to obtain the most accurate representation
of its actual behavior during the simulation. This adaptation is obtained by iterative
route often using genetic algorithms [16]. The advantage of this method is there-
fore a faithful representation of the tested, real object. The disadvantage of this
solution is due to the fact that it is closely matched to the specific material and the
specific model being tested. Such an approach limits the possibility of using the
method when one wants to introduce changes in the material or the experimental
environment [17]. The experiment must then be run again to recalibrate the model.

The second approach is an analytical solution based on the physical properties
of the material. A flat flexible membrane can be discretized in two ways. The first
simple way is to use a triangular mesh which is made of one type of elastic elements
(Fig. 1a).

(a) (b)

Fig. 1. Types of meshes used in 2D cases: (a) triangular mesh with one type of elastic elements
(springs); (b) quadrangular mesh with additional face diagonal elastic elements (blue) [17]

Quadrangular mesh with two types of springs such as edge springs and face
diagonal springs (as shown in Fig. 1b) are rarely used. These two types of elastic
elements may differ in their properties, i.e., the values of spring and damping
coefficients. Different formulas for the values of spring coefficients for these two
types of springs can be found in the following works: [18–20]. For triangular
meshes, the spring coefficient can be calculated from the expression proposed by
Van Gelder [14]:

𝑘𝑐 =

𝑛∑︁
𝑖=1

𝐸𝑡

1 + 𝜈

|𝑇𝑖 |
𝑐2 + 𝐸𝑡𝜈

1 − 𝜈2
𝑎2
𝑖
+ 𝑏2

𝑖
− 𝑐2

𝑖

8 |𝑇𝑖 |
, (1)
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with 𝜈 – the Poisson’s ratio; 𝐸 – Young’s modulus of the simulated material;
𝑡 – material thickness, 𝑎, 𝑏, 𝑐 – respective sides lengths of a triangular element;
𝑇𝑖 – 𝑖-th triangle; |𝑇𝑖 | – surface area of the 𝑖-th triangle, 𝑛 = 2 for 2D case (Fig. 2).
In a simplified form, for 𝜈 = 0, this formula takes the form [14]:

𝑘𝑐 =

𝑛∑︁
𝑖=1

𝐸𝑡
|𝑇𝑖 |
𝑐2 . (2)

Fig. 2. Designations used in the Van Gelder model [14]

In the case of triangular meshes, a different, new approach was also proposed
in the paper [19]. The spring coefficient can be calculated from the expression:

𝑘𝑐 =

𝑛∑︁
𝑖=1

𝐸𝑡

√
3

4
. (3)

The formula is correct provided that 𝜈 =
1
3

and the triangle is equilateral
(Fig. 1a). For non-equilateral triangles, this formula can be modified to [19]:

𝑘𝑐 =

𝑛∑︁
𝑖=1

𝐸𝑡

√
3

4
|𝑇𝑖 |
|𝑇0 |

, (4)

where |𝑇0 | is the area of the equilateral triangle with side length 𝑐 [19].

3. The proposed two-parameter model

A new model was proposed based on slightly different assumptions. The used
geometrical parameters of the analyzed single triangle are shown in Fig. 3. In Fig. 3,
the sides of a triangular element are marked as 𝑎, 𝑏, 𝑐, while angle measures are
marked as 𝛼, 𝛽, 𝛾 and the heights of a triangle perpendicular to its sides are marked
ℎ𝑎, ℎ𝑏, ℎ𝑐, respectively.
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Fig. 3. A triangular element with marked angles, sides and one example height

Let the considered triangular element (element in the shape of acute-angled
triangle) be a part of a rectangular piece of material, stretched in two perpendicular
directions (see Fig. 4) (horizontal and vertical).

Fig. 4. A rectangular piece of material stretched in two perpendicular
directions, by external forces, with a triangular element inside. 𝐹𝑛

𝑏
–

normal force to edge 𝑏; 𝐹𝜏
𝑏

– tangent force to the edge 𝑏

The value of the force resulting from the extension of the side 𝑏 (in horizontal
direction) of the triangular element can be represented by the formula:

𝐹𝑏 = 𝑘𝑏Δ𝑏 = 𝑘𝑏𝜀
𝜏
𝑏𝑏0 , (5)

where, 𝑘𝑏 is the spring coefficient, Δ𝑏 is the change in the length of the side 𝑏, 𝑏0
is the initial length of side 𝑏, 𝜀𝜏𝑏 is the tangent strain of the side 𝑏. The values of
forces for sides 𝑎 and 𝑐 can be presented in a similar way. As a result of stretching
a rectangular piece of material, a spring force perpendicular to the side 𝑏 (𝐹𝑛

𝑏 ) will
appear. Since the area of the triangular element under consideration is equal to
half the surface area of the rectangular material fraction, therefore this area will be
responsible for half the value of the 𝐹𝑛

𝑏 force. The part of this force resulting from
the stretching of the triangular element can be represented as:

0.5𝐹𝑛
𝑏 = (𝐹𝑎 sin 𝛾 + 𝐹𝑐 sin𝛼) =

(
𝑘𝑎𝜀

𝜏
𝑎𝑎0 sin 𝛾 + 𝑘𝑐𝜀

𝜏
𝑐 𝑐0 sin𝛼

)
. (6)
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The values of forces for sides 𝑎 and 𝑐 can be presented in a similar way. As a
result of the action of the force 𝐹𝑛

𝑏 , the following stress will appear:

𝜎𝑛
𝑏 =

𝐹𝑛
𝑏

𝑏0𝑡
=

𝐸

1 − 𝜈2
(
𝜀𝑛𝑏 + 𝜈𝜀𝜏𝑏

)
, (7)

where 𝜎𝑛
𝑏 is normal stress to side 𝑏, 𝑡 is material thickness, 𝐸 is Young’s modulus,

𝜈 is the Poisson’s ratio, 𝜀𝑛𝑏 is normal strain to side 𝑏, 𝜀𝑛𝑏 can be represented as:

𝜀𝑛𝑏 =
Δℎ𝑏

ℎ𝑏
, (8)

where Δℎ𝑏 is a change in the height (ℎ𝑏) of the triangular element. Similarly, stress
values for sides 𝑎 and 𝑐 can be represented. In order to simplify the formula, the
following designation was adopted:

𝑞𝑏 = 𝜀𝑛𝑏 + 𝜈𝜀𝜏𝑏 , (9)

where 𝑞𝑏 will be called the variable factor of the spring coefficient of the side 𝑏.
Using the equations (6), (7), (9) the values of the spring coefficients for individual
sides of the triangular element can be represented as:

𝑘𝑎 =
𝐸𝑡

1 − 𝜈2
−𝑎0𝑞𝑎 sin𝛼 + 𝑏0𝑞𝑏 sin 𝛽 + 𝑐0𝑞𝑐 sin 𝛾

4𝑎0𝜀
𝜏
𝑎 sin 𝛽 sin 𝛾

,

𝑘𝑏 =
𝐸𝑡

1 − 𝜈2
𝑎0𝑞𝑎 sin𝛼 − 𝑏0𝑞𝑏 sin 𝛽 + 𝑐0𝑞𝑐 sin 𝛾

4𝑏0𝜀
𝜏
𝑏

sin𝛼 sin 𝛾
,

𝑘𝑐 =
𝐸𝑡

1 − 𝜈2
𝑎0𝑞𝑎 sin𝛼 + 𝑏0𝑞𝑏 sin 𝛽 − 𝑐0𝑞𝑐 sin 𝛾

4𝑐0𝜀
𝜏
𝑐 sin𝛼 sin 𝛽

.

(10)

The total value of given spring coefficients will be equal to the sum of the
coefficients of neighboring triangular elements (similar to the Van Gelder Model,
see Fig. 2 and Fig. 5).

Fig. 5. Two adjacent triangular elements with their sides marked
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After trigonometric transformations, the system of equations (10) can be writ-
ten as:

𝑘 𝑡𝑎 =

𝑛∑︁
𝑖=1

𝐸𝑡

8
(
1 − 𝜈2) |𝑇0𝑖 |

−𝑎2
0𝑖𝑞𝑎𝑖 + 𝑏2

0𝑖𝑞𝑏𝑖 + 𝑐2
0𝑖𝑞𝑐𝑖

𝜀𝜏
𝑎𝑖

,

𝑘 𝑡𝑏 =

𝑛∑︁
𝑖=1

𝐸𝑡

8
(
1 − 𝜈2) |𝑇0𝑖 |

𝑎2
0𝑖𝑞𝑎𝑖 − 𝑏2

0𝑖𝑞𝑏𝑖 + 𝑐2
0𝑖𝑞𝑐𝑖

𝜀𝜏
𝑏𝑖

,

𝑘 𝑡𝑐 =

𝑛∑︁
𝑖=1

𝐸𝑡

8
(
1 − 𝜈2) |𝑇0𝑖 |

𝑎2
0𝑖𝑞𝑎𝑖 + 𝑏2

0𝑖𝑞𝑏𝑖 − 𝑐2
0𝑖𝑞𝑐𝑖

𝜀𝜏
𝑐𝑖

,

(11)

where 𝑘 𝑡𝑎, 𝑘 𝑡𝑏, 𝑘 𝑡𝑐 correspond to total spring coefficients, |𝑇0𝑖 | is the initial surface
area of the 𝑖-th element and 𝑖 ∈ [1, 2]. A fixed parameter was defined for the spring
coefficient (12):

𝑄𝑖 =
𝐸𝑡

8
(
1 − 𝜈2) |𝑇0𝑖 |

, (12)

then the example equation from the equation system (11) can be written as:

𝑘 𝑡𝑏 =

𝑛∑︁
𝑖=1

𝑄𝑖𝑞𝑖 , (13)

where 𝑞𝑖 is variable parameter for the spring coefficient (14):

𝑞𝑖 =
𝑎2

0𝑖𝑞𝑎𝑖 − 𝑏2
0𝑖𝑞𝑏𝑖 + 𝑐2

0𝑖𝑞𝑐𝑖

𝜀𝜏
𝑏𝑖

. (14)

To sum up, the formula for the value of the spring coefficient consists of the
product of two parts (13) (two-parameter model): a fixed part (12), which can be
calculated once at the beginning of the simulation (𝑄𝑖), and a variable part (𝑞𝑖),
which must be updated at each time step (14). If the following condition is met:

𝜀𝜏𝑎 = 𝜀𝜏𝑏 = 𝜀𝜏𝑐 (15)

also if the strain values are equal to zero, the formula presented above (13) simplifies
to the form:

𝑘 𝑡𝑏 =

𝑛∑︁
𝑖=1

𝑄0𝑖

(
𝑎2

0𝑖 − 𝑏2
0𝑖 + 𝑐2

0𝑖

)
, (16)

where:
𝑄0𝑖 =

𝐸𝑡

8(1 − 𝜈) |𝑇0𝑖 |
. (17)

This additional formula (16) can be used to replace the basic equation (13) to
avoid division by zero when there is no strain in the direction under consideration.
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4. Numerical experiment

In order to verify the correctness of the developed model, a numerical experi-
ment was carried out. In this experiment, the sphere subjected to internal pressure
was examined. Due to the symmetry conditions of the examined object, it was
decided to consider only a segment of the sphere (see Fig. 6).

Fig. 6. A sphere made of flexible material
with a marked segment that has been tested.

P – point for measuring the sphere radius

FEM (Finite Element Method) calculations carried out in ANSYS were con-
sidered as a reference case. The results obtained with the use of the MSS (Mass
Spring System) method were compared with the results from the reference case.
Two cases were analyzed, in which the values of spring coefficients were obtained
using both the Van Gelder method and a new method.

The simulations were carried out for a section of a sphere with a radius of
one meter, loaded with 𝑝 = 10 kPa pressure, for a material with a Poisson’s ratio
of 𝑣 = 0.3. Several cases were tested for different values of Young’s modulus and
material thickness. The changes of the radius of the sphere segment were monitored.

Comparing the results of numerical simulations one can prove that the new,
proposed by the authors model produces results closer to the FEM method than the
Van Gelder model (Fig. 8). It has to be mentioned that the differences between the
methods are small and both models produce results very similar to the FEM model
(Table 1). In addition, it was noted that the new model compared with the classic
approach is less sensitive to the mesh topology (Fig. 7).

Table 1. Comparison of MSS methods against the FEM method – relative error
Van Gelder model (MSS) [%] New model (MSS) [%]

𝐸 = 50 MPa, 𝑑 = 1 mm –0.65 –0.29
𝐸 = 60 MPa, 𝑑 = 1 mm –0.48 –0.19
𝐸 = 60 MPa, 𝑑 = 1.5 mm –0.27 –0.08
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Fig. 7. Sphere segment with two types of mesh selected in its corners.
Type II – corner a; type I – corners b and c

Fig. 8. Comparison of changes in radius values for different Young’s moduli (𝐸) and material
thicknesses (𝑑) for three calculation methods: FEM (ANSYS), MSS (Van Gelder model)

and MSS (new model)

The differences in the values of the radius of the sphere segment obtained in
its corners for different methods of meshing are smaller for the new model than for
the Van Gelder model (Table 2).

Table 2. Differences in the values of the radius of the sphere section obtained in its corners for
different methods of meshing. Comparison of the Van Gelder model with the new model.
The simulation was carried out for Young’s modulus equal to 𝐸 = 50 MPa and material

thickness 𝑑 = 1 mm

sphere radius [m]
sphere radius [m]

at the corner a
of type II

sphere radius [m]
at the corner b

of type I

sphere radius [m]
at the corner c

of type I
Van Gelder model 1.078 1.085 1.075 1.077
new model 1.082 1.083 1.079 1.079
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5. Bubble inflation test

The next step in the verification of the newly developed model was to compare
the behavior of the real object with its computer simulation. For this purpose, it
was decided to carry out a bubble inflation test for a sample of the material made of
rubber and reproduce its course using numerical simulation. Bubble inflation test
is one of the methods used to test hyperelastic materials [21]. It involves subjecting
thin material in the shape of a disk to high pressure (Fig. 9). This disc mounted on
the edge bulges under pressure. By measuring the height of the resulting bubble,
the strain-stress characteristics of the material under study can be obtained. Using
the assumption that the resulting bubble is a thin-walled axial-symmetrical shell,
the stress at its top can be expressed by the formula (18).

Fig. 9. Thin flexible membrane subjected to pressure: ℎ – bubble height under
high pressure (𝑃 > 0); ℎ0 – bubble height under pressure slightly higher than
zero (𝑃 = 0+); 𝑅 – the radius of the bubble formed under the influence of high
pressure (𝑃 > 0); 𝑎 – radius of indistorted membrane; wrinkle condition for

zero pressure (𝑃 = 0) [21]

𝜎𝑥 = 𝜎𝑦 = 𝜎 =
𝑝𝑅

2𝑡
, (18)

where 𝜎𝑥 is the stress in the 𝑥 direction, 𝜎𝑦 is the stress in the 𝑦 direction, 𝑝 is
pressure, 𝑅 – bubble radius, 𝑡 – material disc thickness. In the case where the test
sample at the beginning of the test is flat, the radius of curvature of the bubble is
expressed by the formula (19) [22].

𝑅 =
𝑎2 + ℎ2

2ℎ
, (19)

where 𝑎 is the radius of the disc, ℎ – the height of the bubble formed under the
influence of pressure. An important assumption is that the center-point displace-
ment, ℎ, must be lower than half the length of the membrane (i.e. ℎ < 𝑎) [21].
In the case where the tested material is already pre-bulged (Fig. 9), the bubble
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radius formula takes the form (20) [21]:

𝑅 =
𝑎2 + (ℎ + ℎ0)2

2 (ℎ + ℎ0)
, (20)

where ℎ0 is the initial bubble height (Fig. 9). In this case, one can specify both
the initial (21) and final (resulting from the action of pressure) (22) bubble arc
length [21].

𝑠0 =
𝑎2 + ℎ2

0
ℎ0

sin−1

(
2𝑎ℎ0

𝑎2 + ℎ2
0

)
, (21)

𝑠1 =
𝑎2 + (ℎ0 + ℎ)2

ℎ0 + ℎ
sin−1

(
2𝑎 (ℎ0 + ℎ)

𝑎2 + (ℎ0 + ℎ)2

)
. (22)

Using (21) and (22), the stretching ratio can be represented as (23):

𝜆 =
𝑠1
𝑠0

(23)

and strain (24).
𝜀 = 1 − 𝜆. (24)

Using (18), (20) and (23) true stresses can be represented as [21]:

Σ = 𝜆𝜎 = 𝜆
𝑝𝑅

2𝑡
= 𝜆

𝑝
[
𝑎2 + (ℎ + ℎ0)2]
4 (ℎ + ℎ0) 𝑡

. (25)

The data obtained from the bubble inflation test was used to define the proper-
ties of the material used in the numerical simulation.

6. Material properties

To create a spatial stress state model – as a material model for linearly elastic
materials, it is enough to enter two quantities: Young’s modulus 𝐸 and Poisson’s
number 𝑣 [23]. In this case, strain in a given direction axis can be calculated from
the relationship:

𝜀1 =
1
𝐸

[𝜎1 − 𝜈 (𝜎2 + 𝜎3)] ,

𝜀2 =
1
𝐸

[𝜎2 − 𝜈 (𝜎1 + 𝜎3)] ,

𝜀3 =
1
𝐸

[𝜎3 − 𝜈 (𝜎1 + 𝜎2)] .

(26)
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For hyperelastic materials (for example rubber), the stress-strain relationship is
non-linear (Fig. 10) [24]. In this case, to define such a material model, constitutive
models are used. Such models are based on the so-called polynomials describing
the density of strain energy 𝑊 , accumulated in the volume of the material.

The amount of this energy describes the area under the curve graph (Fig. 10),
and the stress-strain relationship is obtained from the dependence [25]:

𝑊 = 𝑓 (𝐼1, 𝐼2, 𝐼3) , (27)

𝜎𝑖 𝑗 =
𝜕𝑊

𝜕𝜀𝑖 𝑗
, (28)

where: 𝐼1, 𝐼2 and 𝐼3 are the three invariants of the Green’s deformation tensor, and:

𝐼1 = 𝜆2
1 + 𝜆2

2 + 𝜆2
3 ,

𝐼2 = 𝜆2
1𝜆

2
2 + 𝜆2

2𝜆
2
3 ,

𝐼3 = 𝜆2
1𝜆

2
2𝜆

2
3 ,

(29)

where: 𝜆1, 𝜆2, 𝜆3 – stretch ratios.

Fig. 10. Typical stress and strain characteristic of the hyperelastic
material. The area under curve determines the amount of energy

stored in hyperelastic material [23, 24]

Another approach is possible in the case of non-linear deformation character-
istics. One can determine the Young’s modulus in one of the following ways [26]:

• Tangent Young’s modulus 𝐸tan – at a fixed percentage of ultimate stress. It
is defined as the slope of a line tangent to the stress-strain curve at a fixed
percentage of the ultimate strength (Fig. 11a);

• Average Young’s modulus 𝐸av – of the straight-line part of a curve. The
elastic modulus is defined as the slope of straight-line part of the stress-
strain curve for the given test (Fig. 11b);

• Secant Young’s modulus 𝐸sec – at a fixed percentage of the final test. It is
defined as the slope of the line from the origin (usually point (0, 0) to some
fixed percentage ultimate strength, usually 50% (Fig. 11c).

For the purposes of this study, a model called the secant Young’s modulus was
chosen to describe the material properties of the tested material samples.
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(a) (b)

(c)

Fig. 11. (a) – Tangent Young’s modulus (𝐸tan); (b) – Average Young’s modulus (𝐸av);
(c) – Secant Young’s modulus (𝐸sec) [26]

7. Experiment

As mentioned earlier, the bubble inflation test was also carried out to verify
the newly developed model (Fig. 12). A 𝑡 = 0.35 mm thick membrane made
of latex rubber was tested. The diameter of the tested fragment of material was
𝐷 = 75 mm. The tested membrane was attached to a two-inch pipe which was
connected to a 150-liter air tank and a compressor. The tank was used to ensure
that the membrane would only be subjected to semi-stationary pressure changes.
There were no additional transient flow conditions such as pressure waves, because
the large volume of the tank caused that the pressure increased slowly and evenly
in it during the gas supply.

During the experiment, a series of photographs were taken showing the pro-
cess of changing the shape of the flexible membrane. Computer image processing
techniques were used to measure the bubble height. First, a special drawing was
applied to previously taken pictures. This drawing was in the form of an elongated
rectangle, inside which the top of the bubble could move. Then, a template was
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Fig. 12. View of the measuring station for the bubble inflation test, which consisted
of a latex membrane attached to the compressed air supply pipe and a manometer

created, which was a small fragment of the photograph with a visible border be-
tween the bubble and the background inside the superimposed drawing. Using the
CV2 numerical library and Python language, a script was written whose task was
to find the template on each of the analyzed photographs (Fig. 13). This script gave
the location of the template in the photograph in pixels. Knowing the real size of
the characteristic elements of the photograph, the template position in pixels could
be converted into meters.

(a) (b) (c)

Fig. 13. Finding the location of the template in the photograph. (a) a template tailored to the
photograph using a script written in Python; (b) enlarged area representing the template

tailored to the photo; (c) template

Based on the experiment, a stress-strain relationship diagram was created for
the tested material (Fig. 14). It can be seen that this relationship is non-linear.

For the purposes of this study, the dependence of Young’s modulus value on
strain (𝐸 𝜀

sec) was defined (for the 2D case). This relationship was modeled using the
secant Young’s modulus. The difference is that this relationship was not limited to
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Fig. 14. Stress-strain curve for the tested material from which the flexible membrane was made

calculating the value of this module for one deformation value, but it was calculated
for individual deformation values from their entire range. This relationship (Fig. 15)
was then approximated using a quartic polynomial curve.

Fig. 15. Dependency: strain – Young’s modulus. 𝐸 (𝜀) – experiment; polynomial 𝐸 (𝜀) – an
approximation curve of the experiment results

The equation of polynomial curve was then used during numerical simulation
to determine the Young’s modulus value for the appropriate deformations of the
tested material. Based on the work [22], the value of the Poisson’s ratio for the
tested material was set at 𝜈 = 0.45. Two types of simulations were carried out, one
based on the Van Gelder model and the other based on the new model (TP MSS).

The results of numerical simulations were compared with the results of the
experiment (Fig. 16 and Fig. 17).

The parameter that was analyzed was the height ℎ of the bubble formed from
the membrane under the influence of pressure The results obtained using the new
model are closer to the reference results than those when using the Van Gelder
model (Fig. 17 and Table 3).
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(a) (b) (c)

Fig. 16. Comparison of the results of the numerical simulation (new MSS model) with the
experiment for different pressure values. (a) 5000 Pa; (b) 7300 Pa; (c) 8940 Pa

Fig. 17. Comparison of the results of the experiment with numerical simulations for different
pressure values; ℎ – bubble height

Table 3. Comparison of MSS methods with experiment – relative error

Pressure [Pa] Van Gelder model (MSS) [%] New model (MSS) [%]

5000 8.07 1.50

7300 11.69 –1.20

8940 6.39 –0.87

The authors are convinced that the bubble inflation test is a good test to verify
the correctness of the method. As mentioned earlier, the test sample subjected to
stretching is fixed on its edge. Of course, in the MSS simulation while reproducing
the course of this test, the edge of the material must also be fixed. It means
that the triangular elements adjacent to this edge must have one locked edge (its
length does not change) and the other two edges can be freely stretched. So, we
have to do stretching in one direction to the center of the sample. As one moves
away from the edge of the specimen, stretching initially occurs in a direction
transverse to specimen’s radius (and gradually increases) until the specimen is
stretched uniformly in all directions in the center (Fig. 18). Thanks to this, the
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final simulation result (the shape of the sample under pressure and the height of
the resulting bubble) depends on the correct mapping of the shape changes of
triangular elements stretched in a different range and in different directions.

Fig. 18. Sample stretching areas during bubble inflation test: A – fixed edge, sample only stretched
centripetally; B – the advantage of centripetal stretching over the transverse; C – uniform stretching

in all directions

8. Parachute – sample result of a simulation using the Two-Parameter
Mass-Spring System

The authors use the newly developed formula to conduct numerical simulations
of the FSI type (Fluid Structure Interaction). The CFD Ansys-Fluent [27] program
is the basis for these simulations. This program provides a tool called UDF (User
Defined Function). This tool allows one to implement useful, not intended by
its authors functionality into the program. By using this tool, the possibility of
performing FSI simulations of thin deformable membranes based on the newly
developed Two-Parameter Mass-Spring System (TP MSS) was added to the Ansys-
Fluent program.

The examples presented so far have focused on the fixed shape of the membrane
under the influence of pressure on it. The modified program can also be used to
study dynamic phenomena, such as filling the parachute canopy (Fig. 19).

Fig. 19. Stages of filling a cross-type parachute canopy. FSI simulation using TP MSS
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9. Conclusion

The conducted research confirms that the newly proposed MSS model may be
a valuable replacement for the previously used models, especially in the case when
the accuracy of calculations and compliance with reality are particularly desirable.
Although in the presented examples the model proposed by the authors turned out
to be better than the Van Gelder model, it requires further research and testing on a
larger number of cases. In the case of a numerical experiment in which the sphere
evenly stretched in all directions was studied, the new model was only slightly
better (smaller relative error ) than the previous one (Van Gelder). However, it
is worth emphasizing that in this case the advantage of the new model was the
lower sensitivity to the changes in the topography of the mesh. Larger differences
between the models were revealed when comparing the simulation results with the
bubble inflation test. This larger difference in the results between the models, in
the case of the experiment, is due to the fact that the van Gelder model is valid for
Poisson’s ratio equal to 0.3 [28], and the value of 0.45 was used in the experiment.

The new model is better (much smaller relative error) than the Van Gelder
model in mapping the behavior of real, unevenly stretched material in the form of
a thin rubber disk. The indicated increase in solution accuracy obtained with the
new method will be particularly appreciated in medical applications using the MSS
method.
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