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Abstract
Temperature rise of the hub motor in distributed drive electric vehicles (DDEVs) under long-time and
overload operating conditions brings parameter drift and degrades the performance of the motor. A novel
online parameter identification method based on improved teaching-learning-based optimization (ITLBO)
is proposed to estimate the stator resistance, 𝑑-axis inductance, 𝑞-axis inductance, and flux linkage of the
hub motor with respect to temperature rise. The effect of temperature rise on the stator resistance, 𝑑-axis
inductance, 𝑞-axis inductance, and magnetic flux linkage is analysed. The hub motor parameters are identified
offline. The proposed ITLBO algorithm is introduced to estimate the parameters online. The Gaussian
perturbation function is employed to optimize the TLBO algorithm and improve the identification speed and
accuracy. The mechanisms of group learning and low-ranking elimination are established. After that, the
proposed ITLBO algorithm for parameter identification is employed to identify the hub motor parameters
online on the test bench. Compared with other parameter identification algorithms, both simulation and
experimental results show the proposed ITLBO algorithm has rapid convergence and a higher convergence
precision, by which the robustness of the algorithm is effectively verified.
Keywords: parameters identification, teaching–learning-based optimization, hub motor, temperature rise.
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1. Introduction

With the development of electric vehicle (EV) technologies, the distributed in-wheel motor
drive EV has attracted many scholars’ attention due to the advantages of optimized structure, high
efficiency, and strong manoeuvrability [1]. The hub motor is the core component of the drive
system. Restricted by the working environment, operating conditions, and economy, the motor
drive system is supposed to have a fast response, high power density, high reliability, and low
cost [2, 3].
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The hub motor drive system consists of a hub motor and controller, which are highly integrated
and installed inside the narrow wheel hub. Generally, motor speed is detected by traditional hall
sensors or a resolver installed on the stator of the motor [4, 5]. However, the hall sensor or
resolver can be easily and seriously affected by the road impact, vibration, motor thermal energy,
and inverter dead zone, which brings poor sensitivity and temperature drift [6]. Moreover, the
position sensor also increases the complexity of motor structure, system cost, and maintenance
difficulty. A rotor position detection technology, which is also called sensorless control, provides
an effective solution to solve the problems. The sensorless control technology is supposed to
realize the detection of the rotor position and speed, by using the rich information resources of
voltage and current of the hub motor drive system [7–10].

Sensorless control is helpful to further improve the integration level of the hub motor. However,
the sensorless control strategy, especially at a low speed, mainly depends on the motor model and
key parameters such as stator resistance, dq-axis inductances, and flux linkage [11–13]. Accurate
identification of motor parameters is the basis for sensorless control. Moreover, considering
the system safety, the motor parameters can also provide support for current vector control to
obtain high dynamic and static performance for the hub motor [14–16]. The above-mentioned
motor parameters mainly depend on the temperature rise, magnetic saturation, voltage-source
inverter (VSI) nonlinearities, and load disturbance under different operating conditions. Parameter
variation will lead to a change in the system operational state of the hub motor drive system [17].
Therefore, it is necessary to obtain the accurate parameters of the hub motor due to its harsh
operating conditions. Reference [18] estimates the stator resistance and dq-axis inductances for
sensorless control of permanent magnet synchronous motors (PMSMs). Resistance, inductance,
and flux linkage of the motor are estimated in [19]. Reference [20] estimates the resistance,
inductance, flux linkage considering inverter nonlinearity. Resistance, the dq-axis inductances,
and the magnetic flux linkage are identified based on the high-frequency equivalent impedance
model of the motor with high-frequency injection which is proposed in [21]. In [22], stator
resistance, dq-axis inductances, and flux linkage are estimated based on the dynamic particle
swarm optimization with a learning strategy regarding VSI nonlinearities for PMSMs. System
identifiability and VSI nonlinearities are considered in [23] to identify the parameters for PMSMs.

Numerous offline and online identification methods are employed by scholars for parame-
ter identification. Although the off-line parameter identification method provides more accurate
initial parameters for a speed regulation system, the motor parameters will change nonlinearly
with the motor torque, current, and the coupling of the thermal-electromagnetic field. Also, the
table-checking method is employed for offline parameter identification. However, this method
needs a large memory space to store offline identification data. The identification accuracy of the
table-checking method is low and cannot provide accurate parameters for the hub motor drive
and be effectively controlled under complex working conditions. Scholars have proposed a lot of
online parameter estimation methods, including the least square (LS) method [24], the extended
Kalman filter (EKF) method [25], the model reference adaptive system (MRAS) method [26], the
neural network (NN) algorithm [27], the genetic algorithm (GA) [28], the particle swarm opti-
mization algorithm (PSO) [29, 30], and the artificial bee colony (ABC) algorithm [31]. In [24],
the LS method is proposed to update parameter estimation by using the modified modelling
error of online historical data and instant data as additional feedback. Integral transformation is
used to avoid the time deviation of the plant state in the modified modelling error. The Kalman
filter theory was first proposed to solve the Gaussian white noise problem for a linear discrete
dynamic system, and then extended to solve the same problem for a nonlinear system. In [25],
the estimation accuracy of the traditional EKF and adaptive extended Kalman Filters are com-
pared. In [26], the MRAS method is applied to induction motors to simultaneously detect both

100



Metrol. Meas. Syst.,Vol. 30 (2023), No. 1, pp. 99–115
DOI: 10.24425/mms.2023.144396

the rotor position and the stator resistance. The swarm intelligence algorithm shows intelligence
through cooperation among many non-intelligent individuals. In [27], the voltage equation of
the surface-mount PMSM considering the voltage source nonlinearities is transformed to elim-
inate the influence of the error voltage. A variable step size Adaline NN algorithm is studied to
estimate the parameters. In [28], the mathematical model of the motor is discretized by a Padé
Approximant, and the parameters are identified by GA. In [29], aiming at the problem of low
efficiency of PSO, a growth rate operator reflecting the state of particles is designed to judge the
state of particles, and search efficiency is improved by the Gaussian perturbation function. In [30],
a PSO-based identification method for identifying five parameters simultaneously is proposed.
Two particle swarm algorithms are applied simultaneously, one particle group to estimate the
motor parameters, and the other particle group to optimize the parameters of the first. In [31], the
ABC algorithm is employed to identify the parameter of the interval discrete dynamic model.

The current research mainly focuses on parameter identification of magnetic saturation,
voltage-source inverter nonlinearity, and load disturbance. However, a few researchers investigate
the effect of temperature rise on hub motor parameters. The hub motor drive EV faces frequent
start, stop, acceleration, deceleration, and overload conditions during the drive cycle, especially
when it is operating in the urban area. The hub motor works under low speed and large output
torque for a long time, which leads to high temperature. It is necessary to investigate the effective
and accurate parameter identification method that can be applied to the temperature rise of the
hub motor for distributed drive electric vehicles (DDEVs).

A teaching-learning-based optimization (TLBO) algorithm is a cluster optimization method
proposed by Indian scholars R.V. Rao and V.D. Kalyankar in 2011 which simulates the teaching
and learning process [32,33]. TLBO had attracted the researchers’ attention since it was proposed
due to its advantages of few parameters, simple algorithm, easy understanding, rapid convergence,
strong convergence ability, and high accuracy. The teaching ability of TLBO is simple, and a local
optimum will easily appear for some large-scale complex problems. That, however, may affect the
its global search ability and make the algorithm early fall into a local optimum, which leads to poor
convergence and less population diversity. The improved teaching-learning-based optimization
(ITLBO) is proposed in our work to satisfy the need to efficiently evaluate the temperature rise
of the hub motor and quickly obtain accurate parameters under complex operating conditions.

The major contribution of our work is listed as follows.
1. This paper not only introduced a teaching-learning artificial intelligence optimization algo-

rithm for the identification of motor parameters, but also improved the structure of TLBO
optimization algorithm.

2. The proposed ITLBO optimization algorithm increases the speed of convergence of the
identified parameters, and bench experiments verify the superiority and reliability of this
algorithm.

The paper is structured as follows. Section 2 briefly introduces the hub motor mathematical
model. Section 3 analyses the effect of temperature on the parameters of a hub motor. The param-
eter models are also established. Section 4 presents the basic principle and working process of the
proposed ITLBO method for parameter identification. The model-in the-loop (MiL) simulation
and experiment are carried out in Section 5. Section 6 shows conclusions and future work.

2. Mathematical model of the hub motor

The following assumptions are considered regarding the hub motor to ensure the research
results:

1. Ignoring the saturation of the core magnetic circuit and the space harmonics.
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2. Assuming that the three-phase windings are completely symmetrical.
3. Assuming that the electromotive force is a standard sine wave.
Based on the above, the voltage equation of the hub motor is described as:{

𝑢𝑑 = 𝑅𝑠𝑖𝑑 + 𝑝𝜓𝑑 − 𝜔𝑒𝜓𝑞

𝑢𝑞 = 𝑅𝑠𝑖𝑞 + 𝑝𝜓𝑞 + 𝜔𝑒𝜓𝑑

, (1)

where, 𝑢𝑑 is the 𝑑-axis voltage. 𝑢𝑞 is the 𝑞-axis voltage. 𝑖𝑑 is the 𝑑-axis current. 𝑖𝑞 is the 𝑞-axis
current. 𝜓𝑑 is the 𝑑-axis flux linkage. 𝜓𝑞 is the 𝑞-axis flux linkage. 𝑝 is a differential operator. 𝑅𝑠

is the stator resistance. 𝜔𝑒 is the electric angular velocity.{
𝜓𝑑 = 𝜓 𝑓 + 𝐿𝑑𝑖𝑑

𝜓𝑞 = 𝐿𝑞𝑖𝑞
, (2)

where, 𝐿𝑑 and 𝐿𝑞 are the 𝑑𝑞-axis inductances, respectively. 𝜓 𝑓 is the flux linkage.
The following equation can be obtained when combining equation (2) into equation (1):{

𝑢𝑑 = 𝑅𝑠𝑖𝑑 + 𝐿𝑑 𝑝𝑖𝑑 − 𝜔𝑒𝐿𝑞𝑖𝑞

𝑢𝑞 = 𝑅𝑠𝑖𝑞 + 𝐿𝑞 𝑝𝑖𝑞 + 𝜔𝑒𝐿𝑑𝑖𝑑 + 𝜔𝑒𝜓 𝑓

. (3)

3. Off-line parameter identification analysis

The temperature of the hub motor rises inevitably under harsh working environments and
high loads while the vehicle is operating on the road. Accurate motor parameters provide solid
support for sensorless control [34]. However, these parameters are sensitive to temperature rise.
This section presents an offline parameter identification method for hub motor and verifies the
correctness of the theoretical analysis of the temperature effect on the hub motor parameters.

3.1. Effect of temperature rise on stator resistance of the hub motor

Experimental results show that the resistivity of all pure metals increases with temperature
rise. The resistivity changes linearly with temperature when it is not too low. As a parameter
that reflects the change of resistance with temperature, the temperature coefficient of resistance
(TCR) is widely used in reliability tests of metal interconnectors. The stator winding material of
the hub motor is copper, the TCR of which also changes with temperature. The TCR of copper at
a temperature of 𝑡 can be expressed by the following equation:

𝛼 =
1

𝑇 + 𝑡
. (4)

The stator resistance is described as:

𝑅𝑡 = 𝑅0 [1 + 𝛼(𝑡 − 𝑡0)] , (5)

where 𝑅𝑡 is the resistance changing with temperature 𝑡, 𝑅0 is the resistance changing with
temperature 𝑡0, 𝑇 is the temperature coefficient of resistance.

The resistance value of the hub motor stator winding can be measured by the DC test method.
The stable current response value 𝐼𝑑1 and 𝐼𝑑2 can be measured after a time of 𝑡 when the fixed
voltage 𝑈𝑑1 and 𝑈𝑑2 are injected into the motor. In result, we obtain the following equation:

𝑅𝑠 =
2 (𝑈𝑑1 −𝑈𝑑2)
3 (𝐼𝑑1 − 𝐼𝑑2)

. (6)
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3.2. Effect of temperature rise on dq-axis inductances of the hub motor

According to the zero-state response of the RL circuit, the 𝑑-axis current response of the hub
motor will be obtained by a voltage vector injection with a constant amplitude to the 𝑑-axis of the
hub motor. The 𝑑-axis current response of the motor is expressed as equation (7) and equation (8).
Letting −𝑅𝑠/𝐿𝑑 · 𝜏 = −1 in equation (8), the current becomes 0.632 times of the steady current at
this time. The 𝑑-axis inductance can be calculated by equation (9). The 𝑞-axis inductance can be
obtained by employing a short-time pulse injection. Through the tests at different temperatures,
we can see that the residual magnetic field density of the permanent magnet in the rotor decreases
with the temperature rise, which reduces the saturation of the rotor magnetic circuit. The 𝑑𝑞-axis
inductances of the hub motor increase with the temperature rise.

𝑢𝑑 = 𝑅𝑑𝑖𝑑 + 𝐿𝑑

𝑑𝑖𝑑

𝑑𝜏
, (7)

𝑖(𝑡) = 𝑢𝑑

𝑅𝑑

(
1 − 𝑒

− 𝑅𝑠
𝐿𝑑

𝜏
)
, (8)

𝐿𝑑 = 𝑡0.632 · 𝑅𝑠 , (9)

where 𝑅𝑑 is the 𝑑-axis resistance, 𝑅𝑑 = 2𝑅, 𝑅𝑞 is the 𝑞-axis resistance, 𝑅𝑞 = 3/2𝑅𝑠 .

3.3. Effect of temperature rise on flux linkage of the hub motor

The without-load method is generally employed for rotor flux parameter identification of the
hub motor, which makes the motor work in a stable state [35]. The voltage and current of the hub
motor are acquired twice to obtain the accurate value of flux value. The following equation can
be obtained by coordination transformation:{

𝑢𝑞1 = 𝑅𝑠𝑖𝑞 + 𝜔𝑒𝐿𝑑𝑖𝑑1 + 𝜔𝑒𝜓 𝑓

𝑢𝑞2 = 𝑅𝑠𝑖𝑞 + 𝜔𝑒𝐿𝑑𝑖𝑑2 + 𝜔𝑒𝜓 𝑓

. (10)

I. The flux value can be obtained from equation (10), which can be expressed as in [36]:

𝜓 𝑓 =
𝑢𝑞1𝑖𝑑2 − 𝑢𝑞2𝑖𝑑1

𝜔𝑒 (𝑖𝑑2 − 𝑖𝑑1)
−

𝑅𝑠𝑖𝑞

𝜔𝑒

. (11)

II. The flux is approximately linear to temperature, which can be expressed as

𝜓 𝑓 = 𝑎𝑡 + 𝑏. (12)

4. Online parameter identification based on the ITLBO algorithm

4.1. Basic principle of TLBO

The basic TLBO algorithm includes the concepts of class, student, and teacher. The mathe-
matical explanation of the algorithm is described as follows:

1. Class: All the individuals in a population of class. The search space of algorithm 𝑆 =

(𝑋1, 𝑋2 . . . 𝑋𝑁 ). 𝑁 represents the population size.
2. Learner: The individual sample 𝑋 in the class is called a learner, where 𝑋 = (𝑥1, 𝑥2 . . . , 𝑥𝑑).

𝑥𝑖 is the 𝑖-th subject that learner𝑋 has learned which is equivalent to a decision variable.
𝑑is the variable dimension.
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3. Teacher: The best learner in the class is supposed to be the teacher 𝑋𝑡 , which represents
the optimal individual.

A class can be described as follows:
𝑋1 | 𝑓 (𝑋1)
𝑋2 | 𝑓 (𝑋2)
... |

...

𝑋𝑁 | 𝑓 (𝑋𝑁 )


=


𝑥1

1 𝑥1
2 · · · 𝑥1

𝑑
| 𝑓 (𝑋1)

𝑥2
1 𝑥2

2 · · · 𝑥2
𝑑

| 𝑓 (𝑋2)
...

...
. . .

... |
...

𝑥𝑁1 𝑥𝑁2 · · · 𝑥𝑁
𝑑

| 𝑓 (𝑋𝑁 )


.

The TLBO algorithm emulates the phase of teaching and learning from each other in a class,
which improves the learners’ academic performance.

4.2. ITLBO Algorithm

Considering the effect of temperature rise on motor parameters, an improved TLBO algorithm
is investigated on the basis of offline identification data under the temperature rise conditions.
Through an off-line identification experiment and by extending the temperature range to 0-100◦,
the upper and lower limit data can be obtained by off-line parameter identification, which is shown
in Table 1.

Table 1. Parameter constraints of lower and upper values.

Parameter Lower value Upper value
𝑅𝑠 / mΩ 5.432 10.709

𝐿𝑞 / μH 28.942 39.731

𝐿𝑑 / μH 20.478 22.520

𝜓 𝑓 / Wb 0.019 0.022

4.2.1. Initialization – ethnic migration

Compared to other intelligent algorithms, the TLBO requires fewer parameters, among which
just the population size and the maximum iterations number need to be set. The initial population
can be generated based on the following equation:

𝑋𝑖 = 𝑋𝐿
𝑖 + 𝑟 ·

(
𝑋𝐻
𝑖 − 𝑋𝐿

𝑖

)
, (13)

where, 𝑋𝐻
𝑖

and 𝑋𝐿
𝑖

are the upper and lower limits of the decision variables, respectively. 𝑟 is
a random number in the range of (0, 1).

The parameters of the hub motor will change with temperature rise.
By using the conventional TLBO identification method, the parameter drift caused by tem-

perature change will make the population distribution wider, and affect its convergence speed
and precision. The initialization program is improved according to the relationship between
temperature and resistance. The corresponding subject of the stator resistance is initialized as
follows:

𝑋𝑖 (1) = 𝑅𝑡 + 𝑐 · randn · 𝐷𝑖/2, (14)
where 𝑋𝑖 (1) is the resistance corresponding to the student subject in the TLBO algorithm, 𝑅𝑡

is the resistance value changing with the temperature 𝑡, 𝐷𝑖 is the population distribution width,
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which can be calculated by the error between the maximum resistance value 𝑅max and the
minimum value 𝑅min𝑡 at the sampling temperature 𝑡, Randn is the normally distributed random
number.

The Gaussian perturbation function can be used to initialize the cluster distribution and pre-
cisely follow the environment temperature while generating a small range of populations outside
the defined range, which is shown in Fig. 1. This method can expand the search range perti-
nently and increase convergence accuracy. The probability distribution density of the initialized
population in the range of 𝐷𝑖 width is determined by the normal distribution coefficient𝑐. The
distribution density is 0.68 when 𝑐 = 1 and the distribution density is 0.95 when 𝑐 = 0.5. Fig. 2
and Fig. 3 show the schematic diagram of the initialized population distribution for resistance and
magnet flux linkage at different temperatures, respectively. According to the previous analysis, the
𝑑𝑞-axis inductances of the hub motor can be affected by many factors. The inductance changes
of the 𝑑𝑞-axis are nonlinear and not sensitive to the temperature. Therefore, the traditional TLBO
algorithm is employed to initialize the 𝑑−axis and 𝑞-axis inductance of the hub motor. The initial
population can be generated based on equation (15).

𝑋 (2, 3) = 𝑋min
(2,3) + 𝑟 ·

(
𝑋max
(2,3) − 𝑋min

(2,3)

)
. (15)

A schematic diagram of the initialized population distribution for 𝑑𝑞-axis inductances at
different temperatures is shown in Fig. 4.

Fig. 1. Probability distribution of population initialization. Fig. 2. Distribution of 𝑅𝑠 initialization.

Fig. 3. Distribution of 𝜓 𝑓 initialization. Fig. 4. Distribution of 𝐿𝑑 and 𝐿𝑞 initialization.
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4.2.2. Teaching phase – teaching according to aptitude

The teacher strives to improve the average score of the class, and each student makes different
progress. Many factors should be considered in the process of teaching, such as learning step
size, teaching factor, and so on. The mathematical expressions of the teaching phase are shown
in equations (16)–(17):

𝑋new,𝑖 = 𝑋𝑖 + 𝑟𝑖 · (𝑋𝑇 − 𝑇𝐹 · Mean) , (16)
𝑇𝐹 = round(1 + 𝑟), (17)

Mean =
1
𝑁

𝑁∑︁
1

𝑋𝑖 , (18)

where, 𝑋𝑖 and 𝑋new,𝑖 denote the achievement of the 𝑖-th student before and after the study,
respectively, Mean is the average achievement, 𝑟𝑖 represents the learning step, 𝑇𝐹 is the teaching
factor. The teaching quality is determined together by 𝑟𝑖 and 𝑇𝐹.

In this paper, a sinusoidal function is introduced to realize the teaching process, which is
shown as equation (19). It is supposed to achieve rapid convergence to the global solution around
the optimal solution.

𝑋new,𝑖 = 𝑋𝑖 + sin (0.5𝜋 · 𝑟𝑖) · (𝑋𝑇 − 𝑇𝐹 · Mean) . (19)

To better improve the overall performance of the class, the teacher will randomly select some
students for individual tutoring after teaching, and teach students based on the differences between
teachers and students.

𝑋new, 𝑗 = 𝑋 𝑗 + 𝑟 𝑗 ·
(
𝑋𝑇 − 𝑋 𝑗

)
. (20)

Combining (19) and (20), and introducing the guidance factor 𝑝, which indicates the proba-
bility of being individually tutored by the teacher, namely the proportion of being tutored to the
total number of people). The teaching phase can be expressed as shown in equation (21):

𝑋new,𝑖 = 𝑋𝑖 + sin(0.5𝜋 · 𝑟𝑖) · (𝑋𝑇 − 𝑇𝐹 · Mean) + 𝑇𝑃 · 𝑟 𝑗 · (𝑋𝑇 − 𝑋 𝑗 )
𝑇𝑃 = 1 rand ≤ 𝑝

𝑇𝑃 = 0 otherwise
. (21)

4.2.3. Learning phase – group learning

The students also can learn from each other to improve their performance. Student 𝑋𝑖 randomly
selects another student 𝑋 𝑗 ( 𝑗 ≠ 𝑖) as the learning object in the class. Equation (22) is used to
describe the learning process:{

𝑋new,𝑖 = 𝑋𝑖 + 𝑟𝑖 · (𝑋𝑖 − 𝑋 𝑗 ) 𝑓 (𝑋𝑖) < 𝑓 (𝑋 𝑗 )
𝑋new,𝑖 = 𝑋𝑖 + 𝑟𝑖 · (𝑋 𝑗 − 𝑋𝑖) 𝑓 (𝑋𝑖) > 𝑓 (𝑋 𝑗 )

. (22)

The traditional TLBO learning mechanism consists in a student randomly looking for another
student to study, but there is no guarantee that the students selected have better performances.
In this paper, the group learning mechanism is adopted. All the students are divided into several
groups and the top performers in each group are selected as team leaders. Firstly, the team leaders
use traditional learning methods to learn from each other and improve their performance, in
which the learning process is expressed as equation (23). Then, all team members compare their
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knowledge with the team leader to learn the difference between each other and improve their
results when the team leaders finish their learning. Finally, the groups are disbanded after each
learning process, and the members are re-grouped during the next iteration. This solution can
increase the communication learning path and avoid premature convergence.

𝑋
𝑔

new,𝑖
= 𝑋

𝑔
𝑐 + 𝑟𝑔 ·

(
𝑋
𝑔
𝑐 − 𝑋

𝑔

𝑖

)
, (23)

where, 𝑋𝑔
𝑐 is the leader of the 𝑔 group, 𝑋𝑔

𝑖
is the 𝑖-th member of group 𝑔.

The number of groups should be the factor of the number of students to ensure the average
number of students in each group.

4.2.4. Low ranking elimination mechanism

The law of nature is survival of the fittest. The enterprises need to absorb fresh blood for
performance, and the classes also need to absorb advanced students to improve results. This
approach is inhumane in reality, but effective in algorithms. All students are ranked after each
round of learning. The laggards are eliminated and new members are added, that is to say, the
decision variables of the last 𝛽 members are reassigned according to the initialization process.
The low-ranking elimination mechanism not only improves the competitiveness to achieve the
goal of rapid convergence, but also maintains the population width, prevents premature conver-
gence, and improves the identification accuracy. At this stage, equation (13) is used to initialize
the replacement parameters. That is because the addition of new parameters is used to ensure
population diversity and avoid premature convergence, a larger range of spatial search is helpful
to ensure the accuracy of identification.

4.3. Algorithmic Complexity Analysis

Let the number of iterations be 𝑡, population size be 𝑛. The tasks of the algorithm are mainly
described in Step 2) and Step 3) in section 4.2 above. Time complexity for both steps is 𝑂 (𝑛),
then time complexity is𝑂 (𝑡×𝑛), spatial complexity is𝑂 (𝑛). The computational burden is mainly
dependent on the iteration number and the population size of the algorithm.

4.4. Parameter Identification for Hub Motor Based on ITLBO Algorithm

4.4.1. Parameter Identification Principle and Mathematical Model for Hub motor

Parameter identification can be considered as the system search optimization strategy. 𝑢𝑑 , 𝑢𝑞 ,
𝑖𝑑 , 𝑖𝑞 , and 𝜔𝑒 are the input variables of the parameter identification system. The control strategy
of 𝑖𝑑 = 0 is adopted in the hub motor drive system, which can be obtained by substituting in
equation (3). The discretization of the voltage equation is described as:{

𝑢𝑑 (𝑘) = −𝜔𝑒 (𝑘)𝐿𝑞𝑖𝑞 (𝑘)
𝑢𝑞 (𝑘) = 𝑅𝑠𝑖𝑞 (𝑘) + 𝐿𝑞 𝑝𝑖𝑞 + 𝜔𝑒 (𝑘) 𝑓 𝑑

. (24)

The rank of equation (24) is 2, for which the solution of four unknown quantities cannot
be carried out. A full rank equation group is needed to satisfy the online identification of the
parameters of 𝑅𝑠 , 𝐿𝑑 , 𝐿𝑞 , and 𝜓 𝑓 . It is an effective way to realize full rank identification of
parameters by increasing the disturbance signal to obtain a new identification equation [36]. The
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short-time pulse current is injected into the negative direction of the 𝑑-axis. The mathematical
model of the full-rank 𝑑−axis and 𝑞−axis can be described as equation (25):

𝑢𝑑0 (𝑘) = −𝜔𝑒0 (𝑘)𝐿𝑞𝑖𝑞0 (𝑘)
𝑢𝑞0 (𝑘) = 𝑅𝑠𝑖𝑞0 (𝑘) + 𝐿𝑞 𝑝𝑖𝑞0 (𝑘) + 𝜔𝑒0 (𝑘)𝜓 𝑓

𝑢𝑑1 (𝑘) = 𝑅𝑠𝑖𝑑1 (𝑘) − 𝜔𝑒1 (𝑘)𝐿𝑞𝑖𝑞1 (𝑘)
𝑢𝑞1 (𝑘) = 𝑅𝑠𝑖𝑞1 (𝑘) + 𝐿𝑞 𝑝𝑖𝑞1 (𝑘) + 𝜔𝑒1 (𝑘) [𝐿𝑑𝑖𝑑1 (𝑘) + 𝜓 𝑓 ]

𝑝𝑖𝑞0 (𝑘) =
𝑖𝑞0 (𝑘) − 𝑖𝑞0 (𝑘 − 1)

ℎ

𝑝𝑖𝑞1 (𝑘) =
𝑖𝑞1 (𝑘) − 𝑖𝑞1 (𝑘 − 1)

ℎ

, (25)

where ℎ is the sampling step. The variables and parameters with subscript ’0’ are obtained from
the control mode at 𝑖𝑑 = 0. The variables and parameters with subscript ’1’ are obtained from the
control mode at 𝑖𝑑 ≠ 0.

The data sampling process is shown in Fig. 5. Assuming 𝜙 =
{
�̂�𝑠 , �̂�𝑑 , �̂�𝑞 , �̂� 𝑓 )

}
are the

estimated values of the parameter vectors to be estimated. �̂� =
{
�̂�𝑑0 (𝑘), �̂�𝑞0 (𝑘), �̂�𝑑1 (𝑘), �̂�𝑞1 (𝑘)

}
are the estimated values of the output vectors of the drive system.

Fig. 5. Data sampling diagram.

According to equation (26), the TLBO algorithm equivalent tracking function is established
as follows: 

�̂�𝑑0 (𝑘) = −𝜔𝑒0 (𝑘) �̂�𝑞𝑖𝑞0 (𝑘)
�̂�𝑞0 (𝑘) = �̂�𝑠𝑖𝑞0 (𝑘) + �̂�𝑞 𝑝𝑖𝑞0 (𝑘) + 𝜔𝑒0 (𝑘)�̂� 𝑓

�̂�𝑑1 (𝑘) = �̂�𝑠𝑖𝑑1 (𝑘) − 𝜔𝑒1 (𝑘) �̂�𝑞𝑖𝑞1 (𝑘)
�̂�𝑞1 (𝑘) = �̂�𝑠𝑖𝑞1 (𝑘) + �̂�𝑞 𝑝𝑖𝑞1 (𝑘) + 𝜔𝑒1 (𝑘) [�̂�𝑑𝑖𝑑1 (𝑘) + �̂� 𝑓 ]

. (26)

A low-pass filter is employed to filter the voltage and current signal, and improve the identi-
fication accuracy.

Assuming a total of 𝑁 sampling sessions is conducted in the sampling period𝑇𝑠 , the sampling
data {𝑦 |𝑦(0), 𝑦(1), . . . , 𝑦(𝑛 − 1)} will be recorded as shown in Fig. 5. The fitness function of the
TLBO algorithm is defined as follows:

𝐹 (𝜙) =
𝑛−1∑︁
𝑘=1

[
𝑤1 (𝑢𝑑0 (𝑘) − �̂�𝑑0 (𝑘))2 + 𝑤2 (𝑢𝑞0 (𝑘) − �̂�𝑞0 (𝑘))2

+𝑤3 (𝑢𝑑1 (𝑘) − �̂�𝑑1 (𝑘))2 + 𝑤4 (𝑢𝑞1 (𝑘) − �̂�𝑞1 (𝑘))2

]
, (27)

where, 𝑤1−4 are the weight factors, the values in this paper are 0.25.
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4.4.2. Process of hub motor parameter identification based on the ITLBO algorithm

Fig. 6 shows the principle diagram of online multi-parameter identification based on the
proposed ITLBO optimization algorithm for the hub motor.

Fig. 6. Diagram of hub motor parameter identification based on ITLBO optimization algorithm.

5. Experiment and analysis of results

5.1. Experimental scheme and platform

The test platform of the hub motor shown in Fig. 7 is built for the verification of the proposed
ITLBO method. Table 2 shows the specific parameters of the hub motor. Fig. 7 indicates the
diagram of the experiment, including the drive circuit, the control circuit, and the identification
algorithm. When the test platform is running, the control circuit commands the drive circuit to
drive the hub motor and the magnetic powder brake is used as a load. The hub motor works with
a constant speed of 350 r/min and a constant load of 50 Nm, during which the temperature of
the stator of the hub motor rises from 20◦ to 80◦. In addition, the control circuit also records
the three-phase current, two-phase line voltage, hub motor speed, hub motor torque, and stator
temperature of the hub motor with a real-time LMS data acquisition system with a sampling
period of 100 μs and continuously uploads them to the computer. Finally, parameter identification
results at different temperatures are obtained using the ITBLO identification algorithm designed
in MATLAB.

Fig. 7. Experimental platform for parameter identification of hub motor.
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Table 2. Hub motor parameters.

Parameters Value
Rated power (𝑃 / kW) 8.0

Rated Speed / (r/min) 1300

Rated voltage (𝑈𝑛 / V) 96

Rated Current (𝐼𝑛 / A) 50

Stator resistance (𝑅𝑠 / mΩ) 7.289 (30◦)
𝑑-axis inductance (𝐿𝑑 / 𝜇H) 20.623 (30◦)
𝑞-axis inductance (𝐿𝑞 / μH) 36.089 (30◦)
Magnetic flux linkage (𝜓 𝑓 / Wb) 0.0212 (30◦)
Moment of inertia (𝐽 / kg·m2) 0.168

Polar logarithm (𝑁𝑝) 16

5.2. Experimental Results and their Analysis

The comparison results of parameter values and errors identified by the ITLBO algorithm,
TLBO algorithm, IABC algorithm, and ABC algorithm under 350 r/min and 50 Nm conditions are
presented in Fig. 8. E-ITLBO, E-TLBO, E-IABC, and E-ABC represent the identification errors
of the ITLBO, TLBO, IABC, and ABC algorithms, respectively. As shown in Fig. 8a, the 𝑅𝑠

values identified by the ITLBO, TLBO, IABC, and ABC algorithms increase with the temperature
rise, respectively. That is consistent with the measured values at different temperatures identified
by the offline identification method in Section 3. The absolute error of 𝑅𝑠 identified by the TLBO
and ABC algorithms is much larger than that of the ITLBO and IABC algorithms from 20◦ to
80◦. Compared with the IABC algorithm, the ITLBO algorithm has the smallest identification
error. From Fig. 8a, we can see the identified value of 𝑅𝑠 is almost equal to the off-line identified
value, which approximates 1% with the ITLBO algorithm and 2.2% with the IABC algorithm
from 20◦ to 80◦. That indicates that the proposed ITLBO algorithm has more robustness than the
TLBO, IABC, and ABC algorithms. While the error of value obtained by the TLBO algorithm
changes from 5% at 20◦C to 7% at 80◦C, and the error of value obtained by the ABC algorithm
changes from 8% to 13%.

Fig. 8b shows that the values of 𝐿𝑑 identified by the ITLBO, TLBO, IABC, and ABC
algorithms increase smoothly with the temperature rise. The absolute error of 𝐿𝑑 identified by
the TLBO algorithm is about 5% below 50◦C and about 6% when the temperature is more than
50◦C. The absolute value error of 𝐿𝑑 obtained by the ABC algorithm changes from 8.3% at 20◦C
to 12.8% at 80◦C. The accuracy of results of the ITLBO and the IABC identification algorithm
is higher within the range of test temperatures from 20◦C to 80◦C. From Fig. 8c, we can see 𝐿𝑞

increases with the temperature rise. Fig. 8c also indicates that the absolute error of identification
value of 𝐿𝑞 obtained by the ITLBO algorithm is within 2%, and that generated by the IABC
algorithm is within 5%. The TLBO algorithm has the largest identification error of approximately
4.5% at 60◦C, and the smallest of approximately 3.8% at 20◦C. The ABC algorithm has the largest
identification error of approximately 10.6% at 80◦C, and the smallest of approximately 7.5% at
30◦C. Fig. 8d indicates the estimation result of flux linkage 𝜓 𝑓 . We can see the identification
error of the ITLBO, TLBO, IABC, and ABC algorithms decrease with the temperature rise. The
identification error of 𝜓 𝑓 obtained by the ITLBO algorithm is much smaller than that of the other
algorithms.
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a) Comparison results of 𝑅𝑠 identification value b) Comparison results of 𝐿𝑑 identification value

c) Comparison results of 𝐿𝑞 identification value d) Comparison results of 𝜓 𝑓 identification value

Fig. 8. Comparison of identification results identified by the different algorithms.

From the identification results we can see that the proposed ITLBO identification algorithm
has higher identification accuracy and robustness from 20◦ to 80◦ than the TLBO, IABC, and
ABC algorithms, which indicates the ITLBO algorithm can adapt well to the temperature rise.
Moreover, the absolute error of the identification values hardly changes with temperature. The
four parameters of the hub motor are coupled with each other, and the identification error of
one parameter will affect the identification accuracy of the others. The identification accuracy
of 𝑅𝑠 and 𝜓 𝑓 can be improved directly by the proposed ITILBO algorithm at the optimized
initialization phase. And, the identification accuracy of 𝐿𝑑 and 𝐿𝑞 can also be improved indirectly.
The robustness of the ITLBO is effectively verified by experimental results.

6. Conclusions

Inspired by the traditional TLBO algorithm, the ITLBO algorithm for the hub motor is
investigated in this paper, which accurately estimates the stator resistance, 𝑑𝑞-axis inductances,
and flux linkage with respect to temperature rise. The conclusions are listed as follows.

1. The temperature rise of the hub motor leads to complex nonlinear parameter variates under
harsh operating conditions, especially for the conditions of frequent start, fast acceleration,
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over-load torque and large current operation for a long time. The relationship between
temperature and the offline value of 𝑅𝑠 , 𝐿𝑑 , 𝐿𝑞 and 𝜓 𝑓 is analysed and modelled.

2. The ITLBO identification method is investigated to estimate the multi-parameter of the hub
motor. The Gauss perturbation function is adopted to improve the initialization process.
The group learning mechanism is employed to avoid the premature phenomenon. The ‘rank
test’ is carried out when each teaching round completes. The last elimination mechanism
is adopted to maintain population diversity, which effectively improves the identification
speed and accuracy. The hub motor parameters that failed to be trained in the default cycle
number are eliminated and replaced with newly initialized generated parameters.

3. The proposed ITLBO algorithm can not only maintain population diversity, but also prevent
premature convergence. Compared with other identification algorithms, the global search
ability, convergence speed, accuracy, and robustness of the ITLBO algorithm is improved,
which has been verified by both of simulation and experimental results at different temper-
atures from 20◦ to 80◦. The proposed ITLBO algorithm can adapt well to the temperature
rise of the hub motor drive system in DDEVs.

Besides the temperature, magnetic saturation and VSI nonlinearities also lead to parameter
drift, which poses great challenges to online parameter identification of the hub motor when it is
operating in harsh conditions. Future work will focus on the online parameter identification caused
by coupling of temperature rise, magnetic saturation, and VSI nonlinearities under long-time and
overload operating conditions.
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