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The non-orthogonal Serret–Frenet parametrization
applied to the path following problem of a manipulator

with partially known dynamics

Alicja MAZUR and Filip DYBA

In this paper an application of the Serret–Frenet parametrization of a curve to the path
following task is presented. This curvilinear parametrization method is used to obtain a control
object description relative to the desired curve defined in the three-dimensional space. In order
to derive proper equations, the innovative approach of the non-orthogonal projection of a con-
trol object on the given path is investigated. The non-orthogonal projection allows to design
a global control algorithm. The proposed solution results in a cascade structure of the control
system. Thus, the backstepping integrator algorithm was applied to create a control law. Due to
the partial knowledge of control object dynamic parameters, an adaptive algorithm is taken into
account. Theoretical considerations are confirmed with simulation study. Conducted simula-
tions illustrated following paths at different levels of complexity by a holonomic non-redundant
manipulator with a fixed base.

Key words: backstepping integrator algorithm, holonomic manipulator, non-orthogonal
projection, path following, Serret–Frenet parametrization

1. Introduction

Over the past decades, the control problem of robotic systems, especially with
constraints in motion, has attracted a great deal of attention. In this work, the path
following problem of a holonomic manipulator has been addressed. Realization
of a robot developed motion usually can be performed by the trajectory tracking
task but in such a case sometimes the robot has to achieve very high velocities:
trajectories as “curves parametrized by time” have to be executed in a fast time
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regime.However, inmany practical situations velocities of the system are bounded
by limited actuations and at the time it is better to plan the robot motion as
a motion along a curvilinear path. For the latter method, the approach utilized
the Serret–Frenet frame is frequently adopted to obtain in very intuitive way
the error dynamics equations.
In the literature path following task has been discussed many times, for

instance for mobile robots [13, 18, 23], for holonomic fixed-base manipula-
tors [9, 10, 16], and mobile manipulators [15, 17]. The similar control problem
was defined also for more complex robotic objects, such as autonomic underwater
vehicles [6, 24], flying robots [14], and a group of robots [4]. However, most of
the mentioned papers deal only with two-dimensional paths. Thus, the presented
control algorithms are restricted to robots moving on flat surfaces. As a conse-
quence, they cannot be easily extended into the three-dimensional case. Hence,
in the paper the manipulator control in the R3 space is considered.
The most important part of path tracking controller designing is the usage

of curvilinear parametrization, usually the Serret–Frenet approach [8, 21], or,
less frequently, the Bishop approach [1]. The concept of the Serret–Frenet frame
associated with a reference object moving in the three-dimensional space along
the desired curve makes it possible to describe an object not relative to the inertial
frame, but to themoving one. Equations expressing position and orientation errors
(defined between the object and the reference frame located on the curve) play
a similar role to non-integrable constraints of the first order in motion of non-
holonomic robots.
There are two methods of application the Serret–Frenet description to ob-

tain motion equation preserving path following in 3D space. The first of them
is the orthogonal parametrization with the orthogonal projection of the object
on the path. In such a case the location of an object relative to the curve is ex-
pressed as the shortest distance between the object and its projection. The object
is located on the normal plane spanned by normal and binormal vectors [16]. This
approach have been eagerly used in many control algorithms, e.g. [3, 5]. Unlike
the orthogonal approach, in the non-orthogonal parametrization the reference
robot can be ahead of the robot being controlled or behind in the comparison
to it, since the starting point of the Serret–Frenet frame is assumed to be at the
beginning of the path. As a result, the reference robot moves along the path freely,
not necessarily at the shortest distance from the controlled robot.
In the orthogonal approach equations of error dynamics can be singular,

therefore the parametrization is defined only locally, near the path. On the other
hand, the non-orthogonal parametrization cannot be singular, but the price to
pay for it is the increased number of state variables that are controlled with
an unchanged number of control inputs. It is worth to pay attention to the fact
that the non-orthogonal parametrization does not define the formula on speed
of movement along the path ¤𝑠. This means that the values of ¤𝑠 can be treated
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on the design stage of the control algorithm as an additional control variable.
To conclude, although the usage of the non-orthogonal projection results in
the increase of the dimensionality of the control problem, the designed algorithm
is global, which is a significant advantage of the approach described in this paper
compared to the solutions presented so far.
Hence, in this work the non-orthogonal 3D parametrization has been used

to get equations of motion expressed relative to the desired smooth path in the
3D space. The whole mathematical model of the path following problem for
a fixed-based non-redundant manipulator consists of two groups of equations,
namely of the Serret–Frenet parametrization for the manipulator kinematics and
the partially known dynamics, which are connected to each other and form a two-
stage cascade system. Therefore, the backstepping integrator algorithm is used as
the control method for the cascade of equations [12].
The paper structure has been defined as follows. In Section 2 a mathematical

model of a holonomic manipulator with partially known dynamics and equations
resulting from application of the non-orthogonal Serret–Frenet parametrization
have been presented. The control problem has been formulated in Section 3.
The main result of the paper, i.e. the path following algorithm based on the non-
orthogonal Serret–Frenet parametrization, has been shown in Section 4. The
convergence proof of the proposed control algorithm has been also given there.
Section 5 consists of descriptions of considered simulation cases and derived
results. All work has been summarized in Section 6.

2. Mathematical models

2.1. Holonomic manipulator

The considered control object is a holonomic manipulator, which can be
described with the following equations of dynamics [25]

𝑴 (𝒒) ¥𝒒 + 𝑪 (𝒒, ¤𝒒) ¤𝒒 + 𝑫 (𝒒) = 𝒖, (1)

where 𝒒, ¤𝒒, ¥𝒒 are the vectors of joint positions, velocities and accelerations,
respectively, 𝑴 (𝒒) is the inertia matrix, 𝑪 (𝒒, ¤𝒒) is the matrix of Coriolis and
centrifugal forces, 𝑫 (𝒒) is the gravity forces vector, and 𝒖 is the vector of applied
controls.
It can be concluded directly from the definition that the inertia matrix 𝑴 (𝒒)

is positive-definite and symmetric [25]. Moreover, the following relation holds

¤𝑴 (𝒒) = 𝑪 (𝒒, ¤𝒒) + 𝑪𝑇 (𝒒, ¤𝒒). (2)
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The location of the manipulator end-effector in the manipulator base frame is
described by the forward kinematics

𝒑 = 𝑘 (𝒒). (3)
Velocities of the end-effector framewith respect to themanipulator base reference
frame may be calculated by differentiating equation (3) with time

¤𝒑 =
𝜕𝑘 (𝒒)
𝜕𝒒

¤𝒒 = 𝑱(𝒒) ¤𝒒, (4)

where 𝑱(𝒒) is the Jacobi matrix. For the considered fixed-base manipulator it is
assumed that the manipulator base frame is equal to the inertial reference frame.

2.1.1. Partially known dynamics

It is worth noticing that in many applications parameters of the dynamic
model (1) are unknown [22]. Despite that fact, it is possible to control the object
correctly. However, it has to be assumed that the unknown parameters are constant
and the model is linearly dependent on them [22]. If there are some unidentified
values, the model (1) may be expressed with the usage of regression matrix 𝒀

𝑴 (𝒒, 𝒂) ¥𝒒 + 𝑪 (𝒒, ¤𝒒, 𝒂) ¤𝒒 + 𝑫 (𝒒, 𝒂)
= 𝑴0(𝒒) ¥𝒒 + 𝑪0(𝒒, ¤𝒒) ¤𝒒 + 𝑫0(𝒒) + 𝑴𝒂 (𝒒) ¥𝒒 + 𝑪𝒂 (𝒒, ¤𝒒) ¤𝒒 + 𝑫𝒂 (𝒒)
= 𝑴0(𝒒) ¥𝒒 + 𝑪0(𝒒, ¤𝒒) ¤𝒒 + 𝑫0(𝒒) + 𝒀 ( ¥𝒒, ¤𝒒, ¤𝒒, 𝒒)𝒂 = 𝒖, (5)

where 𝒂 is the vector of unknown parameters, matrices with 0 in the subscript de-
note the known part of the model, and matrices with 𝒂 in the subscript correspond
to the part of the model dependent on the unknown parameters. The model (5) is
partially parametrized, but the full parametrization may be considered. In such
a case matrices 𝑴0, 𝑪0, 𝑫0 are equal to zero matrices of proper size.

2.2. Serret–Frenet parametrization

One of themost popularmethods of curvilinear parametrizations is the Serret–
Frenet parametrization described independently by [8] and [21]. The curve ge-
ometry in the three-dimensional space is defined by three vectors: tangential to
the curve 𝑻, normal to the curve 𝑵 and binormal to the curve 𝑩, which create
an orthonormal basis inR3 and span the Frenet trihedron [25]. Their position with
respect to a certain curve 𝒓 (𝑢) is presented in Fig. 1. Versors of the Serret–Frenet
frame may be defined with respect to an arbitrary parameter 𝑢 with the following
equations [7]

𝑻 (𝑢) =

d 𝒓 (𝑢)
d𝑢d 𝒓 (𝑢)d𝑢

 , (6a)



THE NON-ORTHOGONAL SERRET–FRENET PARAMETRIZATION. . . 343

Figure 1: Frenet trihedron (based on [16])

𝑩(𝑢) =

d 𝒓 (𝑢)
d𝑢

× d
2𝒓 (𝑢)
d𝑢2d 𝒓 (𝑢)d𝑢

× d
2𝒓 (𝑢)
d𝑢2

 , (6b)

𝑵(𝑢) = 𝑩(𝑢) × 𝑻 (𝑢). (6c)

Parameters which describe the curve geometry are named curvature 𝜅 and tor-
sion 𝜏 [19]. Curvature defines the degree of the curve swerve from a straight line,
whereas torsion expresses the curve swerve from a plain. They are defined by
the following equations

𝜅(𝑢) =

d 𝒓 (𝑢)d𝑑
× d

2𝒓 (𝑢)
d𝑢2

d 𝒓 (𝑢)d𝑢

3 , (7a)

𝜏(𝑢) =

〈
d 𝒓 (𝑢)
d𝑢

× d
2𝒓 (𝑢)
d𝑢2

,
d3𝒓 (𝑢)
d𝑢3

〉
d 𝒓 (𝑢)d𝑢

× d
2𝒓 (𝑢)
d𝑢2

2 , (7b)

where 〈·, ·〉 denotes a scalar product of vectors.
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However, it is noteworthy that it is often more desirable to define a curve with
respect to the parameter 𝑠, which is called arclength or curvilinear distance and
describes how far from the beginning of a curve a point is located. This kind
of parametrization is named normalized parametrization [19]. The curvilinear
distance 𝑠 is related to the parameter 𝑢 by the equation

𝑠(𝑢) =
𝑢∫
0

d 𝒓 (𝑣)d𝑣

 d𝑣. (8)

Equation (8) leads to the definition of the curvilinear velocity

¤𝑠 = ¤𝑢
d 𝒓 (𝑢)d𝑢

 . (9)

Considering these relations, versors defined by equations (6) can be expressed
with respect to the arclength 𝑠 [19]

𝑻 (𝑠) = d 𝒓 (𝑠)
d𝑠

, (10a)

𝑵(𝑠) =

d𝑻 (𝑠)
d𝑠d𝑻 (𝑠)d𝑠

 , (10b)

𝑩(𝑠) = 𝑻 (𝑠) × 𝑵(𝑠). (10c)

Also, curvature and torsion may be described with the usage of the parameter 𝑠.
Relations (7) are respectively transformed to equations [20]

𝜅(𝑠) =
d𝑻 (𝑠)d𝑠

 , (11a)

𝜏(𝑠) =
d𝑩(𝑠)d𝑠

 = 1
𝜅2(𝑠)

〈
d 𝒓 (𝑠)
d𝑠

× d
2𝒓 (𝑠)
d𝑠2

,
d3𝒓 (𝑠)
d𝑠3

〉
. (11b)

It shows that normalized parametrization simplifies the curve definition. However,
it is usually difficult to define an analytical model with respect to the arclength
due to the non-linear relation defined by equation (8).
Derivatives of versors creating Frenet trihedron along the curve are crucial

relations for changes of the curve geometry. They are defined by equations [19]

d𝑻 (𝑠)
d𝑠

= 𝜅(𝑠)𝑵(𝑠), (12a)
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d𝑵(𝑠)
d𝑠

= −𝜅(𝑠)𝑻 (𝑠) + 𝜏(𝑠)𝑩(𝑠), (12b)

d𝑩(𝑠)
d𝑠

= −𝜏(𝑠)𝑵(𝑠). (12c)

The aforementioned equations (12) can be rewritten in a matrix form
d𝑺(𝑠)
d𝑠

=

[
d𝑻 (𝑠)
d𝑠

d𝑵(𝑠)
d𝑠

d𝑩(𝑠)
d𝑠

]
=

[
𝑻 (𝑠) 𝑵(𝑠) 𝑩(𝑠)

] [ 0 −𝜅(𝑠) 0
𝜅(𝑠) 0 −𝜏(𝑠)
0 𝜏(𝑠) 0

]
= 𝑺(𝑠)𝑾 (𝑠), (13)

where 𝑺(𝑠) is the rotation matrix describing orientation of the Serret–Frenet
frame with respect to the inertial frame. The matrix 𝑺(𝑠) is an orthogonal matrix
and 𝑺 ∈ SO(3) [25], so 𝑺𝑇 = 𝑺−1. It is also worth noticing that matrix 𝑾 (𝑠)
is skew-symmetric, i.e. the relation 𝑾𝑇 (𝑠) = −𝑾 (𝑠) is true. Derivative of the
matrix 𝑺(𝑠) with respect to the time parameter may be calculated using the chain
formula

¤𝑺(𝑠) = d𝑺(𝑠)
d𝑠

¤𝑠 = ¤𝑠𝑺(𝑠)𝑾 (𝑠). (14)

2.3. Non-orthogonal parametrization in R3 space

The local Serret–Frenet framemoving along a certain curvemay be associated
with a reference object, whose motion has to be imitated by a real object. In order
to utilize information about the curve geometry included in the Serret–Frenet
frame evolution, the control object model needs to be expressed with respect
to the defined reference frame. The non-orthogonal projection method may be
harnessed to project the control object local frame on the desired curve. Such
approach does not implies any constraints of relative location of virtual and real
objects. Thus, it is possible for the reference object to be situated ahead or behind
the control object. Furthermore, it indicates that curvilinear velocity ¤𝑠 of the
reference frame may de defined arbitrarily. Illustration of the non-orthogonal
projection on a certain curve is presented in Fig. 2. Coordinates of the point
𝑃, which describes the real robot location in the inertial frame, are equal to
𝒑 =

(
𝑥 𝑦 𝑧

)𝑇 . The vector 𝒅 =
(
𝑑1 𝑑2 𝑑3

)𝑇 defines location of the same point in
the local Serret–Frenet frame.
The controlled position of a robot in the inertial frame 𝒑 is connected with

its location in the local Serret–Frenet frame 𝒅 with the following relation

𝒑 = 𝑺𝒅 + 𝒓, (15)

where 𝒓 is the vector describing the virtual robot location on the curve with
respect to the inertial frame. Equation (15) may be transformed in order to derive
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𝑍0
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𝑃

𝒓

𝒅

𝑩 𝑻
𝑵

𝑟3

𝑟2

𝑟1

𝑑1

𝑑2
𝑑3

Figure 2: Non-orthogonal projection in R3 space

relations describing position errors of the control object with respect to the local
Serret–Frenet frame moving along a path

𝒅 = 𝑺𝑇 ( 𝒑 − 𝒓) = ©«
〈𝑻, 𝒑 − 𝒓〉
〈𝑵, 𝒑 − 𝒓〉
〈𝑩, 𝒑 − 𝒓〉

ª®¬ =

(
𝑑1
𝑑2
𝑑3

)
. (16)

In fact, the vector 𝒅 may be treated as a set of path following errors. If they tend
toward zero, the desired motion of the robot is performed. Their dynamics may
be obtained directly from equation (16) by differentiating it with time

¤𝒅 = 𝑺𝑇 ( ¤𝒑 − ¤𝒓) + ¤𝑺𝑇 ( 𝒑 − 𝒓). (17)

The element 𝑺𝑇 ¤𝒓 describes linear velocities in the body frame of the virtual
robot [25], and its definition is consistent with the equation

𝑺𝑇 ¤𝒓 =

©«

〈
𝑻,
d 𝒓
d𝑢

〉
〈
𝑵,
d 𝒓
d𝑢

〉
〈
𝑩,
d 𝒓
d𝑢

〉
ª®®®®®®®®¬
¤𝑢. (18)
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Consideration of equation (6a) in the above relation leads to

𝑺𝑇 ¤𝒓 = ©«
〈𝑻,𝑻〉
〈𝑵,𝑻〉
〈𝑩,𝑻〉

ª®¬ ¤𝑢
d 𝒓d𝑢  . (19)

Taking into account equation (9) and the fact that {𝑻, 𝑵, 𝑩} is the orthonormal
basis in R3, equation (19) can be rewritten as

𝑺𝑇 ¤𝒓 =
(
¤𝑠 0 0

)𝑇
. (20)

By implementing equations (4), (14), (16) and (20) into equation (17) the follow-
ing form of tracking error dynamics may be achieved

¤𝒅 = 𝑺𝑇 𝑱 ¤𝒒 −
( ¤𝑠
0
0

)
− ¤𝑠𝑾𝑺𝑇 ( 𝒑 − 𝒓) = 𝑺𝑇 𝑱 ¤𝒒 −

( ¤𝑠
0
0

)
− ¤𝑠𝑾𝒅. (21)

Considering definition of the matrix 𝑾 from equation (13), the final form of
the tracking error dynamics may be derived

¤𝒅 = 𝑺𝑇 𝑱 ¤𝒒 −
( ¤𝑠
0
0

)
− ¤𝑠 ©«

−𝜅𝑑2
𝜅𝑑1 − 𝜏𝑑3

𝜏𝑑2

ª®¬ = 𝑮 ¤𝒒 + 𝑭. (22)

3. Control problem formulation

The considered control problem is following a smooth path in R3 space by
a holonomic non-redundant manipulator with partially known dynamics. The
desired path has to be located in the workspace of the considered fixed-base
manipulator. Thus, a certain geometric curve is given in R3 space and it has to be
tracked by the control object.

The main impact of the work consists in showing that the task defined
by path following requires the introduction of additional equations to the
description of the object which constrain the control object motion and
enforce path following.
The main aim of the control algorithm is therefore to bring the real robot to

the origin of the local Serret–Frenet frame, which moves along the given curve.
Such approach results in the necessity of considering some additional equations.
These relations are described by equation (22), which may be treated similarly to
non-holonomic constraints

¤𝒅 = 𝑮 ¤𝒒 + 𝑭. (23)
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Moreover, the robot motion is controlled by the partially known dynamics

𝑴 (𝒒) ¥𝒒 + 𝑪 (𝒒, ¤𝒒) ¤𝒒 + 𝑫 (𝒒)
= 𝑴0(𝒒) ¥𝒒 + 𝑪0(𝒒, ¤𝒒) ¤𝒒 + 𝑫0(𝒒) + 𝒀 ( ¥𝒒, ¤𝒒, ¤𝒒, 𝒒)𝒂 = 𝒖. (24)

Equations (23) and (24) form a cascaded system with two stages: the first stage
is created with constraint equations and the second one consists of the dynamics.
Hence, a cascade structure is adopted by the considered system.
Control signals are generated so that the manipulator motion is performed

under the constraints of the curve geometry. A method considered for solving this
kind of problems is called the backstepping integrator algorithm [12].
The backstepping integrator algorithm may be applied to control a dynamic

system with a cascade structure. The essential feature of such a system is the fact
that its subsystems may be treated independently. As a result, the design process
of the control law is recursive, starting from the most inner subsystem.
In the considered problem such approach results in division of the control

system into two parallel performed parts: kinematic controller and dynamic con-
troller. Equations (23) and (24) define the path following error dynamics and
the object dynamics, respectively. They form a cascaded structure of the model,
which is presented in Fig. 3.

Control
object

Dynamic
controller

Kinematic
controller

Desired
path

u

𝒒, ¤𝒒

¤𝒒ref

𝒓 (𝑢)

Figure 3: Control system structure

The error dynamics (23) defines the first stage of the cascade. The input of this
subsystems is joint velocity ¤𝒒. The kinematic controller is responsible for gen-
erating velocity profiles ¤𝒒ref , which allow to move from the current manipulator
configuration to the desired configuration, so that constraints resulting from the
path geometry are preserved all the time. However, direct control of the manipula-
tor position in the Serret–Frenet frame is impossible due to the cascade structure
of the considered dynamic system. The dynamics (24) forms the second stage
of the cascade. Hence, the dynamic controller needs to be designed. It allows to
perform the desired reference velocities by generating proper control torques 𝒖.
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4. Control law

In the following section two stages of the control system cascade are presented.

4.1. Kinematic controller

Equations of tracking error dynamics obtained with the non-orthogonal pro-
jection of a control object on the desired path may be expressed in an affine
form

¤𝒅 = 𝑮 ¤𝒒 + 𝑭. (25)
Based on equation (25) a kinematic controller is proposed. Its main aim is to
generate proper joint velocity profiles

¤𝒒ref = 𝑮−1(𝝌 − 𝑭). (26)

The feedback loop is closed by putting equation (26) into equation (25). As
a result, the integrator is defined

¤𝒅 = 𝝌, (27)

where 𝝌 plays a role of a new control input. For the system (27) the control law
is defined as

𝝌 = ¤𝒅𝑑 − 𝑲𝑘 𝒆𝒅, (28)
where 𝒅𝑑 (𝑡) is the time-dependent desired trajectory of path following errors,
𝒆𝒅 = 𝒅 − 𝒅𝑑 is the vector of errors of performing the desired values 𝒅𝑑 , and
𝑲𝑘 = diag{𝑘𝑘 } is the gain matrix. The control defined by equation (28) provides
error 𝒆𝒅 convergence to zero. Thus, the control object performs the desiredmotion
along the given curve.
Proof. Taking into account the control law (28), the system (27) in the closed
feedback loop may be rewritten as

¤𝒆𝒅 + 𝑲𝑘 𝒆𝒅 = 0, (29)

where 𝑲𝑘 = 𝑲𝑇
𝑘
> 0. For the system (29) the following Lyapunov-like function

is proposed

𝑉1(𝒆𝒅) =
1
2
𝒆𝑇𝒅𝒆𝒅 . (30)

Its time derivative calculated along solutions of the system (29) is given as

¤𝑉1(𝒆𝒅) = 𝒆𝑇𝒅 ¤𝒆𝒅 = 𝒆𝑇𝒅 (−𝑲𝑘 𝒆𝒅) = −𝒆𝑇𝒅𝑲𝑘 𝒆𝒅 = −𝑊 (𝒆𝒅) ¬ 0. (31)

From the LaSalle invariance principle [2], convergence of the errors 𝒆𝒅 to the set

𝑊 (𝒆𝒅) = 0 (32)
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can be concluded. The system is asymptotically stable with zero equilibrium point
for the positive-definite gain matrix 𝑲𝑘 . Hence, the choice of positive regulation
gains guarantees convergence 𝒅 → 𝒅𝑑 , which results in correct path following.
This completes the proof for the first stage of cascade. 2

4.2. Dynamic controller

The dynamic controller is the second stage of the control system cascade. Its
main aim is to follow the desired velocity profiles ¤𝒒ref . The following control
algorithm, which is modification of the control law given by [22], based on the
partially known dynamic model is proposed

𝒖 = 𝑴0(𝒒) ¥𝒒ref + 𝑪0(𝒒, ¤𝒒) ¤𝒒ref + 𝑫0(𝒒) + 𝒀𝑟 ( ¥𝒒ref , ¤𝒒ref , ¤𝒒, 𝒒) �̂�(𝑡) − 𝑲𝑑𝒆 ¤𝒒 , (33)

where ¤𝒒ref is the vector of reference joint velocities defined according to equa-
tion (26), 𝒆 ¤𝒒 = ¤𝒒 − ¤𝒒ref is the vector of errors of performing reference joint
velocities, 𝑲𝑑 = diag{𝑘𝑑} is the positive-definite matrix of regulation coeffi-
cients, 𝒀𝑟 is the regression matrix based on the reference joint velocities, and
�̂�(𝑡) is the estimation of the unknown parameters derived with the usage of the
parameter adaptation law

¤̃𝒂(𝑡) = ¤̂𝒂(𝑡) = −𝚪𝒀𝑇
𝑟 ( ¥𝒒ref , ¤𝒒ref , ¤𝒒, 𝒒)𝒆 ¤𝒒 , (34)

where �̃�(𝑡) = �̂�(𝑡) − 𝒂 is the difference between the estimated values and the un-
known constant real values of parameters, and 𝚪 = diag{𝛾} is a positive-definite
matrix of estimator coefficients. This control law guarantees error convergence
to zero. The proof is presented below.
Proof. The control law (33) is applied to equation describing dynamics of
a manipulator (24). The equation defining the system in the closed feedback loop
is derived

𝑴0(𝒒) ¤𝒆 ¤𝒒 +𝑪0(𝒒, ¤𝒒)𝒆 ¤𝒒 +𝒀 ( ¥𝒒, ¤𝒒, ¤𝒒, 𝒒)𝒂−𝒀𝑟 ( ¥𝒒ref , ¤𝒒ref , ¤𝒒, 𝒒) �̂� +𝑲𝑑𝒆 ¤𝒒 = 0. (35)

Equation (35) may be extended to the form (for the transparency of the notation
the matrix arguments are neglected)

𝑴0 ¤𝒆 ¤𝒒 + 𝑪0𝒆 ¤𝒒 + 𝒀𝒂 − 𝒀𝑟𝒂 + 𝒀𝑟𝒂 − 𝒀𝑟 �̂� + 𝑲𝑑𝒆 ¤𝒒
= 𝑴0 ¤𝒆 ¤𝒒 + 𝑪0𝒆 ¤𝒒 + 𝑴𝒂 ¤𝒆 ¤𝒒 + 𝑪𝒂𝒆 ¤𝒒 − 𝒀𝑟 �̃� + 𝑲𝑑𝒆 ¤𝒒
= 𝑴 (𝒒, 𝒂) ¤𝒆 ¤𝒒 + 𝑪 (𝒒, ¤𝒒, 𝒂)𝒆 ¤𝒒 − 𝒀𝑟 ( ¥𝒒ref , ¤𝒒ref , ¤𝒒, 𝒒) �̃� + 𝑲𝑑𝒆 ¤𝒒 = 0. (36)

For the systems (29) and (36)— closed-loop systems for each stage of the cascade
— the Lyapunov function is defined as follows

𝑉2(𝒆𝒅, 𝒆 ¤𝒒, �̃�) = 𝑉1(𝒆𝒅) +
1
2
𝒆𝑇¤𝒒𝑴 (𝒒, 𝒂)𝒆 ¤𝒒 +

1
2
�̃�𝑇𝚪−1 �̃�. (37)
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Due to the properties of function (30) and the considered matrices, function (37)
fulfils conditions

𝑉2(𝒆𝒅, 𝒆 ¤𝒒, �̃�) > 0, for (𝒆𝒅, 𝒆 ¤𝒒, �̃�) ≠ 0,
𝑉2(𝒆𝒅, 𝒆 ¤𝒒, �̃�) = 0, for (𝒆𝒅, 𝒆 ¤𝒒, �̃�) = 0.

It is noteworthy that the Lyapunov function 𝑉2 directly depends upon the error
𝒆𝒅, which was proved to converge to zero in the previous section. Subsequently,
derivative of the Lyapunov function (37) may be calculated

¤𝑉2(𝒆𝒅, 𝒆 ¤𝒒, �̃�) = ¤𝑉1(𝒆𝒅) + 𝒆𝑇¤𝒒𝑴 (𝒒, 𝒂) ¤𝒆 ¤𝒒 +
1
2
𝒆𝑇¤𝒒 ¤𝑴 (𝒒, 𝒂)𝒆 ¤𝒒 + �̃�𝑇𝚪−1 ¤̃𝒂. (38)

Taking into account relations (2), (34) and (36) in equation (38) results in

¤𝑉2(𝒆𝒅, 𝒆 ¤𝒒) = −𝒆𝑇𝒅𝑲𝑘 𝒆𝒅 − 𝒆𝑇¤𝒒𝑲𝑑𝒆 ¤𝒒 . (39)

Due to the properties of the function ¤𝑉1(𝒆𝒅), defined with equation (31), for the
positive-definite matrix 𝑲𝑑 the following relations hold

¤𝑉2(𝒆𝒅, 𝒆 ¤𝒒) < 0, for (𝒆𝒅, 𝒆 ¤𝒒) ≠ 0,
¤𝑉2(𝒆𝒅, 𝒆 ¤𝒒) = 0, for (𝒆𝒅, 𝒆 ¤𝒒) = 0.

By virtue of the LaSalle invariant principle [2], (𝒆𝒅, 𝒆 ¤𝒒) = (0, 0) defines the
asymptotically stable equilibrium point of the whole cascaded system. In other
words, systemmoves along the desired path because 𝒆𝒅 = 0 and velocities applied
to the manipulator joints converge to the desired reference profiles, ¤𝒒 → ¤𝒒ref .
However, the derivative of the Lyapunov function (37) is independent from

the parameter estimation error �̃�. It means that the estimation �̂� may not converge
to the real values, although the proposed controller allows to follow the desired
path correctly. 2

5. Simulation study

5.1. Control object

In the simulation study two different robots are considered: RTR manipulator
with 3 degrees of freedom and Staubli RX-60 manipulator with 6 degrees of
freedom. They are described in the following section.

5.1.1. RTR manipulator

In the considered example of path following in R3 space a stationary ma-
nipulator of three degrees of freedom (rotational, translational and rotational) is
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Figure 4: RTR manipulator structure

chosen as a control object. It is a holonomic and non-redundant robotic system.
A scheme of the RTR manipulator structure is presented in Fig. 4. The dynamics
of the robot is given by equation (1), where the following matrices are equal
to [16]:

• the inertia matrix 𝑴 (𝒒)

𝑴 (𝒒) =
[
𝑀11 0 0
0 𝑀22 𝑀23
0 𝑀23 𝑀33

]
, (40)

where
𝑀11 =

1
3
𝑚2𝑙

2
2 + 𝑚3𝑙

2
2 + 𝑚3𝑙3𝑐

2
3 + 𝑚3𝑙2𝑙3𝑐3 ,

𝑀22 = 𝑚2 + 𝑚3 ,

𝑀23 =
1
2
𝑚3𝑙2𝑙3𝑐3 ,

𝑀33 =
1
3
𝑚3𝑙

2
3 ,

• the Coriolis matrix 𝑪 (𝒒, ¤𝒒)

𝑪 (𝒒, ¤𝒒) =
[
𝐶11 0 𝐶13
0 0 𝐶23

−𝐶13 0 0

]
, (41)

where
𝐶11 = − ¤𝑞3

(
1
2
𝑚3𝑙2𝑙3𝑠3 +

1
3
𝑚3𝑙

2
3𝑠3𝑐3

)
,

𝐶13 = − ¤𝑞1
(
1
2
𝑚3𝑙2𝑙3𝑠3 +

1
3
𝑚3𝑙

2
3𝑠3𝑐3

)
,
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𝐶23 = − ¤𝑞3
1
2
𝑚3𝑙2𝑙3𝑠3 ,

• the gravity forces vector 𝑫 (𝒒)

𝑫 (𝒒) =
©«

0
(𝑚2 + 𝑚3)𝑔
1
2
𝑔𝑚3𝑙3𝑐3

ª®®¬ . (42)

In equations above the notation convention is used: 𝑠𝑖 = sin(𝑞𝑖), 𝑐𝑖 = cos(𝑞𝑖).
Moreover, 𝑔 is the gravity acceleration, 𝒒 =

(
𝑞1 𝑞2 𝑞3

)𝑇 is the vector of config-
uration variables defining position or angular position in particular joints, and𝑚𝑖,
𝑙𝑖 denote mass and length of the 𝑖-th manipulator link, respectively. It is assumed
that two parameters of the dynamic model are unknown. Thus, the unknown
parameter vector is defined as

𝒂 =

(
𝑎1
𝑎2

)
=

(
𝑚3𝑙3
𝑚3𝑙2𝑙3

)
. (43)

Hence, the proper elements of the model (5) are defined as follows:

• the inertia matrix 𝑴0(𝒒)

𝑴0(𝒒) =


1
3
𝑚2𝑙

2
2 + 𝑚3𝑙

2
2 0 0

0 𝑚2 + 𝑚3 0

0 0
1
3
𝑚3𝑙

2
3

 , (44)

• the Coriolis matrix 𝑪0(𝒒, ¤𝒒)

𝑪0(𝒒, ¤𝒒) =


− ¤𝑞3

(
1
3
𝑚3𝑙

2
3𝑠3𝑐3

)
0 − ¤𝑞1

(
1
3
𝑚3𝑙

2
3𝑠3𝑐3

)
0 0 0

¤𝑞1
(
1
3
𝑚3𝑙

2
3𝑠3𝑐3

)
0 0


, (45)

• the gravity forces vector 𝑫0(𝒒)

𝑫0(𝒒) =
( 0
(𝑚2 + 𝑚3)𝑔

0

)
, (46)



354 A. MAZUR, F. DYBA

• the regression matrix 𝒀 ( ¥𝒒, ¤𝒒𝑥 , ¤𝒒, 𝒒)

𝒀 ( ¥𝒒, ¤𝒒𝑥 , ¤𝒒, 𝒒) =


¥𝑞1𝑐23 ¥𝑞1𝑐3 −

1
2
¤𝑞1𝑥 ¤𝑞3𝑠3 −

1
2
¤𝑞3𝑥 ¤𝑞1𝑠3

0
1
2
𝑐3 ¥𝑞3 −

1
2
¤𝑞3𝑥 ¤𝑞3𝑠3

1
2
𝑔𝑐3

1
2
¥𝑞2𝑐3 +

1
2
¤𝑞1𝑥 ¤𝑞1𝑠3


. (47)

Forward kinematics of the considered manipulator is defined with equation

𝒑 = 𝑘 (𝒒) = ©«
𝑐1(𝑙3𝑐3 + 𝑙2)
𝑠1(𝑙3𝑐3 + 𝑙2)
𝑙3𝑠3 + 𝑞2

ª®¬ , (48)

while the Jacobi matrix equals to

𝑱(𝒒) =

−𝑠1(𝑙3𝑐3 + 𝑙2) 0 −𝑙3𝑐1𝑠3
𝑐1(𝑙3𝑐3 + 𝑙2) 0 −𝑙3𝑠1𝑠3

0 1 𝑙3𝑐3

 . (49)

For simulation experiments it is assumed that 𝑙2 = 1.5 m, 𝑙3 = 1 m, 𝑚2 =

20 kg, 𝑚3 = 20 kg. The initial configuration of the manipulator is chosen

𝒒0 =
(𝜋
4
rad 2 m −𝜋

2
rad

)𝑇
. (50)

Zero initial joint velocities are also assumed.

5.1.2. Staubli RX-60 manipulator

Another robot considered in the simulation study is the Staubli RX-60 ma-
nipulator. It has six rotational degrees of freedom. Due to that fact, the vector 𝒒
consists of six joint angular positions

𝒒 =
(
𝑞1 𝑞2 𝑞3 𝑞4 𝑞5 𝑞6

)𝑇
.

A structure of the manipulator is presented in Fig. 5. The local frames presented
in the figure result from the Denavit–Hartenberg parameters, which are presented
in Table 1.
Considered in Table 1 geometrical parameters are equal to: 𝑙1 = 0.237 m,

𝑙2 = 0.29 m, 𝑙3 = 0.237 m, and 𝑙4 = 0.31 m. They denote lengths of respec-
tive manipulator links. Based on D-H parameters the end-effector position with
respect to the base frame may be derived. It is equal to

𝒑 = 𝑘 (𝒒) = ©«
−𝑙3𝑠1 + 𝑐1(𝑙2𝑐2 + 𝑙4𝑠23)
𝑙3𝑐1 + 𝑠1(𝑙2𝑐2 + 𝑙4𝑠23)

𝑙1 + 𝑙4𝑐23 − 𝑙2𝑠2

ª®¬ , (51)
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Figure 5: Staubli RX-60 manipulator structure

Table 1: D-H parameters of the Staubli RX-60 manipulator

Frame 𝑖 𝜃𝑖 𝑑𝑖 𝑎𝑖 𝛼𝑖

1 𝑞1 𝑙1 0 −𝜋/2
2 𝑞2 0 𝑙2 0

3 𝑞3 𝑙3 0 𝜋/2
4 𝑞4 𝑙4 0 −𝜋/2
5 𝑞5 0 0 𝜋/2
6 𝑞6 0 0 0

where 𝑠𝑖 𝑗 = sin(𝑞𝑖 + 𝑞 𝑗 ) and 𝑐𝑖 𝑗 = cos(𝑞𝑖 + 𝑞 𝑗 ). It may be observed that three last
rotational joints do not affect the position of the end-effector. As only position
control is taken into account in the simulation study, we may assume without the
generality loss that the rotational position in the three last joints are constant and
equal to zero, i.e. 𝑞4 = 𝑞5 = 𝑞6 = 0 rad.
The dynamic model and identified dynamic parameters of the manipulator

are provided in [11]. The mean values of the identified parameters, provided in
that paper, are used for the considered manipulator model in the simulation study.
It is assumed that for that case there are two unknown dynamic parameters.

In [11] they are denoted as 𝛼15 and 𝛼16. Thus, the unknown parameter vector 𝒂
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for the RX-60 manipulator takes the form

𝒂 =

(
𝑎1
𝑎2

)
=

(
𝑔𝑚2𝑙2𝑐 + 𝑔0𝑚3𝑙2

𝑔𝑚3𝑙4𝑐

)
, (52)

where 𝑚𝑖 denotes mass of the 𝑖-th link.
For the conducted simulations the initial configuration of the manipulator is

chosen

𝒒0 =

(
0 rad

𝜋

6
rad

3𝜋
8
rad 0 rad 0 rad 0 rad

)𝑇
. (53)

Again, joint velocities in the initial state are assumed to be equal to zero.

5.2. Considered curves

In the presented simulation study two types of curves were investigated. The
first one is a helix which is described with the following equation [19]

𝜶(𝑠) =
(
𝑎 cos

𝑠

𝑐
𝑎 sin

𝑠

𝑐

𝑏𝑠

𝑐

)𝑇
, (54)

where 𝑎, 𝑏, 𝑐 are certain positive constants and 𝑐 =
√
𝑎2 + 𝑏2. The equation of

the helix (54) is expressed with respect to the arclength 𝑠, so its parametrization
is normalized. It is noteworthy that both curvature and torsion of the helix are
constant values.
Another considered curve is a tapering helix. Its equation may be derived

with a proper modification of the general helix equation. The first two elements
are multiplied by an exponential function which leads to the equation

𝜷(𝑢) =
(
e−𝑢𝑤𝑎 cos 𝑢 e−𝑢𝑤𝑎 sin 𝑢 𝑏𝑢

)𝑇
, (55)

where 𝑤 > 0 is a certain positive value. The explicit relation 𝑢(𝑠), which is
essential to define the normalized parametrization, is quite difficult to obtain from
equation (8). Thus, the tapering helix (55) is defined with respect to a general
parameter 𝑢. It is also worth noticing that curvature and torsion do not preserve
constant values during the local frame evolution along the curve.

5.3. Simulation results

In the following section results of numerical simulations for the considered
robots are presented.
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5.3.1. RTR manipulator

In the conducted experiments the following parameters of the desired paths
were assumed: 𝑎 = 1, 𝑏 = 1, 𝑤 = 1/300. Moreover, two pairs of the regulation
coefficients were chosen: {𝑘𝑘 = 10, 𝑘𝑑 = 30} and {𝑘𝑘 = 100, 𝑘𝑑 = 100}. The
estimator coefficient was chosen from the set 𝛾 ∈ {10, 100}. For all simulation
cases the desired trajectory of path following errors is equal to

𝒅𝑑 (𝑡) =
(
0 0 0

)𝑇
, (56)

so the value 𝒅 is equal to the path tracking error 𝒆𝒅.
Firstly, tracking the virtual robot moving along the curve 𝜶(𝑠) defined by

equation (54) is considered. The curvilinear velocity is arbitrarily chosen as

¤𝑠 = 2 m
s
. (57)

Figure 6 presents the desired path 𝜶(𝑠) and the path followed by the manip-
ulator for the regulation coefficients equal to {𝑘𝑘 = 10, 𝑘𝑑 = 30, 𝛾 = 100}.
Results achieved for other simulations are analogical and are omitted in order
not to reduce figure readability. Figs. 7, 8 and 9 show all trajectories of the path
following errors 𝑒𝑑1 , 𝑒𝑑2 , 𝑒𝑑3 , respectively. The figures marked with (a) present
the behaviour of the system during the first 10 s of the simulation. In turn, the
figures marked with (b) show the simulation results for the whole time (100 s for
this case), but the error trajectories are zoomed to very low order of magnitude.

Figure 6: The desired path 𝜶(𝑠) and the path followed by the RTR manipulator for
𝑘𝑘 = 10, 𝑘𝑑 = 30, 𝛾 = 100
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(a) Trajectory of 𝑒𝑑1 error
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(b) Zoom of the trajectory of 𝑒𝑑1 error

Figure 7: Path following error 𝑒𝑑1 for the helix 𝜶(𝑠) – RTR manipulator (Solid line:
𝑘𝑘 = 100, 𝑘𝑑 = 100, 𝛾 = 10; Dashed line: 𝑘𝑘 = 10, 𝑘𝑑 = 30, 𝛾 = 100; Dotted line:
𝑘𝑘 = 10, 𝑘𝑑 = 30, 𝛾 = 10)
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(a) Trajectory of 𝑒𝑑2 error
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(b) Zoom of the trajectory of 𝑒𝑑2 error

Figure 8: Path following error 𝑒𝑑2 for the helix 𝜶(𝑠) – RTR manipulator (Solid line:
𝑘𝑘 = 100, 𝑘𝑑 = 100, 𝛾 = 10; Dashed line: 𝑘𝑘 = 10, 𝑘𝑑 = 30, 𝛾 = 100; Dotted line:
𝑘𝑘 = 10, 𝑘𝑑 = 30, 𝛾 = 10)

Presented graphs prove that the proposed algorithm guarantees asymptotic con-
vergence of errors to zero. The manipulator correctly followed the path defined in
the normalized parametrization. It is noteworthy that higher value of estimator co-
efficient guaranteed faster convergence of path tracking errors. On the other hand,
higher values of kinematic regulator 𝑘𝑘 and dynamic regulator 𝑘𝑑 coefficients
led to higher oscillations at the computational precision level. Moreover, they
resulted in more rapid reaction of the system at the beginning of the manipulator
motion.
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Figure 9: Path following error 𝑒𝑑3 for the helix 𝜶(𝑠) – RTR manipulator (Solid line:
𝑘𝑘 = 100, 𝑘𝑑 = 100, 𝛾 = 10; Dashed line: 𝑘𝑘 = 10, 𝑘𝑑 = 30, 𝛾 = 100; Dotted line:
𝑘𝑘 = 10, 𝑘𝑑 = 30, 𝛾 = 10)

In Fig. 10 errors of estimation of the unknown parameters are presented. It
may be observed that for all considered simulation cases estimated values do
not converge to the real values. Different values are generated, depending on the
choice of regulation gains. Despite that fact, the path is followed correctly. It is
noteworthy that higher gains may lead to faster changes of the system state at the
beginning of the manipulator motion.
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Figure 10: Errors of estimation of the unknown parameters 𝒂 for the helix 𝜶(𝑠) – RTR
manipulator (Solid line: 𝑘𝑘 = 100, 𝑘𝑑 = 100, 𝛾 = 10; Dashed line: 𝑘𝑘 = 10, 𝑘𝑑 = 30,
𝛾 = 100; Dotted line: 𝑘𝑘 = 10, 𝑘𝑑 = 30, 𝛾 = 10)
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Secondly, following the path 𝜷(𝑢) defined by equation (55) was investigated.
This curve is not expressed in the normalized Serret–Frenet parametrization. Due
to that fact, the local frame velocity along the curve is defined as evolution of an
independent parameter 𝑢. It is defined as

¤𝑢 =
1
150

m
s
. (58)

Figure 11 presents the desired path 𝜷(𝑢) and the path followed by the manip-
ulator for the regulation coefficients {𝑘𝑘 = 10, 𝑘𝑑 = 30, 𝛾 = 100}. The view
on the paths from the top is also shown. Again, for other regulation parameters
analogical results were achieved. It is worth noticing that the path is similar to the
helix but it becomes narrower and narrower with the increase of the parameter 𝑢.
Due to constraints of the manipulator workspace and control object geometrical
properties, the curve cannot get too narrow. If the path tapers too much, it may be
unobtainable by the manipulator. However, it does not result from the algorithm
deficiencies. The control taskmay not be performed correctly as a consequence of
the system constraints, i.e. the manipulator workspace limitations. Figures 12, 13
and 14 show trajectories of the path following errors 𝑒𝑑1 , 𝑒𝑑2 , 𝑒𝑑3 , respectively.
Again, error convergence to zero is achieved even though the local Serret–Frenet
frame moves at different rate along the curve and geometrical parameters of the
curve 𝜅 and 𝜏 change in time. In the presented figures it may be observed that
error values converge to zero much slower than for the helix. Path tracking errors
are satisfactorily low even after 10 s of the simulation, which is presented in the
figures marked with (a). However, the convergence to the precision level of the
numerical computations is reached even after thousands of seconds. We extended
simulation time to even 104 s and the results are shown in the figures marked

(a) General view (b) View from the top

Figure 11: The desired path 𝜷(𝑢) and the path followed by the RTR manipulator for
𝑘𝑘 = 10, 𝑘𝑑 = 30, 𝛾 = 100
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Figure 12: Path following error 𝑒𝑑1 for the tapering helix 𝜷(𝑢) (Solid line: 𝑘𝑘 = 100,
𝑘𝑑 = 100, 𝛾 = 100; Dashed line: 𝑘𝑘 = 100, 𝑘𝑑 = 100, 𝛾 = 10; Dotted line: 𝑘𝑘 = 10,
𝑘𝑑 = 30, 𝛾 = 100)

with (b). It is worth noticing that low controller gains emphasize the asymptotic
characteristics of the proposed algorithm. Moreover, higher regulation coeffi-
cients improve error convergence, although they lead to higher oscillations.
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Figure 13: Path following error 𝑒𝑑2 for the tapering helix 𝜷(𝑢) (Solid line: 𝑘𝑘 = 100,
𝑘𝑑 = 100, 𝛾 = 100; Dashed line: 𝑘𝑘 = 100, 𝑘𝑑 = 100, 𝛾 = 10; Dotted line: 𝑘𝑘 = 10,
𝑘𝑑 = 30, 𝛾 = 100)

In Figs. 15 and 16 estimation errors �̃� are presented. Again, no convergence
to the true values is obtained. It does not influence the correctness of path
tracking. For higher regulation coefficients the estimated values are closer to
the real ones. It is worth noticing that for the tapering helix error �̃�1 does not



362 A. MAZUR, F. DYBA

0 2 4 6 8 10

Time [s]

-0.2

-0.1

0

0.1

0.2

0.3

V
a

lu
e

 [
m

]

k
k
 = 100, k

d
 = 100,  = 100

k
k
 = 100, k

d
 = 100,  = 10

k
k
 = 10, k

d
 = 30,  = 100

(a) Trajectory of 𝑒𝑑3 error

0 2000 4000 6000 8000 10000

Time [s]

-5

0

5

V
a

lu
e

 [
m

]

10
-8

k
k
 = 100, k

d
 = 100,  = 100

k
k
 = 100, k

d
 = 100,  = 10

k
k
 = 10, k

d
 = 30,  = 100

(b) Zoom of the trajectory of 𝑒𝑑3 error

Figure 14: Path following error 𝑒𝑑3 for the tapering helix 𝜷(𝑢) (Solid line: 𝑘𝑘 = 100,
𝑘𝑑 = 100, 𝛾 = 100; Dashed line: 𝑘𝑘 = 100, 𝑘𝑑 = 100, 𝛾 = 10; Dotted line: 𝑘𝑘 = 10,
𝑘𝑑 = 30, 𝛾 = 100)

stabilize even after 104 s, which may be seen in Fig. 15b. It may be the reason
of the long time needed for convergence of path tracking errors and results
from low controller gains. This example shows that the proposed algorithm is
asymptotically stable.
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Figure 15: Estimation error �̃�1 for the tapering helix 𝜷(𝑢) (Solid line: 𝑘𝑘 = 100, 𝑘𝑑 = 100,
𝛾 = 100; Dashed line: 𝑘𝑘 = 100, 𝑘𝑑 = 100, 𝛾 = 10; Dotted line: 𝑘𝑘 = 10, 𝑘𝑑 = 30,
𝛾 = 100)

For both considered curves different sets of the regulation coefficients were
considered. It may be observed in the aforementioned figures that pace of the
error convergence depends on the coefficient values of the gain matrices 𝑲𝑘 and
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Figure 16: Estimation error �̃�2 for the tapering helix 𝜷(𝑢) (Solid line: 𝑘𝑘 = 100, 𝑘𝑑 = 100,
𝛾 = 100; Dashed line: 𝑘𝑘 = 100, 𝑘𝑑 = 100, 𝛾 = 10; Dotted line: 𝑘𝑘 = 10, 𝑘𝑑 = 30,
𝛾 = 100)

𝑲𝑑 . Also, the matrix 𝚪 influences the rate of unknown parameter stabilization.
The higher values, the faster rate of the error convergence to zero. Thus, the time
of reaching the desired path may be regulated by change of proper parameters.

5.3.2. Staubli RX-60 manipulator

The path following simulation was also conducted for the Staubli RX-60
manipulator. Considering another control object is valuable as motion along
a cylindrical helix is natural for the RTR manipulator. It is a possibility to verify
proposed algorithms for a manipulator with a kinematic structure like the RX-60
manipulator.
In order to satisfy the requirement that the desired path is located in the

manipulator workspace, the helix parameters must be changed in comparison to
the path considered in the previous section. Hence, the following values of the
given pathwere assumed in the simulation study: 𝑎 = 0.5 and 𝑏 = 0.05.Moreover,
the controller gains were taken from the sets: 𝑘𝑘 ∈ {10, 100}, 𝑘𝑑 ∈ {30, 100} and
𝛾 ∈ {30, 100}. The values were mixed and 3 cases were considered. Moreover,
the velocity profile along the path was defined as

¤𝑠 = 0.04 m
s
. (59)

The desired position of the end-effector with respect to the local Serret–Frenet
frame is again defined as zero vector, i.e. 𝒅𝑑 =

(
0 0 0

)𝑇 , as we want the robot
end-effector to move precisely along the given path.
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In Fig. 17 the desired path and the path followed by the manipulator is
presented. Also, the robot is visualized in a certain state while performing the
task. It may be concluded that the path is tracked correctly.

Figure 17: The desired path 𝜶(𝑠) (solid line) and the path followed by the Staubli RX-60
manipulator (dashed line) for 𝑘𝑘 = 10, 𝑘𝑑 = 30, 𝛾 = 100

The next figures, Figs. 18–20, present the path following errors. The figures
marked with (a) present error graphs during the first 10 s of the simulation.
In turn, the figures marked with (b) show the error trajectories at low order
of magnitude, but for the whole simulation which lasted 100 s. The presented
figures emphasized asymptotic convergence of errors to zero. They confirm that
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Figure 18: Path following error 𝑒𝑑1 for the helix 𝜶(𝑠) – RX-60 manipulator (Solid line:
𝑘𝑘 = 100, 𝑘𝑑 = 100, 𝛾 = 100; Dashed line: 𝑘𝑘 = 10, 𝑘𝑑 = 30, 𝛾 = 100; Dotted line:
𝑘𝑘 = 10, 𝑘𝑑 = 30, 𝛾 = 30)
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the proposed algorithm is asymptotically stable. Furthermore, the choice of the
controller gains impacts on the pace of the convergence.
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Figure 19: Path following error 𝑒𝑑2 for the helix 𝜶(𝑠) – RX-60 manipulator (Solid line:
𝑘𝑘 = 100, 𝑘𝑑 = 100, 𝛾 = 100; Dashed line: 𝑘𝑘 = 10, 𝑘𝑑 = 30, 𝛾 = 100; Dotted line:
𝑘𝑘 = 10, 𝑘𝑑 = 30, 𝛾 = 30)
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Figure 20: Path following error 𝑒𝑑3 for the helix 𝜶(𝑠) – RX-60 manipulator (Solid line:
𝑘𝑘 = 100, 𝑘𝑑 = 100, 𝛾 = 100; Dashed line: 𝑘𝑘 = 10, 𝑘𝑑 = 30, 𝛾 = 100; Dotted line:
𝑘𝑘 = 10, 𝑘𝑑 = 30, 𝛾 = 30)

In Fig. 21 errors of dynamic parameters estimation are presented. In this case
all unknown parameters converge to values close to the real values. However,
this feature is not crucial for the correct path following. The proposed control
algorithm guarantees that the estimated values are only limited. As proved the



366 A. MAZUR, F. DYBA

case with the RTR manipulator, the estimated parameters may converge to any
values and the path following task is performed successfully.
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Figure 21: Errors of estimation of the unknown parameters 𝒂 for the helix 𝜶(𝑠) – RX-60
manipulator (Solid line: 𝑘𝑘 = 100, 𝑘𝑑 = 100, 𝛾 = 100; Dashed line: 𝑘𝑘 = 10, 𝑘𝑑 = 30,
𝛾 = 100; Dotted line: 𝑘𝑘 = 10, 𝑘𝑑 = 30, 𝛾 = 30)

The presented simulation case shows that the proposed control algorithm
may be successfully applied to a manipulator with any kinematic structure. The
adaptive algorithm on the dynamic level may be applied in order to deal with the
unknown dynamic parameters.

6. Conclusions

In the paper the adaptive control algorithm for the path following task in
the three-dimensional space has been presented. It allows to follow a virtual
object moving along the desired path. The virtual object motion results from the
considered curvilinear parametrization method. In the article the non-orthogonal
Serret–Frenet parametrization has been investigated.
The Serret–Frenet parametrization allows to define the evolution of the local

frame associated with a curve. It has been shown that the normalization of the
parametrization does not influence effectiveness of the method application to the
problem. Both normalized and non-normalized equations result in the control
object description with respect to the given curve. This original approach to the
control with respect to a moving frame leads to the definition of path following
error dynamics. In the paper it has been shown that they take the form of non-
integrable constraints of the first order. Hence, the control system has a cascade
structure.
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As compared to the other path following algorithms based on the Serret–
Frenet parametrization, the method presented in this article introduces the non-
orthogonal projection of a control object on the given curve. It is a substantial
improvement as the non-orthogonal projection does not impose any additional
constraints on the robot motion. Thus, there are no singularities resulting from
the projection method in the control system. As a consequence, the proposed
algorithm may be used globally.
Due to the cascade structure of the control system, the backstepping integrator

algorithm has been applied to solve the control problem. In the paper the asymp-
totic convergence of the presented control algorithm for a holonomic manipulator
has been presented. The kinematic control law, which is the main result of the
work, guarantees that the path following errors asymptotically converge to zero. It
results in correct path following. Reference velocities generated on the kinematic
level are followed on the dynamic level due to the control signals generated by
the dynamic controller.
The choice of the dynamic controller is arbitrary. Any dynamic controller,

which guarantees velocity profiles following errors convergence to zero, allows to
follow the desired path. In the article the adaptive approach has been investigated.
It has been assumed that the unknown parameters of the manipulator dynamics
are constant and the robot model may be expressed in linear dependency of these
parameters. However, it is noteworthy that the proposed control algorithm has
not guaranteed the convergence of estimated parameters to the true values as it
has not been the part of control task.
The theoretical considerations have been proven with simulation study. Two

different types of paths have been taken into account. One of them has been
expressed in the normalized Serret–Frenet parametrization with respect to the
arclength parameter, whereas for the another one it has been difficult to obtain
analytical equations of the normalized parametrization. As a result, the general
approach has been harnessed. Furthermore, different rates of the Serret–Frenet
frame motion along the desired curve have been considered. The proposed al-
gorithm has been applied to control the holonomic non-redundant manipulators
with a fixed base. Two different kinematic structures have been taken into account.
Results of the simulations have confirmed correctness of the control algorithm
proposed in this paper.
To conclude, the non-orthogonal parametrization allows one to implement

the global control algorithm, which guarantees that the control object reaches
the desired path and moves along it. Thus, in the future the algorithm may
be used for various applications, e.g. it may be implemented to control more
sophisticated objects important for industrial tasks, such as mobile manipulators
or redundant manipulators. Workspace of such objects is less constrained, so
much wider range of curves may be taken into account. Moreover, the task of
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following moving objects is crucial for space robotics, e.g. in missions of the
on-orbit debris removal. The approach of control with respect to a moving frame
may be investigated for such space applications.
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