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Fractional order PI𝜆D𝜇A controller design based on
Bode’s ideal function

Khalfa BETTOU and Abdelfatah CHAREF

The fractional order proportional, integral, derivative and acceleration (PI𝜆D𝜇A) controller
is an extension of the classical PIDA controller with real rather than integer integration action
order 𝜆 and differentiation action order 𝜇. Because the orders 𝜆 and 𝜇 are real numbers, they will
provide more flexibility in the feedback control design for a large range of control systems. The
Bode’s ideal transfer function is largely adopted function in fractional control systems because
of its iso-damping property which is an essential robustness factor.

In this paper an analytical design technique of a fractional order PI𝜆D𝜇A controller is
presented to achieve a desired closed loop system whose transfer function is the Bode’s ideal
function. In this design method, the values of the six parameters of the fractional order PI𝜆D𝜇A
controllers are calculated using only the measured step response of the process to be controlled.
Some simulation examples for different third order motor models are presented to illustrate
the benefits, the effectiveness and the usefulness of the proposed fractional order PI𝜆D𝜇A
controller tuning technique. The simulation results of the closed loop system obtained by the
fractional order PI𝜆D𝜇A controller are compared to those obtained by the classical PIDA
controller with different design methods found in the literature. The simulation results also show
a significant improvement in the closed loop system performances and robustness using the
proposed fractional order PI𝜆D𝜇A controller design.

Key words: Bode’s ideal transfer function, fractional order control, classical PIDA con-
troller, fractional order PI𝜆D𝜇A controller, robustness

1. Introduction

A non-intuitive and difficult task to control engineers is the design of an
effective and economic controller. The most commonly used controllers in the
process control industry are the proportional, integral and derivative (PID) con-
trollers [1, 2]. Since Ziegler and Nichols have presented their PID controller
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parameters tuning method [3], a continuous research work is still underway to-
wards system control quality improvement and performance enhancement. In
many control applications, the processes are modeled as third order systems. The
classical PID controllers become unsuitable for the control of these third order
systems; hence a new controller structure becomes necessary for such systems [4].
In 1996, Jung and Dorf have introduced the proportional integral derivative

accelerated (PIDA) controller which is more suitable for feedback control systems
of higher order plants [5]. They have found that the feedback control system with
the PIDA controller has delivered a faster and a smoother response than the
feedback control system with the PID controller for third-order systems. The
idea behind the PIDA controller design is to add an extra zero in classical PID
controller. A New Analytical approach of PIDA design was proposed by Kitti’s
in [6], and extended to discrete system [7]. Some optimal designs of the PIDA
controller were presented using several optimization algorithms [8–11].
The application of PIDA controller was successfully carried out for several

applications, a servo motor driving, a load through a long shaft or transmission
system in [12], an induction motor control in [13, 14], an automatic voltage
regulator system in [15, 16], a power system in [17, 18], a Liquid-Level System
in [19], a Cardiac Pacemaker in [20], and a Temperature Control of Electric
Furnace System in [21].
In recent years, the emergence of new computational techniques for fractional

calculus has made possible the transition from classical models and controllers
to those described mathematically by differential equations of non integer order.
Thus, fractional-order dynamic models and controllers have been introduced.
The interest in fractional order control can be traced back to the late nineteenth
century. The growing tendency towards using fractional order control has been
fueled mainly by the fact that these controllers have additional tuning knobs that
allow coherent adjustment of the dynamics of control systems [22, 23].
Different from the classical linear integer order PID controller, fractional

order PI𝜆D𝜇 controller is nonlinear naturally regarding the fractional order, which
brings the main difficulties in system design and analysis.
Nowadays, various design methods have been proposed for fractional order

PI𝜆D𝜇 controller tuning. In [24], the basic ideas are based on already existing
classical PID controllers and the minimum ISE criterion for setting the fractional
integration action order and the fractional differentiation action order. The well–
known Ziegler-Nichols tuning rule has been extended to fractional order PI𝜆D𝜇
controller with S-shaped step response, but it only works well on some lag
dominant process [25]. For a typical first order plus dead time model, some
tuning rules are developed to minimize integrated absolute error (IAE) subject to
a constraint on themaximumsensitivity [26]. To obtain good control performance,
dominant pole placement for fractional order PI𝜆D𝜇 controller is developed based
on D-decomposition method [27]. In the last years, the internal model control
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(IMC) tuning method is also introduced in the design of fractional order PI𝜆D𝜇
controller [28, 29].
Bode shaping is an effective method for control system design in frequency

domain. As a good open loop model, Bode’s ideal transfer function is discussed
in [30], which shows its stronger robustness against loop gain variation. To realize
auto-tuning of fractional order PI𝜆D𝜇 controller, online optimization technolo-
gies are employed to optimize the Bode’s model and controller parameters [31].
In [32], a model-based analytical method is developed for fractional order PI𝜆D𝜇
controller design via internal model control (IMC) principle and Bode’s model.
Various papers have proposed different optimization tuning methods for frac-

tional order PI𝜆D𝜇 controller. In [33], amethod based on solving a set of nonlinear
equations is proposed. In [34], a tuning rule for fractional order PI𝜆D𝜇 controller
suitable for motion systems is given. In [35], Modified Grey Wolf Optimizer is
adopted to design the fractional order PI𝜆D𝜇 controller. Another class of frac-
tional order PI𝜆D𝜇 controller is proposed in [36], which ensures robustness to the
closed-loop static gain variation of traditional CRONE templates [37].
A multi-objective extremal optimization algorithm is adopted to design frac-

tional order PI𝜆D𝜇 controller, [38,39]. Besides, there are some effective fractional
order PI𝜆D𝜇 tuning settings summarized in [23].
Therefore, this article combines fractional calculus with classical PIDA con-

troller [5, 40]. Fractional order PI𝜆D𝜇A controller is a generalization of classical
PID controller considering fractional derivative and integral action and integer ac-
celeration action. The fractional order PI𝜆D𝜇 controller is proposed by Professor
I. Podlubny [40], and is generally simply expressed as PI𝜆D𝜇.
Compared with classical PIDA controller, fractional order PI𝜆D𝜇A controller

adds two different parameters to be adjusted: integral order and differential order,
which makes the setting range of the control parameters larger. Therefore, better
robust control effect can be obtained.
At present, many studies have explored the characteristics of fractional order

PI𝜆D𝜇A and compared its performance with classical PIDA controller in different
environments [41–46].
In this paper, a new analytical method of designing the fractional order

PI𝜆D𝜇A controller for classical feedback control systems is proposed. This
method uses the step response of the process and requires no approximation of
the process by any model. Inspired from a recent PID and fractional order PI𝜆D𝜇
design techniques, the proposed method makes use of the Taylor–Maclaurin se-
ries development [47, 48]. The six parameters of the fractional order PI𝜆D𝜇A
controller are tuned such that the closed loop system is equivalent to a desired
fractional order model whose transfer function is Bode’s ideal function, called in
this context the fractional order relaxation or oscillatory system [49]. This type
of fractional order system is widely used in the fractional order control domain
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because it has the iso-damping property which is a very important robustness
feature.
The basic ideas of the design method are presented and the formulae for the

calculation of these tuning parameters are derived analytically. Illustrative exam-
ples were presented to test the effectiveness and the usefulness of the proposed
fractional order PI𝜆D𝜇A controller design method. These results are concluded
in conclusion.

2. Preliminaries

2.1. Brief introduction to fractional order calculus

A commonly used definition of fractional differo-integral is the Riemann-
Liouville definition

𝑎𝐷
𝛼
𝑡 𝑓 (𝑡) =

1
Γ(𝑚 − 𝛼)

(
𝑑

𝑑𝑡

)𝑚 𝑡∫
𝑎

𝑓 (𝜏)
(𝑡 − 𝜏)1−(𝑚−𝛼)

d𝜏 . (1)

For 𝑚 − 1 ≺ 𝛼 ≺ 𝑚; where, Γ(.) is the well-known Euler’s gamma function.
An alternative definition, based on the concept of fractional differentiation, is
Grunwald-Letnikov definition given by

𝑎𝐷
𝛼
𝑡 𝑓 (𝑡) = lim

ℎ→0

1
Γ(𝛼)ℎ𝛼

(𝑡−𝑎)/ℎ∑︁
𝑘=0

Γ(𝛼 + 𝑘)
Γ(𝑘 + 1) 𝑓 (𝑡 − 𝑘ℎ). (2)

One can observe that by introducing the notion of fractional order operator
𝑎𝐷

𝛼
𝑡 𝑓 (𝑡) the differentiator and integrator can be unified.
Another useful tool is the Laplace transform. The Laplace transform of an

𝑛-th derivative (𝑛 ∈ 𝑅+) of a signal 𝑥(𝑡) relaxed at 𝑡 = 0 is given by: 𝐿 {𝐷𝑛𝑥(𝑡)} =
𝑠𝑛𝑋 (𝑠). So, a fractional order differential equation, provided both the signal 𝑢(𝑡)
and 𝑦(𝑡) are relaxed at 𝑡 = 0, can be expressed in a transfer function form

𝐺 (𝑠) = 𝑎1𝑠
𝛼1 + 𝛼2𝑠𝛼2 + . . . + 𝑎𝑚𝐴𝑠𝛼𝑚𝐴

𝑏1𝑠𝛽1 + 𝑏2𝑠𝛽2 + . . . + 𝑏𝑚𝐵𝑠𝛽𝑚𝐴
, (3)

where (𝑎𝑚, 𝑏𝑚) ∈ 𝑅2, (𝛼𝑚, 𝛽𝑚) ∈ 𝑅2+, ∀(𝑚 ∈ 𝑁).
Thorough expositions of these subjects may be found in [22] and [50].
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2.2. Fractional order PI𝜆D𝜇A controller

The parallel form of the fractional order PI𝜆D𝜇A controller having an inte-
grator of order 𝜆 and a differentiator of order 𝜇, is defined as follows:

𝐶 (𝑠) = 𝑈 (𝑠)
𝐸 (𝑠) = 𝑘 𝑝 +

𝑘𝑖

𝑠𝜆
+ 𝑘𝑑𝑠𝜇 + 𝑘𝑎𝑠2, (𝜆𝜇 > 0), (4)

where 𝐾𝑝 is the proportional gain, 𝐾𝑖 is the integration gain, 𝐾𝑑 is the derivative
gain; 𝐾𝑎 is the acceleration gain, 𝜆 and 𝜇 are the integral and derivative orders,
respectively, satisfying 0 < 𝜆, 𝜇 < 2, Fig. 1 shows the block diagram of the
parallel form of the fractional order PI𝜆D𝜇A controller. The time domain control
signal is represented by:

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖𝐷−𝜆𝑒(𝑡) + 𝐾𝑑𝐷𝜇𝑒(𝑡) + 𝐾𝑎𝐷2𝑒(𝑡). (5)
For a classical PIDA controller, 𝐾𝑝 = proportional gain, 𝐾𝑖 = integral gain,
𝐾𝑑 = derivative gain, 𝐾𝑎 = acceleration gain, 𝜆 and 𝜇 are both equal to 1. The
interest of our proposed fractional order PI𝜆D𝜇A control structure is justified
by a better flexibility, since it has two more parameters which are the fractional
integration action order 𝜆 and the fractional differentiation action order 𝜇. These
parameters can be used to fulfil additional specifications for the design or other
interesting requirements for the controlled system, than in the case of a classical
PIDA control structure (𝜆 = 1, 𝜇 = 1).

Figure 1: Block diagram of the fractional order PI𝜆D𝜇A controller

2.3. Bode’s ideal transfer function

An ideal open-loop transfer function is proposed in [30], that is

𝐿 (𝑠) =
(𝜔𝑐
𝑠

)𝛼
, 𝛼 ∈ 𝑅, (6)

where 𝜔𝑐 is the gain crossover frequency, that is |𝐿 (𝑠) |=1, and 0<𝛼<2 is a real.
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The parameter 𝛼 determines both the slope of the magnitude curve on Bode
plot and the phase margin of the system. In the Bode diagrams, the amplitude
of 𝐿 (𝑠) is a straight line of constant slope −20𝛼 dB/dec and its phase curve is a
horizontal line at

𝛼𝜋

2
rad which indicates the Bode’s ideal transfer function 𝐿 (𝑠)

possesses strong robustness against gain variation. It means that the variation of
the process gain only changes the crossover frequency𝜔𝑐 but maintains the phase
margin constant 𝜋

(
1 − 𝛼

2

)
rad.

Figure 2 and Fig. 3 show a feedback systemwith Bode’s ideal transfer function
in the forward path and Bode diagrams of amplitude and phase of 𝐿 (𝑠).

Figure 2: Feedback system with Bode’s ideal transfer function in the forward path

Figure 3: Bode diagrams of amplitude and phase of 𝐿 (𝑠) for 0 < 𝛼 < 2

The choice of 𝐿 (𝑠) as open loop transfer function also gives an ideal closed
loop transfer function under a unit feedback defined as follow:

𝐹 (𝑠) = 1

1 +
(
𝑠

𝜔𝑐

)𝛼 (7)

with infinite gain margin and constant phase margin.
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2.4. Problem statement

In this work, as shown in Fig. 4, we consider the negative unity feedback
closed loop system of the form

𝑊 (𝑠) = 𝑌 (𝑠)
𝑅(𝑠) =

𝐶 (𝑠)𝐺 𝑝(𝑠)
1 + 𝐶 (𝑠)𝐺 𝑝 (𝑠)

, (8)

where𝐶 (𝑠) is the fractional order PI𝜆D𝜇A controller and𝐺 𝑝 (𝑠) is the plant under
control.

Figure 4: Classical unity feedback control system

The design problem of this feedback control system is to find the fractional
order controller 𝐶 (𝑠) of Equation (4) to guarantee that the closed loop transfer
function 𝑊 (𝑠) behaves in a given frequency band as a desired reference model
whose transfer function is the Bode’s ideal transfer function given by

𝐹𝑑 (𝑠) =
1

1 +
(
𝑠

𝜔𝑢

)𝑚 . (9)

This function is considered as the closed loop transfer function of the unity
feedback control of Fig. 4 whose open loop transfer function is given by

𝐿𝑑 (𝑠) =
(𝜔𝑢
𝑠

)𝑚
. (10)

The two parameters𝑚 and𝜔𝑢 are chosen such that the above desired 𝐹𝑑 (𝑠) system
meets the dynamic performance requirements of the projected feedback control
system. If these performance requirements of the projected feedback control
system can be given in terms of the unity gain crossover frequency 𝜔𝑐 and the
phase margin 𝜙𝑚, the two parameters 𝑚 and 𝜔𝑢 are obtained as follows:

• 𝜔𝑢 = 𝜔𝑐 (the unity gain crossover frequency of the projected feedback
control system),

• 𝑚 = 2[1 − (𝜙𝑚/𝜋)] (𝜙𝑚 is the phase margin of the projected feedback
control system).
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Therefore, the design objective is simply summarized to the tuning of the six
parameters 𝐾𝑝, 𝐾𝑖, 𝐾𝑑 , 𝐾𝑎, 𝜆 and 𝜇 of the fractional order PI𝜆D𝜇A controller to
satisfy the condition 𝑊 (𝑠) = 𝐹𝑑 (𝑠) in a given frequency band around the unity
gain crossover frequency 𝜔𝑐 = 𝜔𝑢.
The above two functions 𝑊 (𝑠) and 𝐹𝑑 (𝑠) can be represented by Taylor–

Maclaurin series expansion in 𝑠at the unity gain crossover frequency 𝑠 = 𝜔𝑢 as
follows:

𝑊 (𝑠) = 𝑊 (𝜔𝑢) + (𝑠 − 𝜔𝑢)𝑊 (1) (𝜔𝑢) +
(𝑠 − 𝜔𝑢)2

2!
𝑊 (2) (𝜔𝑢) + . . .

+ (𝑠 − 𝜔𝑢)𝑖

𝑖!
𝑊 (𝑖) (𝜔𝑢) + . . . , (11)

𝐹𝑑 (𝑠) = 𝐹𝑑 (𝜔𝑢) + (𝑠 − 𝜔𝑢) 𝐹 (1)
𝑑

(𝜔𝑢) +
(𝑠 − 𝜔𝑢)2

2!
𝐹
(2)
𝑑

(𝜔𝑢) + . . .

+ (𝑠 − 𝜔𝑢)𝑖

𝑖!
𝐹
(𝑖)
𝑑
(𝜔𝑢) + . . . , (12)

where𝑊 (𝑖) (𝜔𝑢) and 𝐹 (𝑖)
𝑑
(𝜔𝑢) are, respectively, the 𝑖-th derivatives of the functions

𝑊 (𝑠) and 𝐹𝑑 (𝑠) with respect to 𝑠 at 𝜔𝑢.
Because our goal is the design of the fractional order PI𝜆D𝜇A controller to

satisfy the condition 𝑊 (𝑠) � 𝐹𝑑 (𝑠), the truncation of the above series up to the
sixth order term is then sufficient to set up six independent equations to tune the
six parameters 𝐾𝑝, 𝐾𝑖, 𝐾𝑑 , 𝐾𝑎, 𝜆 and 𝜇 of the fractional order PI𝜆D𝜇A controller.
Therefore, from Equations (11) and (12) we have



𝑊 (𝜔𝑢) = 𝐹𝑑 (𝜔𝑢),

𝑊 (1) (𝜔𝑢) = 𝐹 (1)
𝑑

(𝜔𝑢),

𝑊 (2) (𝜔𝑢) = 𝐹 (2)
𝑑

(𝜔𝑢),

𝑊 (3) (𝜔𝑢) = 𝐹 (3)
𝑑

(𝜔𝑢),

𝑊 (4) (𝜔𝑢) = 𝐹 (4)
𝑑

(𝜔𝑢),

𝑊 (5) (𝜔𝑢) = 𝐹 (5)
𝑑

(𝜔𝑢).

(13)

Therefore, the proposed feedback control design sums up to the tuning of the
parameters of the fractional order PI𝜆D𝜇A controller in order to satisfy all the six
equalities of Equation (13).
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3. The proposed method

3.1. Description of the design method

The description of the proposed fractional order PI𝜆D𝜇A controller design
method is given as following.
Step 1
Let 𝜃𝑖 = 𝑊 (𝑖) (𝜔𝑢) = 𝐹

(𝑖)
𝑑
(𝜔𝑢), for 0 ¬ 𝑖 ¬ 5, so from Equation (8) and the

desired reference model function of Equation (9), we have

𝜃0 = 𝑊 (𝜔𝑢) = 𝐹𝐴 (𝜔𝑢) =
1
2
,

𝜃1 = 𝑊
(1) (𝜔𝑢) = 𝐹 (1)

𝑑
(𝜔𝑢) = − 𝑚

4𝜔𝑢
,

𝜃2 = 𝑊
(2) (𝜔𝑢) = 𝐹 (2)

𝑑
(𝜔𝑢) =

𝑚

4𝜔2𝑢
,

𝜃3 = 𝑊
(3) (𝜔𝑢) = 𝐹 (3)

𝑑
(𝜔𝑢) =

𝑚(𝑚2 − 4)
8𝜔3𝑢

,

𝜃4 = 𝑊
(4) (𝜔𝑢) = 𝐹 (4)

𝑑
(𝜔𝑢) = −3𝑚(𝑚2 − 2)

4𝜔4𝑢
,

𝜃5 = 𝑊
(5) (𝜔𝑢) = 𝐹 (5)

𝑑
(𝜔𝑢) =

𝑚(−2𝑚4 + 35𝑚2 − 48)
8𝑚5

.

(14)

Hence, the numerical values of the variables 𝜃𝑖, for 0 ¬ 𝑖 ¬ 5, are calculated from
the given numerical values of the parameters 𝑚 and 𝜔𝑢.
Let 𝑋𝑖 = 𝐶 (𝑖) (𝜔𝑢), for 0 ¬ 𝑖 ¬ 5, the 𝑖-th derivative of the fractional or-

der PI𝜆D𝜇A controller transfer function 𝐶 (𝑠) with respect to the variable 𝑠 at
𝑠 = 𝜔𝑢. Therefore, from the fractional order PI𝜆D𝜇A controller transfer function
of Equation (4), we have

𝑋𝑖 = 𝐶
(𝑖) (𝜔𝑢),

𝑋0 = 𝐶 (𝜔𝑢) = 𝐾𝑝 + 𝐾𝑖𝜔−𝜆
𝑢 + 𝐾𝑑𝜔𝜇𝑢 + 𝐾𝑎𝜔2𝑢 ,

𝑋1 = 𝐶
(1) (𝜔𝑢) =

−𝜆𝐾𝐼
𝜔𝑢

𝜔−𝜆
𝑢 + 𝜇𝐾𝐷

𝜔𝑢
𝜔
𝜇
𝑢 + 2𝐾𝐴𝜔𝑢 ,

𝑋2 = 𝐶
(2) (𝜔𝑢) =

𝜆(𝜆 + 1)𝐾𝐼
𝜔2𝑢

𝜔−𝜆
𝑢 + 𝜇(𝜇 − 1)𝐾𝐷

𝜔2𝑢
𝜔
𝜇
𝑢 + 2𝐾𝐴 ,

𝑋3 = 𝐶
(3) (𝜔𝑢) =

−𝜆(𝜆 + 1) (𝜆 + 2)𝐾𝐼
𝜔3𝑢

𝜔−𝜆
𝑢 + 𝜇(𝜇 − 1) (𝜇 − 2)𝐾𝐷

𝜔3𝑢
𝜔
𝜇
𝑢 ,

(15)
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[equation (15) cont.]

𝑋4 = 𝐶
(4) (𝜔𝑢) =

𝜆(𝜆+1) (𝜆+2) (𝜆+3)𝐾𝐼
𝜔4𝑢

𝜔−𝜆
𝑢 + 𝜇(𝜇−1) (𝜇−2) (𝜇−3)𝐾𝐷

𝜔4𝑢
𝜔
𝜇
𝑢 ,

𝑋5 = 𝐶
(5) (𝜔𝑢) =

−𝜆(𝜆+1) (𝜆+2) (𝜆+3) (𝜆+4)𝐾𝐼
𝜔5𝑢

𝜔−𝜆
𝑢

+ 𝜇(𝜇−1) (𝜇−2) (𝜇−3)𝐾𝐷
𝜔4𝑢

𝜔
𝜇
𝑢 .

Step 2
Let 𝐺𝑆𝑡 (𝑠) the Laplace transform of the step response 𝑔𝑆𝑡 (𝑡) of the process,

so 𝐺𝑆𝑡 (𝑠) is given by the following:

𝐺𝑆𝑡 (𝑠) =
∞∫
0

𝑔𝑆𝑡 (𝑡)𝑒−𝑠𝑡 d𝑡. (16)

The two functions 𝑒−𝑠𝑡 and𝐺𝑆𝑡 (𝑠) of Equation (16) can be represented by Taylor–
Maclaurin series expansion in 𝑠 at 𝑠 = 𝜔𝑢 as follows:

𝐺𝑆𝑡 (𝑠) =
∞∫
0

𝑔𝑆𝑡 (𝑡)𝑒−𝑠𝑡 d𝑡 + (𝑠 − 𝜔𝑢)


∞∫
0

(−𝑡𝑔𝑆𝑡 (𝑡)𝑒−𝜔𝑢𝑡)d𝑡


+ (𝑠 − 𝜔𝑢)2

2!


∞∫
0

(𝑡2𝑔𝑆𝑡 (𝑡)𝑒−𝜔𝑢𝑡)d𝑡


+ (𝑠 − 𝜔𝑢)3

3!


∞∫
0

(−𝑡3𝑔𝑆𝑡 (𝑡)𝑒−𝜔𝑢𝑡)d𝑡
 + . . . , (17)

𝐺𝑆𝑡 (𝑠) = 𝐺𝑆𝑡 (𝜔𝑢) + (𝑠 − 𝜔𝑢)𝐺 (1)
𝑆𝑡

(𝜔𝑢) +
(𝑠 − 𝜔𝑢)2

2!
𝐺

(2)
𝑆𝑡

(𝜔𝑢)

+ (𝑠 − 𝜔𝑢)3

3!
𝐺

(3)
𝑆𝑡

(𝜔𝑢) + . . . , (18)

where𝐺 (𝑖)
𝑆𝑡
(𝜔𝑢), for 0 ¬ 𝑖 ¬ 5, is the 𝑖-th derivative of the transfer function𝐺𝑆𝑡 (𝑠)

with respect to 𝑠 at 𝑠 = 𝜔𝑢. We denote 𝑆𝑖 = 𝐺
(𝑖)
𝑆𝑡
(𝜔𝑢), for 0 ¬ 𝑖 ¬ 5, so from
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Equations (17) and (18) we have

𝑆0 = 𝐺𝑆𝑡 (𝑠) =
∞∫
0

𝑔𝑆𝑡 (𝑡)𝑒−𝑠𝑡 d𝑡 ,

𝑆1 = 𝐺
(1)
𝑆𝑡

(𝜔𝑢) =


∞∫
0

(
−𝑡𝑔𝑆𝑡 (𝑡)𝑒−𝜔𝑢𝑡

)
d𝑡
 ,

𝑆2 = 𝐺
(2)
𝑆𝑡

(𝜔𝑢) =


∞∫
0

(
𝑡2𝑔𝑆𝑡 (𝑡)𝑒−𝜔𝑢𝑡

)
d𝑡
 ,

𝑆3 = 𝐺
(3)
𝑆𝑡

(𝜔𝑢) =


∞∫
0

(
−𝑡3𝑔𝑆𝑡 (𝑡)𝑒−𝜔𝑢𝑡

)
d𝑡
 ,

𝑆4 = 𝐺
(4)
𝑆𝑡

(𝜔𝑢) =


∞∫
0

(
𝑡4𝑔𝑆𝑡 (𝑡)𝑒−𝜔𝑢𝑡

)
d𝑡
 ,

𝑆5 = 𝐺
(5)
𝑆𝑡

(𝜔𝑢) =


∞∫
0

(
−𝑡5𝑔𝑆𝑡 (𝑡)𝑒−𝜔𝑢𝑡

)
d𝑡
 .

(19)

Because 𝜔𝑢 > 0 and the integer 𝑛  0, we have lim𝑡→∞ 𝑡𝑛𝑒−𝜔𝑢𝑡 = 0, 𝑛  0, then
the integrals 𝑆𝑖, for 0 ¬ 𝑖 ¬ 5, of Equation (19) converge and can be calculated
numerically using the following formulas:

𝑆0 = 𝐺𝑆𝑡 (𝑠) = 𝑇
𝑁∑︁
𝑘=1

𝑔𝑆𝑡 (𝑘𝑇)𝑒−𝜔𝑢𝑘𝑇 ,

𝑆1 = 𝐺
(1)
𝑆𝑡

(𝜔𝑢) = −𝑇
𝑁∑︁
𝑘=1

(𝑘𝑇)𝑔𝑆𝑡 (𝑘𝑇)𝑒−𝜔𝑢𝑘𝑇 ,

𝑆2 = 𝐺
(2)
𝑆𝑡

(𝜔𝑢) = 𝑇
𝑁∑︁
𝑘=1

(𝑘𝑇)2𝑔𝑆𝑡 (𝑘𝑇)𝑒−𝜔𝑢𝑘𝑇 ,

𝑆3 = 𝐺
(3)
𝑆𝑡

(𝜔𝑢) = −𝑇
𝑁∑︁
𝑘=1

(𝑘𝑇)3𝑔𝑆𝑡 (𝑘𝑇)𝑒−𝜔𝑢𝑘𝑇 ,

(20)
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[equation (20) cont.]

𝑆4 = 𝐺
(4)
𝑆𝑡

(𝜔𝑢) = 𝑇
𝑁∑︁
𝑘=1

(𝑘𝑇)4𝑔𝑆𝑡 (𝑘𝑇)𝑒−𝜔𝑢𝑘𝑇 ,

𝑆5 = 𝐺
(5)
𝑆𝑡

(𝜔𝑢) = −𝑇
𝑁∑︁
𝑘=1

(𝑘𝑇)5𝑔𝑆𝑡 (𝑘𝑇)𝑒−𝜔𝑢𝑘𝑇 ,

where 𝑇 is the sampling period of the step response 𝑔𝑆𝑡 (𝑡) of the process and
the number of samples 𝑁 = integer part of (𝑇sim/𝑇), with 𝑇sim being the time of
acquisition of the step response which is usually taken higher than the settling
time of the process. Therefore, the numerical values of the parameters 𝑆𝑖, for
0 ¬ 𝑖 ¬ 5, are calculated from the given numerical values of the step response
𝑔𝑆𝑡 (𝑡) of the process and the unity gain crossover frequency 𝜔𝑢. If the transfer
function of the process is available, the parameters 𝑆𝑖 can also be calculated
directly.
Step 3
The feedback control system open loop transfer function 𝐺𝑂𝐿 (𝑠) can be

obtained from the closed loop transfer function𝑊 (𝑠) of Equation (8) as follows:

𝐺𝑂𝐿 (𝑠) = 𝐶 (𝑠)𝐺 𝑝 (𝑠) =
𝑊 (𝑠)
1 −𝑊 (𝑠) , (21)

We can rewrite the above equation as follows:

𝐺𝑂𝐿 (𝑠) = 𝑠𝐶 (𝑠)
𝐺 𝑝 (𝑠)
𝑠

= 𝑠𝐶 (𝑠)𝐺𝑆𝑡 (𝑠) =
𝑊 (𝑠)
1 −𝑊 (𝑠) , (22)

where 𝐺 𝑝 (𝑠)/𝑠 = 𝐺𝑆𝑡 (𝑠) is the Laplace transform of the step response 𝑔𝑆𝑡 (𝑡) of
the process of Equation (16). Taking the 𝑖-th derivative, for 0 ¬ 𝑖 ¬ 5, of both
sides of Equation (22) with respect to 𝑠 at 𝑠 = 𝜔𝑢 and using the results obtained
for the calculations of the terms 𝑊 (𝑖) (𝜔𝑢), 𝐶 (𝑖) (𝜔𝑢) and 𝐺 (𝑖)

𝑆𝑡
(𝜔𝑢) in Equations

(14) and (15) from step 1 and Equation (20) from step 2, we then get

𝐺𝑂𝐿 (𝜔𝑢) = 𝜔𝑢𝑋0𝑆0 =
𝜃0

1 − 𝜃0
,

𝐺
(1)
𝑂𝐿

(𝜔𝑢) = 𝑋0𝑆0 + 𝜔𝑢𝑋1𝑆0 + 𝜔𝑢𝑋0𝑆1 =
𝜃1

(1 − 𝜃1)2
,

𝐺
(2)
𝑂𝐿

(𝜔𝑢) = 2𝑋1𝑆0 + 2𝑋0𝑆1 + 𝜔𝑢𝑋2𝑆0 + 2𝜔𝑢𝑋1𝑆1 + 𝜔𝑢𝑋0𝑆2

=
𝜃2

(1 − 𝜃0)2
+

2𝜃21
(1 − 𝜃0)3

,

(23)
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[equation (23) cont.]

𝐺
(3)
𝑂𝐿

(𝜔𝑢) = 3𝑋2𝑆0 + 6𝑋1𝑆1 + 3𝑋0𝑆2 +𝜔𝑢𝑋3𝑆0 +𝜔𝑢𝑋3𝑆0 + 3𝜔𝑢𝑋2𝑆1 + 3𝜔𝑢𝑋1𝑆2

=
𝜃3

(1 − 𝜃0)2
+ 6𝜃1𝜃2
(1 − 𝜃0)3

+
6𝜃31

(1 − 𝜃0)4
,

𝐺
(4)
𝑂𝐿

(𝜔𝑢) = 4𝑋3𝑆0 + 12𝑋2𝑆1 + 12𝑋1𝑆2 + 4𝑋0𝑆3 + 𝜔𝑢𝑋4𝑆0 + 𝜔𝑢𝑋0𝑆4
+ 4𝜔𝑢𝑋3𝑆1 + 4𝜔𝑢𝑋1𝑆3 + 6𝜔𝑢𝑋2𝑆2

=
𝜃4

(1 − 𝜃0)2
+
6𝜃22 + 8𝜃1𝜃3
(1 − 𝜃0)3

+
36𝜃21𝜃2
(1 − 𝜃0)4

+
24𝜃41

(1 − 𝜃0)5
,

𝐺
(5)
𝑂𝐿

(𝜔𝑢) = 5𝑋4𝑆0 + 20𝑋3𝑆1 + 30𝑋2𝑆2 + 20𝑋1𝑆3 + 5𝑋0𝑆4 + 𝜔𝑢𝑋5𝑆0
+ 5𝜔𝑢𝑋4𝑆1 + 5𝜔𝑢𝑋1𝑆4 + 𝜔𝑢𝑋0𝑆5 + 10𝜔𝑢𝑋3𝑆2 + 10𝜔𝑢𝑋2𝑆3

=
𝜃5

(1−𝜃0)2
+ 10𝜃1𝜃4+20𝜃2𝜃3

(1−𝜃0)3
+
90𝜃1𝜃22+60𝜃

2
1𝜃3

(1−𝜃0)4
+
240𝜃31𝜃2
(1−𝜃0)5

+
120𝜃51
(1−𝜃0)6

.

Then, the numerical values of the terms 𝐺 (𝑖)
𝑂𝐿

(𝜔𝑢) for 0 ¬ 𝑖 ¬ 5 are calculated
from the obtained numerical values of the variables 𝜃𝑖 of Equation (14) from
step 1.
Step 4
Because the numerical values of the terms 𝐺 (𝑖)

𝑂𝐿
(𝜔𝑢), of the variables 𝑆𝑖, for

0 ¬ 𝑖 ¬ 5, and of the unity gain crossover frequency 𝜔𝑢 are known, the variables
𝑋𝑖, for 0 ¬ 𝑖 ¬ 5, can be derived and calculated from Equation (23) as follows:

𝑋0 =
𝐺𝑜 (𝜔𝑢)
𝜔𝑢𝑆0

,

𝑋1 =
1

𝜔𝑢𝑆0

(
𝐺

(1)
𝑜 (𝜔𝑢) − 𝑋0𝑆0 − 𝜔𝑢𝑋0𝑆1

)
,

𝑋2 =
1

𝜔𝑢𝑆0

(
𝐺

(2)
𝑜 (𝜔𝑢) − 2𝑋1𝑆0 − 2𝑋0𝑆1 − 2𝜔𝑢𝑋1𝑆1 − 𝜔𝑢𝑋0𝑆2

)
,

𝑋3 =
1

𝜔𝑢𝑆0

(
𝐺

(3)
𝑜 (𝜔𝑢) − 3𝑋2𝑆0 − 6𝑋1𝑆1 − 3𝑋0𝑆2 − 𝜔𝑢𝑋0𝑆3 − 3𝜔𝑢𝑋2𝑆1

− 3𝜔𝑢𝑋1𝑆2
)
,

𝑋4 =
1

𝜔𝑢𝑆0

(
𝐺

(4)
𝑜 (𝜔𝑢) − 4𝑋3𝑆0 − 12𝑋2𝑆1 − 12𝑋1𝑆2 − 4𝑋0𝑆3 − 𝜔𝑢𝑋0𝑆4

− 4𝜔𝑢𝑋3𝑆1 − 4𝜔𝑢𝑋1𝑆3 − 6𝜔𝑢𝑋2𝑆2
)
,

(24)
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[equation (24) cont.]

𝑋5 =
1

𝜔𝑢𝑆0

(
𝐺

(5)
𝑜 (𝜔𝑢) − 5𝑋4𝑆0 − 20𝑋3𝑆1 − 30𝑋2𝑆2 − 20𝑋1𝑆3 − 5𝑋0𝑆4

− 𝜔𝑢𝑋5𝑆0 − 5𝜔𝑢𝑋4𝑆1 − 5𝜔𝑢𝑋1𝑆4 − 𝜔𝑢𝑋0𝑆5 − 10𝜔𝑢𝑋3𝑆2 − 10𝜔𝑢𝑋2𝑆3
)
.

Step 5
Let us define the following variables:

𝑄1 =
−𝜆𝐾𝐼
𝜔𝑢

𝜔−𝜆
𝑢 ,

𝑄2 =
𝜇𝐾𝐷

𝜔𝑢
𝜔
𝜇
𝑢 ,

𝑄3 = 2𝐾𝑎𝜔
𝜇
𝑢 .

(25)

Then, Equation (15) can be rewritten as follows:

𝑋0 = 𝐾𝑝 + 𝐾𝑖𝜔−𝜆
𝑢 + 𝐾𝑑𝜔𝜇𝑢 + 𝐾𝑎𝜔2𝑢 ,

𝑋1 = 𝑄1 +𝑄2 +𝑄3 ,

𝑋2 = −(𝜆 + 1)𝑄1
𝜔𝑢

+ (𝜇 − 1)𝑄2
𝜔𝑢

+ 𝑄3
𝜔𝑢

,

𝑋3 = (𝜆 + 1) (𝜆 + 2)𝑄1
𝜔2𝑢

+ (𝜇 − 1) (𝜇 − 2)𝑄2
𝜔2𝑢

,

𝑋4 = −(𝜆 + 1) (𝜆 + 2) (𝜆 + 3)𝑄1
𝜔3𝑢

+ (𝜇 − 1) (𝜇 − 2) (𝜇 − 3)𝑄2
𝜔3𝑢

,

𝑋5 = (𝜆+1) (𝜆+2) (𝜆+3) (𝜆+4)𝑄1
𝜔4𝑢

+ (𝜇−1) (𝜇−2) (𝜇−3) (𝜇−4)𝑄2
𝜔4𝑢

.

(26)

Let us also define the variables 𝑍1, 𝑍2, 𝑍3 and 𝑍4 as follows:

𝑍1 = 𝑋1 + 𝜔𝑢𝑋2 ,
𝑍2 = 𝑋1 + 3𝜔𝑢𝑋2 + 𝜔2𝑢𝑋3 ,
𝑍3 = 𝑋1 + 7𝜔𝑢𝑋2 + 6𝜔2𝑢𝑋3 + 𝜔3𝑢𝑋4 ,
𝑍4 = 𝑋1 + 15𝜔𝑢𝑋2 + 25𝜔2𝑢𝑋3 + 10𝜔3𝑢𝑋4 + 𝜔4𝑢𝑋5 .

(27)

The numerical values of the variables 𝑍𝑖, for 1 ¬ 𝑖 ¬ 4 can be calculated from
the values of the variables 𝑋𝑖, for 0 ¬ 𝑖 ¬ 5, and the unity gain crossover
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frequency 𝜔𝑢. Now, combining Equations (26) and (27) we get the following:

𝑋0 = 𝐾𝑝 + 𝐾𝑖𝜔−𝜆
𝑢 + 𝐾𝑑𝜔𝜇𝑢 + 𝐾𝑎𝜔2𝑢 ,

𝑋1 = 𝑄1 +𝑄2 +𝑄3 ,
𝑍1 = −𝜆𝑄1 + 𝜇𝑄2 + 2𝑄3 ,
𝑍2 = 𝜆

2𝑄1 + 𝜇2𝑄2 + 4𝑄3 ,
𝑍3 = −𝜆3𝑄1 + 𝜇3𝑄2 + 8𝑄3 ,
𝑍4 = 𝜆

4𝑄1 + 𝜇4𝑄2 + 16𝑄3 .

(28)

Let us now define the variables 𝑉1, 𝑉2, 𝑉3 and 𝑉4 as follows:

𝑉1 = −2𝑋1 + 𝑍1 = −(2 + 𝜆)𝑄1 + (𝜇 − 2)𝑄2 ,
𝑉2 = −2𝑍1 + 𝑍2 = 𝜆(2 + 𝜆)𝑄1 + 𝜇(𝜇 − 2)𝑄2 ,
𝑉3 = −2𝑍2 + 𝑍3 = −𝜆2(2 + 𝜆)𝑄1 + 𝜇2(𝜇 − 2)𝑄2 ,
𝑉4 = −2𝑍3 + 𝑍4 = 𝜆3(2 + 𝜆)𝑄1 + 𝜇3(𝜇 − 2)𝑄2 .

(29)

With some manipulations of Equation (26) and (29), we can easily get

𝑋0 = 𝐾𝑝 + 𝐾𝑖𝜔−𝜆
𝑢 + 𝐾𝑑𝜔𝜇𝑢 + 𝐾𝑎𝜔2𝑢 ,

𝑋1 = 𝑄1 +𝑄2 +𝑄3 ,
𝜆𝑉1 +𝑉2 = (𝜆 + 𝜇) (𝜇 − 2)𝑄2 ,
𝜆𝑉2 +𝑉3 = 𝜇(𝜆 + 𝜇) (𝜇 − 2)𝑄2 ,
𝜆𝑉3 +𝑉4 = 𝜇2(𝜆 + 𝜇) (𝜇 − 2)𝑄2 .

(30)

Step 6
From the last three equalities of Equation (30), we can derive the following

equation:
𝜆𝑉2 +𝑉3
𝜆𝑉1 +𝑉2

=
𝜆𝑉3 +𝑉4
𝜆𝑉2 +𝑉3

= 𝜇 . (31)

Then, from the two first terms of Equation (31) we get

(𝜆𝑍22 + 𝑍33)2 − (𝜆𝑍11 + 𝑍22) (𝜆𝑍33 + 𝑍44) = 0. (32)

This leads to a second-order equation in the parameter 𝜆 as follows:

𝜆2
(
𝑍222 − 𝑍11𝑍33

)
+𝜆 (2𝑍22𝑍33 − 𝑍11𝑍44 − 𝑍22𝑍33)+

(
𝑍233 − 𝑍22𝑍44

)
= 0. (33)

By solving this second-order equation a convenient numerical value of the pa-
rameter 𝜆 can be chosen. Then, the other remaining parameters 𝐾𝑝, 𝐾𝑖, 𝐾𝑑 , 𝐾𝑎,
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𝜆 and 𝜇 will be successively obtained. The first to be calculated is the parameter
𝜇 from Equation (31) as follows:

𝜆𝑍22 + 𝑍33
𝜆𝑍11 + 𝑍22

=
𝜆𝑍33 + 𝑍44
𝜆𝑍22 + 𝑍33

= 𝜇 . (34)

From Equation (29) and (30), the parameters𝑄1,𝑄2 and𝑄3 are given as follows:

𝑄2 =
𝜆𝑉1 +𝑉2

(𝜆 + 𝜇) (𝜇 − 2) ,

𝑄1 =
−𝑉1 + (𝜇 − 2)𝑄2

(2 + 𝜆) ,

𝑄3 = 𝑋1 −𝑄1 −𝑄2 ,

(35)

Therefore, from Equations (25) and (35) the three parameters 𝐾𝑖, 𝐾𝑑 and 𝐾𝑎 are
calculated as follows:

𝐾𝑖 =
−𝑄1𝜔𝑢
𝜆𝜔−𝜆

𝑢

,

𝐾𝑑 =
𝑄2𝜔𝑢

𝜇𝜔
𝜇
𝑢

,

𝐾𝑎 =
𝑄3

2𝜔𝑢
.

(36)

Finally, the parameter 𝐾𝑝 can be obtained from Equation (30) as follows:

𝐾𝑝 = 𝑋0 − 𝐾𝑖𝜔−𝜆
𝑢 + 𝐾𝑑𝜔𝜇𝑢 + 𝐾𝑎𝜔2𝑢 . (37)

3.2. Design procedure of fractional order PI𝜆D𝜇A controller

For the tuning of the parameters 𝐾𝑝, 𝐾𝑖, 𝐾𝑑 , 𝐾𝑎, 𝜆 and 𝜇 of the fractional order
PI𝜆D𝜇A controller of the feedback control system of Fig. 4 so that its closed loop
transfer function behaves like the transfer function of a desired reference fractional
model of Equation (9) that meets the requirements and the specifications of the
projected feedback control system, we will follow the next steps.

3.2.1. Inputs

We have the following inputs:

• the crossover frequency 𝜔𝑢 and the fractional order 𝑚 of the desired refer-
ence model,

• the values of the step response of the process 𝑔𝑆𝑡 (𝑘𝑇), for 0 ¬ 𝑘 ¬ 𝑁 ,
where 𝑁 = integer part of (𝑇sim/𝑇), with 𝑇sim being the time of acquisition
and 𝑇 is the sampling period of the step response of the process.
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3.2.2. Design algorithm

Procedures of the proposed fractional order PI𝜆D𝜇A controller design method
are given as following:
Step 1: Calculation of the variables 𝜃𝑖, for 0 ¬ 𝑖 ¬ 5 from Equation (14);
Step 2: Calculation of the variables Si, for 0 ¬ 𝑖 ¬ 5 from Equation (19);
Step 3: Calculation of the terms 𝐺 (𝑖)

𝑂𝐿
(𝜔𝑢) , for 0 ¬ 𝑖 ¬ 5 from Equation (23);

Step 4: Calculation of the variables Xi, for 0 ¬ 𝑖 ¬ 5 from Equation (24);
Step 5: Calculation of the variables Zi, for 1 ¬ 𝑖 ¬ 4 from Equation (27);
Step 6: Calculation of the variables Vi, for 1 ¬ 𝑖 ¬ 4 from Equation (29);
Step 7: Calculation of the fractional order PI𝜆D𝜇A controller parameters 𝜆, 𝜇,

𝐾𝑖, 𝐾𝑑 , 𝐾𝑎 and 𝐾𝑝 as follows:
• As a suitable solution of the second-order equation of Equation (33)
for the parameter 𝜆;

• 𝜇 from Equation (34);
• 𝐾𝑖 from Equation (36);
• 𝐾𝑑 from Equation (36);
• 𝐾𝑎 from Equation (36);
• 𝐾𝑝 from Equation (37).

4. Simulation results

In this section two illustrative examples will be studied to validate the effec-
tiveness and the usefulness of the proposed fractional order PI𝜆D𝜇A controller
designmethod. The controller design will be considered for two real world system
models given in [15].

4.1. DC servo motor

The transfer function of DC servo motor is as follows:

𝐺 (𝑠) = 𝜃 (𝑠)
𝑉𝑎 (𝑠)

=
2

𝑠3 + 12𝑠2 + 20.02𝑠
. (38)

Here the Angular displacement 𝜃 (𝑠) is considered the output, and the armature
voltage 𝑉𝑎 (𝑠) is considered the input.
The desired specifications of induction motor are as follows [15]:
– Percentage overshoot (P.O.) ¬ 5%.
– Settling time (𝑡𝑠) ¬ 2 sec.
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These performance requirements are satisfied by the reference model whose
transfer function is given as follows:

𝐺𝑑 (𝑠) =
1

1 +
(
𝑠

𝑤𝑢

)𝑚 =
1

1 +
( 𝑠
3.5

)1.0556 , (39)

whose open loop transfer function is
( 𝑠
3.5

)−1.0556
, with unity gain crossover

frequency 𝜔𝑢 = 3.5 rad/sec and the phase margin 𝜙𝑚 = 85◦.
The parameters of fractional order PI𝜆D𝜇A controller using our proposed

design method and the classical PIDA controller using Jung-Dorf design method
are obtained as summarized in Table 1.

Table 1: Comparison of controllers’ parameters

Controller 𝐾𝑝 𝐾𝑖 𝐾𝑑 𝐾𝑎 𝜆 𝜇

PIDA [15] 285.818 299.213 94.493 12.177 1 1
PD𝜆D𝜇A 41.8653 –31.8591 20.7370 31.7936 –1.9828 1.1281

The designed controller was found to be a fractional order PD𝜆D𝜇A controller.
This type of controller does not have an equivalent one in the regular classical
controllers.
Many methods have been developed to approximate fractional operators in

continuous time domain; among themMatsuda, Carlson,General CFE,Oustaloup
and Charef are most popular [51]. The transfer function of the fractional order
PI𝜆D𝜇A controller have been implemented by rational functions through Charef’s
method [52], in the frequency band [0.01𝜔𝑢, 100𝜔𝑢] rad/sec.
Figure 5 shows the Bode diagrams of the open loop transfer functions

𝐶 (𝑠)𝐺 𝑝 (𝑠) of the above feedback control system with the open loop transfer

function
( 𝑠
3.5

)−1.0556
of the desired reference fractional order system of (38).

From Fig. 5, we can see that the open loop transfer function of the feed-
back control system is quite overlapping with the open loop transfer function( 𝑠
3.5

)−1.0556
of the desired fractional order system of (39) in the frequency band

of interest. It means that the unity gain crossover frequency𝜔𝑢 and the phase mar-
gin 𝜙𝑚 of the feedback control system is𝜔𝑢 = 3.5 rad/sec and 𝜙𝑚 = 85◦. We note
also the flatness of the phase around the crossover frequency 𝜔𝑢 = 3.5 rad/sec.
Figure 6 shows the Bode plots of the closed loop transfer function of the

feedback control system with fractional order PI𝜆D𝜇A controller and the ideal
closed loop transfer function 𝐺𝑑 (𝑠).
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Figure 5: Bode plots of the open loop transfer function 𝐶 (𝑠)𝐺 𝑝 (𝑠) (dashed line) and the

desired open loop transfer function
( 𝑠
3.5

)−1.0556
(solid line)

Figure 6: Bode plots of the closed loop transfer function 𝑊 (𝑠) (dashed line) and the
desired closed loop transfer function 𝐺𝑑 (𝑠) (solid line)

From Fig. 6, we can easily see that around the unity gain crossover frequency
𝜔𝑢 = 3.5 rad/sec the amplitudes and the phases of the closed loop transfer
function of the feedback control system with fractional order PI𝜆D𝜇A controller
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and the ideal closed loop transfer function 𝐺𝑑 (𝑠) are quiet overlapping. Then,
this result shows the effectiveness of the proposed controller design method.
Figure 7 shows the step responses of the closed loop transfer function of the

feedback control system with the step response of the desired fractional order
system.

Figure 7: Step responses of the closed loop systems with the open loop transfer function
𝐶 (𝑠)𝐺 𝑝 (𝑠) (dashed line) and the desired fractional order system 𝐺𝑑 (𝑠) (solid line)

From Fig. 7, we can easily see that the step response of the feedback control
system is equal to the step response of the desired fractional order system.
Figure 8 shows the step response of the closed loop system without controller.
The step responses of the closed loops with fractional order PI𝜆D𝜇Acontroller

and of classical PIDA controller are shown in Fig. 9.
Transient response parameters of the two controllers such as percentage over-

shoot (O%), settling time (St), peak time (Pt) and rise time (Rt) are listed in
Table 2.

Table 2: The temporal characteristics for the two controllers

Controller Rt(0.1:0.9) St(2%) O% Pt
PIDA 0.133 1.270 7.550 0.63
PI𝜆D𝜇A 0.574 0.890 1.320 1.630

Figure 10 shows the step responses of the closed system with fractional order
PI𝜆D𝜇A and classical PIDA controllers for different values of the static gain of
the process.
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Figure 8: Step responses of the closed loop system without controller

Figure 9: Step response comparison of DC servo motor with fractional order PI𝜆D𝜇A
controller (solid line) and classical PIDA controller using Jung-Dorf method (dashed
line)

From Fig. 10, we can easily see that the step responses of the closed loop
system with fractional order PI𝜆D𝜇A controller for different values of the static
gain have the same overshoot which is the iso-damping property. In contrast, the
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Figure 10: Step response comparison of DC servo motor with fractional order PI𝜆D𝜇A
controller (solid line) and PIDA controller using Jung-Dorf method (dashed line) for
different values of the process gain

overshoot of the step responses of the closed loop system with classical PIDA
controller increase when the process gain increases.
To test the robustness of the feedback control system of the DC motor with

the proposed fractional order PI𝜆D𝜇A controller and with the classical PIDA
controller, the variations of the overshoot versus the static gain 𝐾 (1 < 𝐾 < 2.5)
of the transfer function model 𝐺 𝑝 (𝑠) of (38) is shown in Fig. 11.

Figure 11: Variations of the overshoot of the feedback control versus static gain with
the proposed fractional order PI𝜆D𝜇A controller (solid line) and with classical PIDA
controller (dashed line)
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From Fig. 11, we note that the plot of the overshoot of the feedback control
versus the static gain 𝐾 with the proposed fractional order PI𝜆D𝜇A controller is
a horizontal line and with the classical PIDA controller is parabolic line. Hence,
we conclude that the feedback control with the proposed fractional order PI𝜆D𝜇A
controller is more robust to the variations of the static gain 𝐾 than with the
classical PIDA controller.

4.2. Induction motor

The transfer function of the induction motor is as follows:

𝐺 (𝑠) = 𝜃 (𝑠)
𝜃𝑑 (𝑠)

=
168.0436

𝑠3 + 25.921𝑠2 + 168.0436𝑠
. (40)

The desired specifications of induction motor are as follows:
– Percentage overshoot (P.O.) ¬ 5%.
– Settling time (ts) ¬ 2 sec.
These performance requirements are satisfied by the reference model whose

transfer function is given as follows:

𝐺𝑑 (𝑠) =
1

1 +
(
𝑠
𝑤𝑢

)𝑚 =
1

1 +
(
𝑠
2
)1.0556 , (41)

whose open loop transfer function is
( 𝑠
2

)−1.0556
, with unity gain crossover fre-

quency 𝜔𝑢 = 2 rad/sec and the phase margin 𝜙𝑚 = 85◦.
The parameters of fractional order PI𝜆D𝜇A controller using our proposed

tuning method, classical PIDA controller using Jung-Dorf method and classical
PIDA controller using Kitti’s method are obtained as summarized in Table 3.

Table 3: Comparison of controllers’ parameters

Controller 𝐾𝑝 𝐾𝑖 𝐾𝑑 𝐾𝑎 𝜆 𝜇

JD-PIDA [15] 12.2384 21.8548 2.4601 0.1268 1 1
K-PIDA [15] 5.6672 9.3764 0.7027 0.0248 1 1
PI𝜆D𝜇A 2.1061 0.0725 0.2461 0.0113 0.7610 1.0911

Figure 12 shows the Bode diagrams of the open loop transfer functions
𝐶 (𝑠)𝐺 𝑝 (𝑠) of the above feedback control system with the open loop transfer

function
( 𝑠
2

)−1.0556
of the desired reference fractional order system of (41).

From Fig. 12, we can see that the open loop transfer function of the feedback

control system is quite overlappingwith the open loop transfer function
( 𝑠
2

)−1.0556
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Figure 12: Bode plots of the open loop transfer function 𝐶 (𝑠)𝐺 𝑝 (𝑠) (dashed line) and

the desired open loop transfer function
( 𝑠
2

)−1.0556
(solid line)

of the desired fractional order systemof (41). Itmeans that the unity gain crossover
frequency 𝜔𝑢 and the phase margin 𝜙𝑚 of the feedback control system is 𝜔𝑢 =

2 rad/sec and 𝜙𝑚 = 85◦. We note also the flatness of the phase around the
crossover frequency 𝜔𝑢.
Figure 13 shows the Bode plots of the closed loop transfer function of the

feedback control system with fractional order PI𝜆D𝜇A controller and the ideal
closed loop transfer function 𝐺𝑑 (𝑠).
From Fig. 13, we can easily see that around the unity gain crossover frequency

𝜔𝑢 = 2 rad/sec the amplitudes and the phases of the closed loop transfer function
of the feedback control system with fractional order PI𝜆D𝜇A controller and the
ideal closed loop transfer function 𝐺𝑑 (𝑠) are quiet overlapping. Then, this result
shows the effectiveness of the proposed controller design method.
Figure 14 shows the step responses of the closed loop transfer function of the

feedback control system with the step response of the desired fractional order
system.
From Fig. 14, we can easily see that the step response of the feedback control

system is equal to the step response of the desired fractional order system.
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Figure 13: Bode plots of the closed loop transfer function 𝑊 (𝑠) (dashed line) and the
desired closed loop transfer function 𝐺𝑑 (𝑠) (solid line)

Figure 14: Step responses of the closed loop systems with the open loop transfer function
𝐶 (𝑠)𝐺 𝑝 (𝑠) (dashed line) and the desired fractional order system 𝐺𝑑 (𝑠) (solid line)
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The step responses of the closed loops with the proposed fractional order
PI𝜆D𝜇A controller and classical PIDA controllers using Jung-Dorf and Kitti’s
methods are shown in Fig. 15.

Figure 15: Step response comparison of induction motor without controller (dash-dotted
line), with fractional order PI𝜆D𝜇A (solid line), PIDA Controllers using Jung-Dorf
method (dashed line) and Kitti’s method (dotted)

Transient response parameters of the three controllers such as percentage
overshoot, settling time peak time and rise time are listed in Table 4.

Table 4: The temporal characteristics for the three controllers

Controller Rt(0.1:0.9) St(2%) O% Pt
JD-PIDA [15] 0.182 1.38 9.48 0.67
K-PIDA [15] 0.278 1.59 21.5 0.73
PI𝜆D𝜇A 0.983 1.520 1.160 2.5

Figure 16 and Fig. 17 show the step responses of the closed system with
fractional order PI𝜆D𝜇A and classical PIDA controllers for different values of the
static gain of the process.
From Fig. 16 and Fig. 17, we can easily see that the step responses of the

closed loop system with fractional order PI𝜆D𝜇A controller for different values
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Figure 16: Step responses of the closed loop systems with fractional order PI𝜆D𝜇A (solid
line) and PIDA using Jung-Dorf method (dashed line) for different values of the process
gain

Figure 17: Step responses of the closed loop systems with fractional order PI𝜆D𝜇A (solid
line) and PIDA using Kitti’s method (dashed line) for different values of the process gain
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of the static gain have the same overshoot which is the iso-damping property.
In contrast, the overshoot of the step responses of the closed loop system with
classical PIDA controller increase when the process gain increases.
To test the robustness of the feedback control system of the induction machine

with the proposed fractional order PI𝜆D𝜇A controller and with the classical PIDA
controllers, the variations of the overshoot versus the static gain 𝐾 (100 < 𝐾 <

220) the transfer function model 𝐺 𝑝 (𝑠) of (40) is shown in Fig. 18.

Figure 18: Variations of the overshoot of the feedback control versus static gain with
the proposed PI𝜆D𝜇A controller (solid line) and with classical PIDA Controllers using
Jung-Dorf method (dashed line) and Kitti’s method (dotted)

From Fig. 18, we note that the plot of the overshoot of the feedback control
versus the static gain 𝐾 with the proposed fractional order PI𝜆D𝜇A controller is
a horizontal line and with the classical PIDA controller is parabolic line. Hence,
we conclude that the feedback control with the proposed fractional order PI𝜆D𝜇A
controller is more robust to the variations of the static gain 𝐾 than with the two
classical PIDA controllers.

5. Conclusion

This paper presents a simple yet effective fractional order PI𝜆D𝜇A controller
design method. The proposed design method uses only the step response of the
stable process to be controlled and requires no process model.
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The parameters of the fractional order PI𝜆D𝜇A controller are tuned such that
the closed loop system is equivalent to fractional Bode’s ideal model a widely
used fractional order model in the fractional order control domain because of
its iso-damping property which is an important robustness feature. The main
advantage of the proposed design method is that the useful tuning formulae of the
fractional order PI𝜆D𝜇A controller parameters are derived analytically without
any complicated numerical calculations.
With the proposed methodology we get closed-loop systems robust to gain

variations and step responses exhibiting an iso-damping property.
The benefit of the fractional order PI𝜆D𝜇A controller design method is so

simple and analytical that one can use the proposed tuning algorithm step-by-
step.
Finally, the effectiveness of the proposed method is illustrated by numerical

simulations and comparisons.
The further work is to investigate the discretization for fractional operator

such that the proposed fractional order PI𝜆D𝜇A controller can be applied in a real
control system.
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