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The buffered optimization methods for online
transfer function identification employed

on DEAP actuator

Jakub BERNATo and Jakub KOŁOTAo

Identification plays an important role in relation to control objects and processes as it enables
the control system to be properly tuned. The identification methods described in this paper use
the Stochastic Gradient Descent algorithms, which have so far been successfully presented in
machine learning. The article presents the results of the Adam and AMSGrad algorithms for
online estimation of the Dielectric Electroactive Polymer actuator (DEAP) parameters. This
work also aims to validate the learning by batch methodology, which allows to obtain faster
convergence and more reliable parameter estimation. This approach is innovative in the field of
identification of control systems. The researchwas supplementedwith the analysis of the variable
amplitude of the input signal. The dynamics of the DEAP parameter convergence depending on
the normalization process was presented. Our research has shown how to effectively identify
parameters with the use of innovative optimization methods. The results presented graphically
confirm that this approach can be successfully applied in the field of control systems.
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1. Introduction

In recent times, the rapid development of machine learning algorithms accel-
erated the development of newmethods in many areas. As an example, the crucial
part of learning algorithms is the optimization method which searches the most
reliable parameters for the solution [12, 21]. The new developments in machine
learning are attractive to implement in different areas of science [17, 27]. In our
work, recent machine learning ideas are applied to solve the problem of online
identification task in control systems [10]. One of the most popular optimization
methods widely used in machine learning or neural networks is the Stochastic
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Gradient Descent (SGD) approach. Stochastic gradient descent is an iterative
method for optimizing an objective function. This method can be interpreted as
a stochastic approximation of the descent gradient optimization as it replaces
the gradient computed from the entire dataset with its estimate computed from a
randomly selected subset of the data. Many improvements to the basic stochastic
gradient descent algorithm have been proposed and used: AdaGrad (Adaptive
Gradient Algorithm) [9, 18], RMSProp (Root Mean Square Propagation) [26],
NADAM (Nesterov-Accelerated AdaptiveMoment Estimation) [8], ADADELTA
(extension of AdaGrad) [28], Adam (Adaptive Moment Estimation) [12, 13] or
AMSGrad (extension of Adam) [20, 21]. The Adam algorithm can be explained
as a combination of RMSProp and stochastic gradient descent with momentum.
It combines the advantages of an adaptive gradient algorithm (AdaGrad) that
maintains a per-parameter learning rate (that improves performance in case of
problems with sparse gradients) and RMSProp in which parameter learning rates
are adapted based on the average of recentmagnitudes of the gradients [12]. AMS-
Grad is Adam’s extension towards improving the convergence properties of the
algorithm, avoiding large changes in learning speed for each input variable [21].
An interesting idea was also introduced in Reinforcement Learning, one of

the most famous unsupervised learning methodologies [25]. Firstly, the RL tech-
niques based on tabular or linear approximations [25]. Then, the more com-
plex problems were analyzed by application of neural networks and deep learn-
ing [16, 19]. One of the important problems caused by applying deep neural
networks is to obtain convergence and fast batch learning. The application of
buffer memory which allows learning by batch is one of the crucial points target-
ing to success work [19]. In our work, we would like to use this methodology to
obtain faster convergence and more reliable parameter estimation. This is a new
approach in the problem of identification of control systems [10, 24].
In this work, the online identification problem is analyzed on the DEAP actua-

torwhich belongs to a newgroup of devices in control systems and robotics [7,11].
The electroactive polymers are interesting materials which enable electrical to
mechanical power conversion in a silent and soft way [4, 22, 23]. The actuator
uses an electric field to generate the force, which is the main difference with tradi-
tional electromagnetic actuators. The recent developments show that this device
has wide interesting features like fast movement [3] or wide rangemovement [22].
In compare to many smart materials like IPMC, they are practical applicable. The
DEAP actuators are very interesting as the device testing of identification algo-
rithms due to their nonlinear and double scaled time response. Furthermore, the
problem of identification is based on the output feedback (not state feedback),
which makes the problem more challenging.
In this work, the identification of the continuous transfer function is analyzed.

The main goal of the work is to show that techniques known from machine
learning are useful in the field of system identification. It will be shown that



THE BUFFERED OPTIMIZATION METHODS FOR ONLINE TRANSFER FUNCTION
IDENTIFICATION EMPLOYED ON DEAP ACTUATOR 567

new optimization techniques like Adam and AMSGrad more efficiently estimate
parameters than typical methods. Furthermore, the application of replay buffer
can improve the performance and efficiency of the estimator.
The plan of the work is as follows. Firstly, the introduction to the subject

is shown. Secondly, the identification schema is described and parameter esti-
mation performed by the optimization techniques. Next, the simulations with
the transfer function are shown, which illustrates the main features of the de-
scribed algorithms. Finally, the experiment with DEAP actuator is shown and the
identification based on the acquired data is described.

2. Identification schema

In this work, the problem of identification of continuous transfer function is
analyzed. The system is described by

𝐺 (𝑠) = 𝑏𝑚𝑠
𝑚 + . . . + 𝑏1𝑠 + 𝑏0

𝑠𝑛 + 𝑎𝑛−1𝑠𝑛−1 + . . . + 𝑎1𝑠 + 𝑎0
=

𝑌𝑝 (𝑠)
𝑈𝑝 (𝑠)

, (1)

where𝑈𝑝 (𝑠),𝑌𝑝 (𝑠) are the input and output respectively, 𝑏𝑚, . . ., 𝑏0, 𝑎𝑛−1, . . ., 𝑎0
are transfer function coefficients, 𝑚 is the degree of numerator and 𝑛 is the order
of the transfer function, 𝑛 − 𝑚 is the relative order of system. In the input-output
system identification, the crucial step is to convert the transfer function to a linear
in-parameter regressor. The standard way for the above function is known for
Model Reference Adaptive Controller, described, for instance in the book [10].
The mentioned approach requires applying filter:

Λ(𝑠) = 𝑠𝑛 + 𝜆𝑛−1𝑠𝑛−1 + . . . + 𝜆0 (2)

to eliminate the derivatives. Therefore, the transfer function is represented as:

𝑌𝑝 (𝑠) = −
𝑛−1∑︁
𝑖=0
(𝑎𝑖 − 𝜆𝑖)

𝑠𝑖

Λ(𝑠)𝑌𝑝 (𝑠) +
𝑚∑︁
𝑖=0

𝑏𝑖
𝑠𝑖

Λ(𝑠)𝑈𝑝 (𝑠). (3)

Thus, the linear in-parameter regressor is obtained as:

𝑌𝑝 (𝑠) = 𝜑𝑇𝑦 (𝑠) (𝑎 − 𝜆) + 𝜑𝑇𝑢 (𝑠)𝑏 = 𝜑𝑇𝑢𝑦 (𝑠)𝜃𝜆 , (4)

where 𝑎, 𝑏 and𝜆 are vector of coefficients and 𝜑𝑢, 𝜑𝑦 are the regressor parts related
with 𝑢𝑝 and 𝑦𝑝 respectively. The details of the signal definition are presented in
the Appendix A.
In our work, we consider the hybrid schema of an identifier. This means

that the transfer function is described in a continuous domain. However, the
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identification is performed in discrete time. Our motivation for such choice is
to keep the system description in a continuous domain which is more fitted for
physical objects. However, the identification is usually computed in the processor
unit.
In the discrete space, the output 𝑦𝑝 (𝑡𝑘 ) is considered as:

𝑦𝑝 (𝑡𝑘 ) = L−1
{
𝐺 (𝑠)𝑈𝑝 (𝑠)

}
(𝑡𝑘 ) . (5)

In practical applications, the above signal does not have to be calculated as long
as it is measured. However, we would like to notify that it is the sampled output
of the continuous system.
Signal 𝜑𝑢𝑦 (𝑡) is obtained by calculating filters with input 𝑢𝑝 (𝑡) and 𝑦𝑝 (𝑡) in

discrete space. To make the system structure simple, the filters are firstly written
in the continuous state space:

¤𝜔𝑦 (𝑡) = 𝐹𝜔𝑦 (𝑡) − 𝑙𝑦𝑝 (𝑡),
¤𝜔𝑢 (𝑡) = 𝐹𝜔𝑢 (𝑡) + 𝑙𝑢𝑝 (𝑡),

(6)

where the state 𝜔𝑢 and 𝜔𝑦 creates the signal 𝜑𝑢𝑦 (𝑡) =
[
𝜔𝑦 (𝑡) 𝜔𝑢 (𝑡)

]
(see Ap-

pendix A for definition of 𝐹, 𝑙). Then, to calculate the state in discrete space,
the above filters are converted to a discrete system by a generalized bilinear
transformation with coefficient 0.5 [29]:

𝜔𝑦 (𝑡𝑘+1) = 𝐹𝑑𝜔𝑦 (𝑡𝑘 ) − 𝑙𝑑𝑦𝑝 (𝑡𝑘 ),
𝜔𝑢 (𝑡𝑘+1) = 𝐹𝑑𝜔𝑢 (𝑡𝑘 ) + 𝑙𝑑𝑢𝑝 (𝑡𝑘 ).

(7)

The estimation of �̂�𝑝 (𝑡𝑘 ) is given by:

�̂�𝑝 (𝑡𝑘 ) = 𝜃𝑇𝜆𝜑𝑢𝑦 (𝑡𝑘 ). (8)

It is worth to point out that even in the case of true parameters, the discretization
causes that the regressor does not fit exactly:

𝑦𝑝 (𝑡𝑘 ) − 𝜃𝑇𝜆𝜑𝑢𝑦 (𝑡𝑘 ) = 𝛿𝑑 , (9)

where 𝛿𝑑 is small discretization error. It is in opposite to (4) where the discretiza-
tion error does not exist. The signal 𝜑𝑢𝑦 (𝑡𝑘 ) is a virtual signal, because it does
not exist in the physical device. Furthermore, we assume that 𝜑𝑢𝑦 (𝑠) is calculated
in the discrete domain (in the processor unit), so it is not possible to obtain it
as in (5). It is also worth to point out that the discretization error 𝛿𝑑 depends
on the sampling time, hence it is possible to decrease it by choosing a higher
sampling rate.
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In the simulation section, we will show that it is useful to perform the stan-
dardization of the signal 𝑦𝑝 and 𝜑𝑢𝑦. Transforming the signals 𝑦𝑝 and 𝜑𝑢𝑦 to
have zero mean and 1 as standard deviation will improve the transients and make
the parameter transient less dependable on the signal range. Let us consider the
regression written as:

𝑦𝑝 (𝑡𝑘 ) =
𝑁∑︁
𝑖=1

𝜑𝑇𝑢𝑦,𝑖 (𝑡𝑘 )𝜃𝜆,𝑖 + 𝜖𝑝 , (10)

where 𝑁 = 𝑛 + 𝑚 + 1 is the number of unknown parameters. The signals are
assumed to be working around working points, so their mean is about 0. Hence,
only the range of the signal must be standardised. Let us consider the following
transformation:

𝑦𝑝 (𝑡𝑘 )
𝜎𝑦

=

𝑁∑︁
𝑖=1

𝜑𝑇
𝑢𝑦,𝑖
(𝑡𝑘 )

𝜎𝑖

𝜃𝑖 + 𝜖 , (11)

where 𝜃𝑖 = 𝜎𝑖

𝜎𝑦
𝜃𝑖,𝜆 and 𝜎𝑦, 𝜎𝑖 is the range or standard deviation of 𝑦 and 𝜑𝑢𝑦,𝑘 .

Finally, if the standardization is applied, the regressor is replaced by:

𝑦(𝑡𝑘 ) =
𝑁∑︁
𝑖=1

𝜑𝑇𝑖 (𝑡𝑘 )𝜃𝑖 + 𝜖 = 𝜑𝑇 (𝑡𝑘 )𝜃 (𝑡𝑘 ) + 𝜖 , (12)

where 𝑦(𝑡𝑘 ) =
𝑦𝑝 (𝑡𝑘 )
𝜎𝑦

and 𝜑𝑘 (𝑡𝑘 ) =
𝜑𝑢𝑦,𝑘 (𝑡𝑘 )

𝜎𝑘

.

In the identification schema, it is common to apply normalization to assure
error signal boundness in the case of ill posed problems [10]. Therefore, in our
work, the identification error with normalization is given by:

𝜖𝐼 (𝑡𝑘 ) =
𝑦(𝑡𝑘 ) − �̂�(𝑡𝑘 )

𝑚2
,

𝑚2 = 1 + 𝜑𝑇 (𝑡𝑘 )𝜑(𝑡𝑘 ).
(13)

It is worth to point out that the above normalization has a different target (ensuring
the boundedness of signals in L∞ sense) than the standardization in machine
learning.
In our work, the parameters are updated based on the same schema:

𝜃 (𝑡𝑘 ) = 𝜃 (𝑡𝑘−1) + Δ(𝑡𝑘 ), (14)

where Δ(𝑡𝑘 ) is calculated by the optimization algorithm discussed in the next
section.
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2.1. Optimization algorithms

In our work, two cost functions are considered. The first is the instantaneous
cost function and the second is the integral cost function. Let us firstly analyze
the optimizers based on the instantaneous cost function, defined by:

𝑓𝑡 (𝜃𝑡) =
1
2

(
𝑦𝑡 − 𝜃𝑇𝑡 𝜑𝑡

)2
1 + 𝜑𝑇𝑡 𝜑𝑡

. (15)

where 𝜃𝑡 = 𝜃 (𝑡𝑘 ) and 𝜃𝑡+1 = 𝜃 (𝑡𝑘+1) (the similar notation is applied in other
functions in this section). The gradient of the function 𝑓𝑡 (𝜃𝑡) is given by:

𝑔𝑡 = −𝜖𝐼,𝑡𝜑𝑡 . (16)

Due to the availability of gradient, it is possible to calculate the update rule Δ𝑡

based on gradient-based algorithms. The simplest possibility is to run the gradient
descent method, which moves the parameters proportionally to gradient:

Δ𝑡 = −𝑇𝑝𝛾𝑔𝑡 = 𝑇𝑝𝛾𝜖𝐼,𝑡𝜑𝑡 , (17)

where 𝛾 is the tunable gain. In the current state of machine learning literature,
many tries have been done to improve the above basic algorithm.
Adaptive Movement Estimation (Adam) algorithm was described in 2015

and its value is an automatic adaptation with a separate learning rate for each
parameter in the optimization problem [13]. This has allowed it to gain great pop-
ularity, especially in neural network applications, because instead of the classical
stochastic gradient descent procedure to update network weights iterative based
on training data. The algorithm has many advantages, which also perfectly fit
into the processes of identifying parameters of executive objects in automatics
and robotics. It is computationally efficient, straightforward to implement, little
memory requirements, and the algorithm does well on online and nonstationary
problems (for example, in a noisy environment). To our knowledge, no one has
yet shown the results of using the Adam algorithm in identifying the parame-
ters of DEAP actuators. The pseudocode of the Adam algorithm is presented in
Algorithm 1 [13]. Adam computes individual adaptive learning rates for differ-
ent parameters from estimates of the first 𝑚𝑡 and the second 𝑣𝑡 moments of the
gradients. At the beginning of the algorithm, the gradients 𝑔𝑡 are calculated for
the current time step. Function 𝑓𝑡 (𝜃𝑡) defines stochastic objective function which
is minimized with regard to its parameters 𝜃 at the given timestep. The stochas-
ticity comes from the evaluation of random learning batches. With ∇𝜃 𝑓𝑡 (𝜃𝑡−1)
we denote the gradient, i.e. the vector of partial derivatives of 𝑓𝑡 with regard
to 𝜃𝑡−1 parameters. In the identification algorithm, the gradient is expressed by
(16). Next, the first and the second moments are updated using the gradients, the



THE BUFFERED OPTIMIZATION METHODS FOR ONLINE TRANSFER FUNCTION
IDENTIFICATION EMPLOYED ON DEAP ACTUATOR 571

squared gradients, and parameters 𝛽1 and 𝛽2 which control the exponential decay
rates of moving averages of both gradients. In the next part of the algorithm, the
first and the second moments are bias-corrected. Finally, the parameter values
for the current iteration are calculated using 𝛼 which is the step size parameter,
and small value 𝜖 which ensures the method does not encounter a divide by zero
error.

Algorithm 1 The pseudocode of the Adam algorithm
1: 𝑔𝑡 ← ∇𝜃 𝑓𝑡 (𝜃𝑡−1)
2: 𝑚𝑡 ← 𝛽1 · 𝑚𝑡−1 + (1 − 𝛽1) · 𝑔𝑡
3: 𝑣𝑡 ← 𝛽2 · 𝑣𝑡−1 + (1 − 𝛽2) · 𝑔2𝑡
4: �̂�𝑡 ← 𝑚𝑡/

(
1 − 𝛽𝑡1

)
5: �̂�𝑡 ← 𝑣𝑡/

(
1 − 𝛽𝑡2

)
6: 𝜃𝑡 ← 𝜃𝑡−1 − 𝛼 · �̂�𝑡/

(√
�̂�𝑡 + 𝜖

)
A limitation of Adam is that it can increase the step size in some cases

where it is undesirable. This can be detrimental to the overall performance of the
algorithm [20]. AMSGrad which was presented in 2018, is an extension of the
Adam’s gradient method by improving the algorithm’s convergence properties.
It is characterized by avoiding large sudden changes in the learning speed for
each input variable, which accelerates the optimization process [20]. AMSGrad
maintains a maximum of the second moment vector and uses it to bias the correct
gradient used to update the parameter, instead of the moment vector itself. The
calculation of the gradient 𝑔𝑡 and the update of the biased first and second
moments are carried out in the same way as in the Adam method in Algorithm 1.
The key differences in the AMSGrad pseudocode are presented in Algorithm 2.

Algorithm 2 The pseudocode of the AMSGrad algorithm
1: �̂�𝑡 ← max (�̂�𝑡−1, 𝑣𝑡 )
2: 𝜃𝑡 ← 𝜃𝑡−1 − 𝛼 · 𝑚𝑡/

(√
�̂�𝑡 + 𝜖

)
Since it holds the maximum of all 𝑣𝑡 in the current time step and uses this

maximum value for normalizing the running average of the gradient, the AMS-
Grad results in a nonincreasing step size and avoids the pitfalls [20]. Opposite to
gradient-based methods, the integral cost function [10] can be applied to search
the parameters:

𝐽integral(𝜃) =
1
2

𝑡𝑐∫
0

𝑒−𝛽(𝑡𝑐−𝜏)𝜖2𝑐 (𝑡𝑐, 𝜏)𝑚2(𝜏)d𝜏,

𝜖𝑐 (𝑡𝑐, 𝜏) =
𝑦(𝜏) − 𝜃𝑇 (𝑡𝑐)𝜑(𝜏)

𝑚2(𝜏)
,

(18)
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where 𝛽 > 0 is a forgetting factor and 𝑡𝑐 is current time in continuous domain.
The main difference between the instantaneous and integral cost function is the
scope of working. In the first case, only the current error is analyzed, which in the
second case the previous errors are also taken into account. The above formulation
assumes that all functions are continuous in time. In our work 𝑦 and 𝜑, which are
defined in (12), are available only in discrete time points, the continuous solution
of the above problem must be discretized. Taking into account the Euler forward
method, we obtain the following expressions:

𝜃𝑡+1 = 𝜃𝑡 − 𝑇𝑝Γ
(
𝑅𝑡𝜃𝑡 +𝑄𝑡

)
,

𝑅𝑡+1 = 𝑅𝑡 + 𝑇𝑝
(
−𝛽𝑅𝑡 +

𝜑𝑡𝜑
𝑇
𝑡

𝑚2

)
,

𝑄𝑡+1 = 𝑄𝑡 + 𝑇𝑝
(
−𝛽𝑄𝑡 −

𝑦𝑡𝜑𝑡

𝑚2

)
,

(19)

where 𝑇𝑝 is the sampling time and initial conditions are set 𝑅0 = 0 and 𝑄0 = 0.

2.2. Replay buffer experience

Recently, replay buffer experience enjoys a great success and is widely used
especially in various deep reinforcement learning (RL) algorithms [1, 15]. The
idea of this method is to use previous experience and sample data from it, instead
of using only the latest sample. This methodology allows for faster convergence
andmore reliable estimation of parameters in the identification process. The algo-
rithm implemented by the authors uses a fixed-size buffer (variable buffer_size)
with new data added to the end of the buffer, so that the oldest experience is
pushed out of it. The size of the variable batch_size defines the number of past
samples that are randomized to fill the array and are then input arguments to the
optimization process. It is important that the current sample is added each time
at the end of the batch. Taking a batch of samples from the replay buffer for
optimization is also known in the literature as experience replay [30]. In addition
to making better use of the knowledge already acquired, it also allows breaking
harmful correlations, and positively improves the convergence of optimization
algorithms. The pseudocode of the replay buffer function used for the optimiza-
tion algorithm is shown in Algorithm 3, where the input buffered parameters
are a vector regressor 𝜑 of size 𝑁 × 1 and a scalar displacement 𝑦, which are
defined in (12). The initial value of the global variable buffer_index is zero and
the 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 function carries out the equation (14) according to the currently
used optimization algorithm.
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Algorithm 3 The pseudocode of ReplayBuffer algorithm
Require: buffer_size = const

batch_size = const
buffer_index = 0

Ensure: 𝜑 of size Nx1 and a scalar displacement 𝑦
buffer𝜑 ← 𝜑

buffery ← 𝑦

last_index← buffer_index
buffer_index← buffer_index + 1
if buffer_index = buffer_size then

buffer_index = 0
current_buffer_size = buffer_size

else
current_buffer_size = buffer_index

end if
if current_buffer_size > batch_size then

random batch_size − 1 indexes from 0 to current_buffer_size
append last_index
for 𝑛 in range (batch_size)

index← indexes[n]
Optimizer (buffery[index],buffer𝜑[index])

end for
else

Optimizer (buffery[last_index],buffer𝜑[last_index])
end if

3. Simulation analysis

In this section, the simulations showing the features of the identification algo-
rithm are presented for numerical data and experimental data. Firstly, four simple
examples are shown based on the numerical data generated by a simple transfer
function. Therefore, the scope is focused on the main features of the presented
algorithm. Secondly, the experimental data are analyzed to show the influence of
all imperfections related to online identification in practical applications.

3.1. Influence of buffering

In the presented example, the influence of the replay buffer is shown with the
following transfer function:

𝐺1(𝑠) =
𝑏0

𝑠 + 𝑎0
, (20)

where the parameters are set as 𝑏0 = 1.25 and 𝑎0 = 0.5. The above transfer
function is transformed to the regressor representation (8) with first order Λ(𝑠) =
𝑠 + 5. To generate data for identification, the input is a square waveform with
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amplitude 1 and period 1.25 s and the system output is found by simulating
the transfer function (20) for every step with size 1 ms. Then, the identification
process is performed with the optimization algorithm AMSGrad (with gain 𝛼 =

5 × 10−4) and Gradient (with gain 2). The algorithms are run with and without
Replay Buffer algorithm 3. The parameters of Replay Buffer algorithm are as
follows: the buffer size is 5000 and single batch is 20. The transients of the
estimated parameters are presented in Figure 1. It is visible that buffering reduces
the error of parameters for different algorithms. This is also visible in Table 1
were the performance index is found:

𝐽𝑝 =

𝑁𝑠∑︁
𝑘=0

𝑒2𝑝 (𝑡𝑘 ), (21)

where 𝑝 is the parameter of transfer function (𝑎𝑖 or 𝑏𝑖), 𝑁𝑠 is the number of
samples in simulation, 𝑒𝑝 (𝑡𝑘 ) = 𝑝(𝑡𝑘 ) − 𝑝(𝑡𝑘 ) is the error between the estimated
𝑝(𝑡𝑘 ) and true 𝑝 value of parameter. In Table 1, it is visible that the performance
index 𝐽𝑝 is much lower for algorithms with buffering and the reduction is up to
50%. Furthermore, in the case ofAMSGrad algorithm the replay buffer eliminates
the overshoot for both parameters as it is shown in Fig. 1.

Table 1: The performance indexes of parameter error for algorithm with
and without buffer

Name 𝐽𝑎0 𝐽𝑏0 𝐽sum

AMSGrad, with buffer 2.14𝑒 + 03 6.40𝑒 + 01 2.20𝑒 + 03
AMSGrad, no buffer 5.19𝑒 + 03 5.89𝑒 + 02 5.77𝑒 + 03
Gradient, with buffer 9.15𝑒 + 02 3.87𝑒 + 02 1.30𝑒 + 03
Gradient, no buffer 8.41𝑒 + 02 1.64𝑒 + 03 2.48𝑒 + 03
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Figure 1: The example of system 𝐺1(𝑠) with and without buffer
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3.2. Input signal amplitude

In this section, the influence of the input signal level on the identification
process performance is analyzed. The transfer function 𝐺1(𝑠), the filter Λ(𝑠) and
their parameters are the same as in the previous example. The analyzed optimizers
are AMSGrad with 𝛼 = 2.5 × 10−4 and Gradient with gain 2. The input signal
has the same shape of the square waveform for all cases. However, different is
the level of amplitude which is set to 10, 1 and 0.1 of the nominal signal. The
data generation and system identification were performed for all cases and the
results are shown in Figure 2. It is visible that the level of input signal has a
small influence on the convergence of AMSGrad. However, Gradient optimizer
is very sensitive on the level of amplitude, which is visible especially for 0.1.
The same conclusion can be observed analysing the performance index (21)
shown in Table 2 for all cases. The difference between Gradient and AMSGrad
optimizer, which allows AMSGrad to be robust to the signal level, lies in the
adaptive learning rate tuned by calculating first and second moment. It can be
seen in Fig. 2 that application of AMSGrad not only improves the convergence
of parameters but also it reduces the overshoot.
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Figure 2: The influence of amplitude level of input signal on identification for different
algorithms
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Table 2: The performance indexes of parameter error for AMSGrad and Gradient
algoirthm for various input signal amplitude

Name Amplitude 𝐽𝑎0 𝐽𝑏0 𝐽sum

AMSGrad 10 4.05𝑒 + 03 1.28𝑒 + 03 5.33𝑒 + 03
AMSGrad 1 3.45𝑒 + 03 8.95𝑒 + 02 4.35𝑒 + 03
AMSGrad 0.1 2.96𝑒 + 03 9.26𝑒 + 02 3.89𝑒 + 03
Gradient 10 8.67𝑒 + 02 7.97𝑒 + 02 1.66𝑒 + 03
Gradient 1 8.41𝑒 + 02 1.64𝑒 + 03 2.48𝑒 + 03
Gradient 0.1 2.53𝑒 + 03 1.36𝑒 + 04 1.61𝑒 + 04

3.3. Signal normalization

In the following example, the influence of signal normalization is shown by
the analysis of the transfer function given by:

𝐺2(𝑠) =
𝑏1𝑠 + 𝑏0

𝑠2 + 𝑎1𝑠 + 𝑎0
, (22)

where 𝑏1 = 7.5, 𝑏0 = −12.5, 𝑎1 = 15 and 𝑎0 = 100. The transfer function is
transformed to regressor representation (8) with first order Λ(𝑠) = (𝑠 + 50)2. The
sampling time was set to 0.1 ms and input was square waved signal with ampli-
tude 1 and period 5 s. Two cases were run, the first called ‘one’ with 𝜎𝑦 = 𝜎𝑘 = 1
and the second called ‘adjusted’ with 𝜎𝑦 = 0.25 and 𝜎1 = 2×10−3, 𝜎2 = 4×10−4,
𝜎3 = 6 × 10−4, 𝜎4 = 1 × 10−4. In both cases the AMSGrad algorithm is used,
however, in the case ‘one’ gain is set to 𝛼 = 2.5 × 10−3 and in the case ‘adjusted’
gain is set to 𝛼 = 1× 10−5. The transients of the estimated parameters are visible
in Figure 3 for both cases. It is visible that even thought the gain was reduced
about two orders of magnitude, the performance of ‘adjusted’ case is better. It is
visible that especially for parameter 𝑎0 the normalization improves the transients.
Furthermore, the performance index is also better for the case with normalization
as it is shown in Table 3. The improvement of performance index is about 57.68%.

Table 3: The performance indexes of parameter error with and
without normalization

Performance index one adjusted
𝐽𝑎0 1.85𝑒 + 09 3.15𝑒 + 08
𝐽𝑎1 2.08𝑒 + 07 7.78𝑒 + 06
𝐽𝑏0 1.38𝑒 + 07 5.30𝑒 + 06
𝐽𝑏1 3.41𝑒 + 06 4.81𝑒 + 06
𝐽sum 1.89𝑒 + 09 3.33𝑒 + 08
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Figure 3: The influence of signal normalization on identification process

3.4. External bias

In this case, the influence of the external disturbance causing bias is shown.
Let us consider the transfer function defined in the first example (20) and the
filter Λ(𝑠) is also the same. The above system is simulated with a square wave
input (amplitude 1 and period 1.25 s). In the simulation the AMSGrad algorithm
is used with gain 𝛼 = 0.5 × 10−3 and sampling time is 1 ms. We assume that the
output is biased with undesirable disturbances:

𝑦𝑚 (𝑡) = 𝑦(𝑡) + 0.004166 × 𝑡 (23)

which has an influence on the system after a long time (for instance, for 𝑡 =

60 disturbance has value 0.25). We consider two cases: the first, in which the
algorithm is not modified and the second, in which the regressor has an additional
term:

𝑦(𝑡𝑘 ) =
[
𝜑𝑇 (𝑡𝑘 ) 1

] [𝜃𝜆
𝜃𝑏

]
, (24)

where 𝜃𝑏 is current bias estimation. In the regressor there is a term 1, but not 𝑡.
It is due to the assumption that the bias is so slow that can be temporarily treated
as constant. The advantage of the proposed modification is visible in Figure 4.
It is visible that the extended regressor is capable to estimate the parameters
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Figure 4: The example of biased system with and without correction

with lower error. This is also confirmed with the performance indexes shown in
Table 4.

Table 4: The performance indexes of parameter error for AMSGrad with and
without bias

Bias compensation 𝐽𝑎0 𝐽𝑏0 𝐽sum

with 5.45𝑒 + 03 6.35𝑒 + 02 6.08𝑒 + 03
without 8.91𝑒 + 03 7.56𝑒 + 02 9.66𝑒 + 03

4. Identification with experimental data

4.1. Laboratory kit and experiments

Dielectric Electroactive Polymers (DEAP) offer excellent performance, are
light and flexible, therefore have many potential applications as dielectric actu-
ators. These are electromechanical devices, and therefore exhibit an electrome-
chanical coupling, transforming electrical energy into mechanical energy [2].
The optimization algorithms presented in this work were used in the process of
identifying the parameters of the dielectric actuator made of 3MVHB tape which
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dimensions are listed in Table 5. The actuator membrane is placed horizontally,
and a mass is fixed at its center, thus creating a biasing force that causes the mem-
brane to deform. A precise description of the phenomena occurring in the actuator
and its model have been described by the authors in previous works [4–6,14]. The
laboratory kit used to carry out the experiments is shown in Figure 5. The distance
was measured with a laser sensor (Micro-Epsilon optoNCDT ILD1320-10), and
the voltage was applied by a high-voltage amplifier (TREK MODEL 10/10B-
HS). The signals were processed by a data acquisition card (Inteco RT-DAC/US)
connected to a computer. The research on the structure of the DEA model was
carried out in the paper [4].

Table 5: Dimensions of dielectric electroactive polymer actuator

Parameter Value Unit
Pre-stretch tape thickness 1 mm
Post-stretch tape thickness 200 µm
Internal plate inner diameter 120 mm
Internal disc diameter 20 mm

Figure 5: The laboratory set used in the identification process of DEAP actuator

In this work, the DEAP actuator is described by a series connection of the
transfer function and a squared input 𝑢2 as it is presented in work [5]. It is an
approximation of the general nonlinear model presented for instance in work [4].
The DEAP actuator transfer function is expressed as:

𝐺𝐷𝐸𝐴𝑃 (𝑠) =
𝑏1𝑠 + 𝑏0

𝑠3 + 𝑎2𝑠 + 𝑎1𝑠 + 𝑎0
=

𝑌𝑝 (𝑠)
𝑈𝑝 (𝑠)

, (25)
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where 𝑌𝑝 (𝑠) is the output 𝑦𝑝 (𝑡) = 𝑦𝐿 (𝑡) − 𝑦𝑅 (𝑡) and 𝑢𝑝 (𝑡) = 𝑢2
𝐴
(𝑡) − 𝑢2

𝑅
(𝑡). The

measured output of the laser is 𝑦𝐿 (𝑡) and the applied voltage by the power ampli-
fier is 𝑢𝐴 (𝑡). The signals 𝑦𝑅 (𝑡) and 𝑢𝑅 (𝑡) denotes the working point (equilibrium
in steady state).
The transfer function parameters were identified by the least squares method

for the estimation of the actuator displacement response to the given input volt-
age signal shown in Figure 6a. Figure 6b shows the comparison of the estimated
value of the output with the value measured experimentally, while Figures 6c
and 6d are the zoom versions for the selected time window. The identified pa-
rameters values are presented in Table 6. It is worth to point out that the DEAP
transfer function has single stable zero, stable pole and stable complex poles.
The imaginary part of the poles has a high value relative to the real part. This
provides that the response is very low dumped. It is also worth to point out that
the dynamics has slow and fast parts. This causes that identification is a more
challenging task.

Table 6: The parameters of transfer function of DEAP actuator

Parameter 𝑎0 𝑎1 𝑎2 𝑏0 𝑏1

Value 595.7 5891 3.292 7.722 51.47

In this section, the tests of online identification methods are performed on the
data presented in Figure 6a, b. All algorithms (Gradient, Integral Cost, AMSGrad
and Adam) are run with three configurations: without buffer, buffered with small
gain, buffered with very small gain. In all cases the normalization is turned on
with the following levels 𝜎𝑦 = 0.05 and 𝜎 =

[
10−4 10−4 10−4 10−6 10−6 10

]
.

The last term denotes that bias is specified with coefficient 0.1 (not 1) and the
other terms equalize the level of signals 𝑦 and 𝑢 transformed by filters Λ(𝑠).
The size of buffer is 240000 elements. In the case of AMSGrad and Adam al-
gorithm, the gain 𝛼 is equal to 0.00005 · 𝑔𝑛 and in the case of Gradient and
Integral Cost gain is 0.05 · 𝑔𝑛. It is worth to point out that the difference of
gains between the algorithm is equalized by the sampling time which is applied
in the Gradient and Integral Cost algorithm and not applied in AMSGrad and
Adam algorithm. The transients of all estimated parameters are visible in Fig-
ure 8 and Figure 7. It is worth to point out that different dynamics of parameter
estimation depends on the parameter. For instance, for all methods, 𝑏1 is quite
slow while 𝑎1 is very fast. In the case of gradient algorithms, it has matter
what signal is present in 𝜑 part. However, in general, the convergence of the
gradient algorithm is the slowest. It is also visible that buffering has a crucial
role on the transients and it significantly improves transients without making it
more noisy.



THE BUFFERED OPTIMIZATION METHODS FOR ONLINE TRANSFER FUNCTION
IDENTIFICATION EMPLOYED ON DEAP ACTUATOR 581

0 500 1000 1500 2000
time [s]

6

4

2

0

2

4

6

8

in
pu

t u

(a)

0 500 1000 1500 2000
time [s]

0.15

0.10

0.05

0.00

0.05

0.10

0.15

ou
tp

ut
 y

DEAP
estimated, offline

(b)

449 450 451 452 453 454
time [s]

0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

ou
tp

ut
 y

, e
st

im
at

ed
 o

ut
pu

t y
e

plant
estimated, offline

(c)

450.0 452.5 455.0 457.5 460.0 462.5 465.0
time [s]

0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06
ou

tp
ut

 y
, e

st
im

at
ed

 o
ut

pu
t y

e
plant
estimated, offline

(d)

Figure 6: The input signal applied in DEAP identification (a). The compare of measured
output with offline estimation with zooms (b, c, d)

5. Conclusion

The presented study describes the identification procedure for the system de-
scribed by the continuous transfer function. The combination of standardmethods
known from system identification and machine learning algorithms allows to im-
prove the convergence of estimated parameters. It was shown in the simulations
that the application of replay buffer gives the possibility to reduce the perfor-
mance indexes significantly. Furthermore, the algorithms based on the Stochastic
Descent Gradient are less sensitive to the varying level of the signal amplitude.
Finally, the proposed procedure works well for the experimental data obtained
with Dielectric Electroactive Polymer actuator, which confirms that the presented
method has a potential in practical applications. In the future works, the exploiting
of the dynamics properties should be studied. For instance, the DEAP actautor
has a slow and fast dynamics which could be identified separately.
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Figure 7: The transients of estimated parameters for DEAP experimental data for Gradient
and Integral Cost optimizer
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Figure 8: The transients of estimated parameters for DEAP experimental data for Adam
and AMSGrad optimizer
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A. The variables in the continuous transfer function parametrization

𝜆 =
[
𝜆𝑛−1 . . . 𝜆1 𝜆0

]
,

𝑎 =
[
𝑎𝑛−1 . . . 𝑎1 𝑎0

]
,

𝑏 =
[
𝑏𝑚 . . . 𝑏1 𝑏0

]
,

(26)

𝜑𝑦,𝑖 (𝑠) = −
𝑠𝑖

Λ(𝑠)𝑌 (𝑠),

𝜑𝑢,𝑖 (𝑠) =
𝑠𝑖

Λ(𝑠)𝑈 (𝑠),
(27)

𝜃𝜆 = 𝜃𝑝 +
[
−𝜆𝑇 0𝑚+1

]𝑇
,

𝜃𝑝 =
[
𝑎𝑇 𝑏𝑇

]𝑇
,

𝜑𝑢𝑦 =
[
𝜑𝑇𝑦 𝜑𝑇𝑢

]𝑇
,

𝜑𝑦 =

[
− 𝑠𝑛−1

Λ(𝑠)𝑌 (𝑠) . . . − 𝑠

Λ(𝑠)𝑌 (𝑠) −
1

Λ(𝑠)𝑌 (𝑠)
]𝑇

,

𝜑𝑢 =

[
𝑠𝑚

Λ(𝑠)𝑈 (𝑠) . . .
𝑠

Λ(𝑠)𝑈 (𝑠)
1

Λ(𝑠)𝑈 (𝑠) . . .

]𝑇
,

(28)

𝐹 =


−𝜆𝑛−1 −𝜆𝑛−2 . . . −𝜆1 −𝜆0
1 0 . . . 0 0
0 1 . . . 0 0
...

...
...

...
...

0 0 . . . 1 0


,

𝑙 =
[
1 0 . . . 0

]𝑇
.

(29)
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